Skip to main content

Advertisement

Log in

Type I Interferons in the Pathogenesis and Treatment of Autoimmune Diseases

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Type I interferons (IFN-Is) are a very important group of cytokines that are produced by innate immune cells but also act on adaptive immune cells. IFN-Is possess antiviral, antitumor, and anti-proliferative effects, as well are associated with the initiation and maintenance of autoimmune disorders. Studies have shown that aberrantly expressed IFN-Is and/or type I IFN-inducible gene signatures in the serum or tissues of patients with autoimmune disorders are linked to their pathogenesis, clinical manifestations, and disease activity. Type I interferonopathies with mutations in genes impacting the type I IFN signaling pathway have shown symptoms and characteristics similar to those of systemic lupus erythematosus (SLE). Furthermore, both interventions in animal models and clinical trials of therapies targeting the type I IFN signaling pathway have shown efficacy in the treatment of autoimmune diseases. Our review aims to summarize the functions and targeted therapies (as well as clinical trials) of IFN-Is in both adult and pediatric autoimmune diseases, such as SLE, pediatric SLE (pSLE), rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), Sjögren syndrome (SjS), and systemic sclerosis (SSc), discussing the potential abnormal regulation of transcription factors and epigenetic modifications and providing a potential mechanism for pathogenesis and therapeutic strategies for future clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGS:

Aicardi-Goutières syndrome

BTK:

Bruton’s tyrosine kinase

cGAS:

Cyclic GMP-AMP synthase

IFN-I:

Type I interferon

IRAK:

Interleukin-1 receptor-associated kinase

IRF:

Interferon regulatory family

ISG:

Interferon-stimulated gene

JAK:

Janus kinase

JDM:

Juvenile dermatomyositis

JIA:

Juvenile idiopathic arthritis

MAVS:

Mitochondrial antiviral signaling protein

MDA:

Melanoma differentiation-associated gene

MyD:

Myeloid differentiation primary response gene

pDC:

Plasmacytoid dendritic cell

PRR:

Pattern recognition receptor

pSjS:

primary Sjögren syndrome

pSLE:

Pediatric systemic lupus erythematosus

RA:

Rheumatoid arthritis

RIG-I:

Retinoic acid-inducible gene-I

SSc:

Systemic sclerosis

STAT:

Signal transducers and activators of transcription

STING:

Stimulator of interferon

Syk:

Spleen tyrosine kinase

TBK:

TANK-binding kinase

TLR:

Toll-like receptor

TRAF:

Tumor necrosis factor receptor-associated factor

TREX:

Three prime repair exonuclease

TRIF:

Toll-IL-1 receptor domain-containing adaptor inducing IFN-β

TYK:

Tyrosine kinase

References

  1. Wahren-Herlenius M, Dorner T (2013) Immunopathogenic mechanisms of systemic autoimmune disease. Lancet (London, England) 382(9894):819–831. https://doi.org/10.1016/S0140-6736(13)60954-X

    Article  CAS  Google Scholar 

  2. Yan N, Chen ZJ (2012) Intrinsic antiviral immunity. Nat Immunol 13(3):214–222. https://doi.org/10.1038/ni.2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abramson J, Husebye ES (2016) Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol Rev 271(1):127–140. https://doi.org/10.1111/imr.12419

    Article  CAS  PubMed  Google Scholar 

  4. Seibel MJ, Cooper MS, Zhou H (2013) Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol 1(1):59–70. https://doi.org/10.1016/S2213-8587(13)70045-7

    Article  CAS  PubMed  Google Scholar 

  5. Bakshi J, Segura BT, Wincup C, Rahman A (2018) Unmet needs in the pathogenesis and treatment of systemic lupus erythematosus. Clin Rev Allergy Immunol 55(3):352–367. https://doi.org/10.1007/s12016-017-8640-5

    Article  PubMed  Google Scholar 

  6. Davis LS, Reimold AM (2017) Research and therapeutics-traditional and emerging therapies in systemic lupus erythematosus. Rheumatology (Oxford, England) 56(suppl_1):i100–i113. https://doi.org/10.1093/rheumatology/kew417

    Article  CAS  Google Scholar 

  7. Cheung TT, McInnes IB (2017) Future therapeutic targets in rheumatoid arthritis? Semin Immunopathol 39(4):487–500. https://doi.org/10.1007/s00281-017-0623-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mavragani CP, Moutsopoulos HM (2019) Sjogren’s syndrome: old and new therapeutic targets J autoimmun:102364. https://doi.org/10.1016/j.jaut.2019.102364

  9. Hooks JJ, Moutsopoulos HM, Geis SA, Stahl NI, Decker JL, Notkins AL (1979) Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 301(1):5–8. https://doi.org/10.1056/NEJM197907053010102

    Article  CAS  PubMed  Google Scholar 

  10. Prummel MF, Laurberg P (2003) Interferon-alpha and autoimmune thyroid disease. Thyroid 13(6):547–551. https://doi.org/10.1089/105072503322238809

    Article  CAS  PubMed  Google Scholar 

  11. Ronnblom LE, Alm GV, Oberg KE (1990) Possible induction of systemic lupus erythematosus by interferon-alpha treatment in a patient with a malignant carcinoid tumour. J Intern Med 227(3):207–210. https://doi.org/10.1111/j.1365-2796.1990.tb00144.x

    Article  CAS  PubMed  Google Scholar 

  12. Barrat FJ, Crow MK, Ivashkiv LB (2019) Interferon target-gene expression and epigenomic signatures in health and disease. Nat Immunol 20(12):1574–1583. https://doi.org/10.1038/s41590-019-0466-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Higgs BW, Liu Z, White B, Zhu W, White WI, Morehouse C, Brohawn P, Kiener PA, Richman L, Fiorentino D, Greenberg SA, Jallal B, Yao Y (2011) Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 70(11):2029–2036. https://doi.org/10.1136/ard.2011.150326

    Article  CAS  PubMed  Google Scholar 

  14. Negishi H, Taniguchi T, Yanai H (2018) The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harb Perspect Biol 10(11). https://doi.org/10.1101/cshperspect.a028423

  15. Lazear HM, Schoggins JW, Diamond MS (2019) Shared and distinct functions of type I and type III interferons. Immunity 50(4):907–923. https://doi.org/10.1016/j.immuni.2019.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hillion S, Arleevskaya MI, Blanco P, Bordron A, Brooks WH, Cesbron JY, Kaveri S, Vivier E, Renaudineau Y (2020) The innate part of the adaptive immune system. Clin Rev Allergy Immunol 58(2):151–154. https://doi.org/10.1007/s12016-019-08740-1

    Article  PubMed  Google Scholar 

  17. Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14(1):36–49. https://doi.org/10.1038/nri3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schreiber G (2017) The molecular basis for differential type I interferon signaling. J Biol Chem 292(18):7285–7294. https://doi.org/10.1074/jbc.R116.774562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taylor PC (2019) Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford, England) 58(Suppl 1):i17–i26. https://doi.org/10.1093/rheumatology/key225

    Article  CAS  Google Scholar 

  20. Morand EF, Furie R, Tanaka Y, Bruce IN, Askanase AD, Richez C, Bae SC, Brohawn PZ, Pineda L, Berglind A, Tummala R, Investigators T-T (2020) Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med 382(3):211–221. https://doi.org/10.1056/NEJMoa1912196

    Article  CAS  PubMed  Google Scholar 

  21. Kubo S, Nakayamada S, Tanaka Y (2019) Baricitinib for the treatment of rheumatoid arthritis and systemic lupus erythematosus: a 2019 update. Expert Rev Clin Immunol 15(7):693–700. https://doi.org/10.1080/1744666X.2019.1608821

    Article  CAS  PubMed  Google Scholar 

  22. Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32. https://doi.org/10.1111/j.0105-2896.2004.00204.x

    Article  CAS  PubMed  Google Scholar 

  23. Kato Y, Park J, Takamatsu H, Konaka H, Aoki W, Aburaya S, Ueda M, Nishide M, Koyama S, Hayama Y, Kinehara Y, Hirano T, Shima Y, Narazaki M, Kumanogoh A (2018) Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis 77(10):1507–1515. https://doi.org/10.1136/annrheumdis-2018-212988

    Article  CAS  PubMed  Google Scholar 

  24. Baccala R, Hoebe K, Kono DH, Beutler B, Theofilopoulos AN (2007) TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13(5):543–551. https://doi.org/10.1038/nm1590

    Article  CAS  PubMed  Google Scholar 

  25. Lou H, Pickering MC (2018) Extracellular DNA and autoimmune diseases. Cell Mol Immunol 15(8):746–755. https://doi.org/10.1038/cmi.2017.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raftery N, Stevenson NJ (2017) Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway. Cell Mol Life Sci 74(14):2525–2535. https://doi.org/10.1007/s00018-017-2520-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426(6):1246–1264. https://doi.org/10.1016/j.jmb.2013.11.024

    Article  CAS  PubMed  Google Scholar 

  28. Lee CC, Avalos AM, Ploegh HL (2012) Accessory molecules for toll-like receptors and their function. Nat Rev Immunol 12(3):168–179. https://doi.org/10.1038/nri3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zevini A, Olagnier D, Hiscott J (2017) Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 38(3):194–205. https://doi.org/10.1016/j.it.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Briard B, Place DE, Kanneganti TD (2020) DNA sensing in the innate immune response. Physiology (Bethesda) 35(2):112–124. https://doi.org/10.1152/physiol.00022.2019

    Article  Google Scholar 

  31. Jonsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K, Hotter D, Egedal JH, Kjolby M, Mohammadi P, Prabakaran T, Sorensen LK, Sun C, Jensen SB, Holm CK, Lebbink RJ, Johannsen M, Nyegaard M, Mikkelsen JG, Kirchhoff F, Paludan SR, Jakobsen MR (2017) IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun 8:14391. https://doi.org/10.1038/ncomms14391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arleevskaya MI, Larionova RV, Brooks WH, Bettacchioli E, Renaudineau Y (2020) Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol 58(2):172–181. https://doi.org/10.1007/s12016-019-08742-z

    Article  PubMed  Google Scholar 

  33. Brisse M, Ly H (2019) Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front Immunol 10:1586. https://doi.org/10.3389/fimmu.2019.01586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in toll-like receptor signalling. Nat Rev Immunol 7(5):353–364. https://doi.org/10.1038/nri2079

    Article  CAS  PubMed  Google Scholar 

  35. Cingoz O, Goff SP (2018) Cyclin-dependent kinase activity is required for type I interferon production. Proc Natl Acad Sci U S A 115(13):E2950–E2959. https://doi.org/10.1073/pnas.1720431115

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dias Junior AG, Sampaio NG, Rehwinkel J (2019) A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol 27(1):75–85. https://doi.org/10.1016/j.tim.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  37. Yoneyama M, Fujita T (2009) RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227(1):54–65. https://doi.org/10.1111/j.1600-065X.2008.00727.x

    Article  CAS  PubMed  Google Scholar 

  38. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655. https://doi.org/10.1146/annurev.immunol.19.1.623

    Article  CAS  PubMed  Google Scholar 

  39. Tailor P, Tamura T, Ozato K (2006) IRF family proteins and type I interferon induction in dendritic cells. Cell Res 16(2):134–140. https://doi.org/10.1038/sj.cr.7310018

    Article  CAS  PubMed  Google Scholar 

  40. Li P, Wong JJ, Sum C, Sin WX, Ng KQ, Koh MB, Chin KC (2011) IRF8 and IRF3 cooperatively regulate rapid interferon-beta induction in human blood monocytes. Blood 117(10):2847–2854. https://doi.org/10.1182/blood-2010-07-294272

    Article  CAS  PubMed  Google Scholar 

  41. Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S, Akira S, Teti G, Beninati C (2009) Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 10(6):587–594. https://doi.org/10.1038/ni.1733

    Article  CAS  PubMed  Google Scholar 

  42. Chen K, Liu J, Cao X (2017) Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun 83:1–11. https://doi.org/10.1016/j.jaut.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  43. Das A, Dinh PX, Panda D, Pattnaik AK (2014) Interferon-inducible protein IFI35 negatively regulates RIG-I antiviral signaling and supports vesicular stomatitis virus replication. J Virol 88(6):3103–3113. https://doi.org/10.1128/JVI.03202-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K (2007) Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A 104(18):7500–7505. https://doi.org/10.1073/pnas.0611551104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF (2010) NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141(3):483–496. https://doi.org/10.1016/j.cell.2010.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Catrysse L, Vereecke L, Beyaert R, van Loo G (2014) A20 in inflammation and autoimmunity. Trends Immunol 35(1):22–31. https://doi.org/10.1016/j.it.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Fu Z, Liang H, Wang Y, Qi X, Ding M, Sun X, Zhou Z, Huang Y, Gu H, Li L, Chen X, Li D, Zhao Q, Liu F, Wang H, Wang J, Zen K, Zhang CY (2018) H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly(rC)-binding protein 2. Cell Res 28(2):157–171. https://doi.org/10.1038/cr.2018.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maelfait J, Beyaert R (2012) Emerging role of ubiquitination in antiviral RIG-I signaling. Microbiol Mol Biol Rev 76(1):33–45. https://doi.org/10.1128/MMBR.05012-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang M, Wang L, Zhao X, Zhao K, Meng H, Zhao W, Gao C (2012) TRAF-interacting protein (TRIP) negatively regulates IFN-beta production and antiviral response by promoting proteasomal degradation of TANK-binding kinase 1. J Exp Med 209(10):1703–1711. https://doi.org/10.1084/jem.20120024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Gent M, Sparrer KMJ, Gack MU (2018) TRIM proteins and their roles in antiviral host defenses. Annu Rev Virol 5(1):385–405. https://doi.org/10.1146/annurev-virology-092917-043323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ozato K, Shin DM, Chang TH, Morse HC 3rd (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8(11):849–860. https://doi.org/10.1038/nri2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu Y, Wang J, Yang B, Zheng N, Qin M, Ji Y, Lin G, Tian L, Wu X, Wu L, Sun B (2011) Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7. J Immunol 187(12):6456–6462. https://doi.org/10.4049/jimmunol.1003691

    Article  CAS  PubMed  Google Scholar 

  53. Liu B, Mink S, Wong KA, Stein N, Getman C, Dempsey PW, Wu H, Shuai K (2004) PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol 5(9):891–898. https://doi.org/10.1038/ni1104

    Article  CAS  PubMed  Google Scholar 

  54. Kubota T, Matsuoka M, Xu S, Otsuki N, Takeda M, Kato A, Ozato K (2011) PIASy inhibits virus-induced and interferon-stimulated transcription through distinct mechanisms. J Biol Chem 286(10):8165–8175. https://doi.org/10.1074/jbc.M110.195255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li Y, Li C, Xue P, Zhong B, Mao AP, Ran Y, Chen H, Wang YY, Yang F, Shu HB (2009) ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc Natl Acad Sci U S A 106(19):7945–7950. https://doi.org/10.1073/pnas.0900818106

    Article  PubMed  PubMed Central  Google Scholar 

  56. John SP, Sun J, Carlson RJ, Cao B, Bradfield CJ, Song J, Smelkinson M, Fraser IDC (2018) IFIT1 exerts opposing regulatory effects on the inflammatory and interferon gene programs in LPS-activated human macrophages. Cell Rep 25(1):95–106 e106. https://doi.org/10.1016/j.celrep.2018.09.002

    Article  CAS  Google Scholar 

  57. Wang J, Yang B, Hu Y, Zheng Y, Zhou H, Wang Y, Ma Y, Mao K, Yang L, Lin G, Ji Y, Wu X, Sun B (2013) Negative regulation of Nmi on virus-triggered type I IFN production by targeting IRF7. J Immunol 191(6):3393–3399. https://doi.org/10.4049/jimmunol.1300740

    Article  CAS  PubMed  Google Scholar 

  58. Lee MS, Kim B, Oh GT, Kim YJ (2013) OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat Immunol 14(4):346–355. https://doi.org/10.1038/ni.2535

    Article  CAS  PubMed  Google Scholar 

  59. Ma Z, Moore R, Xu X, Barber GN (2013) DDX24 negatively regulates cytosolic RNA-mediated innate immune signaling. PLoS Pathog 9(10):e1003721. https://doi.org/10.1371/journal.ppat.1003721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li J, Ding SC, Cho H, Chung BC, Gale M Jr, Chanda SK, Diamond MS (2013) A short hairpin RNA screen of interferon-stimulated genes identifies a novel negative regulator of the cellular antiviral response. mBio 4(3):e00385-00313. https://doi.org/10.1128/mBio.00385-13

    Article  CAS  Google Scholar 

  61. Yu Y, Hayward GS (2010) The ubiquitin E3 ligase RAUL negatively regulates type i interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity 33(6):863–877. https://doi.org/10.1016/j.immuni.2010.11.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sugiyama Y, Kakoi K, Kimura A, Takada I, Kashiwagi I, Wakabayashi Y, Morita R, Nomura M, Yoshimura A (2012) Smad2 and Smad3 are redundantly essential for the suppression of iNOS synthesis in macrophages by regulating IRF3 and STAT1 pathways. Int Immunol 24(4):253–265. https://doi.org/10.1093/intimm/dxr126

    Article  CAS  PubMed  Google Scholar 

  63. Zheng H, Qian J, Varghese B, Baker DP, Fuchs S (2011) Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2. Mol Cell Biol 31(4):710–720. https://doi.org/10.1128/MCB.01154-10

    Article  CAS  PubMed  Google Scholar 

  64. Arimoto KI, Lochte S, Stoner SA, Burkart C, Zhang Y, Miyauchi S, Wilmes S, Fan JB, Heinisch JJ, Li Z, Yan M, Pellegrini S, Colland F, Piehler J, Zhang DE (2017) STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat Struct Mol Biol 24(3):279–289. https://doi.org/10.1038/nsmb.3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yasukawa H, Sasaki A, Yoshimura A (2000) Negative regulation of cytokine signaling pathways. Annu Rev Immunol 18:143–164. https://doi.org/10.1146/annurev.immunol.18.1.143

    Article  CAS  PubMed  Google Scholar 

  66. An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y, Yu Y, Liu S, Cao X (2008) Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 9(5):542–550. https://doi.org/10.1038/ni.1604

    Article  CAS  PubMed  Google Scholar 

  67. An H, Zhao W, Hou J, Zhang Y, Xie Y, Zheng Y, Xu H, Qian C, Zhou J, Yu Y, Liu S, Feng G, Cao X (2006) SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25(6):919–928. https://doi.org/10.1016/j.immuni.2006.10.014

    Article  CAS  PubMed  Google Scholar 

  68. Bourdeau A, Dube N, Tremblay ML (2005) Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol 17(2):203–209. https://doi.org/10.1016/j.ceb.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  69. Alexander WS (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2(6):410–416. https://doi.org/10.1038/nri818

    Article  CAS  PubMed  Google Scholar 

  70. Nair S, Bist P, Dikshit N, Krishnan MN (2016) Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of type-I interferon signaling. Sci Rep 6:36179. https://doi.org/10.1038/srep36179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeronimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, Henrique R, Nelson WG, Shariat SF (2011) Epigenetics in prostate cancer: biologic and clinical relevance. Eur Urol 60(4):753–766. https://doi.org/10.1016/j.eururo.2011.06.035

    Article  CAS  PubMed  Google Scholar 

  72. Szyf M (2003) DNA methylation and cancer therapy. Drug Resist Updat 6(6):341–353. https://doi.org/10.1016/j.drup.2003.10.002

    Article  CAS  PubMed  Google Scholar 

  73. Imgenberg-Kreuz J, Carlsson Almlof J, Leonard D, Alexsson A, Nordmark G, Eloranta ML, Rantapaa-Dahlqvist S, Bengtsson AA, Jonsen A, Padyukov L, Gunnarsson I, Svenungsson E, Sjowall C, Ronnblom L, Syvanen AC, Sandling JK (2018) DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann Rheum Dis 77(5):736–743. https://doi.org/10.1136/annrheumdis-2017-212379

    Article  CAS  PubMed  Google Scholar 

  74. Zhu H, Wu LF, Mo XB, Lu X, Tang H, Zhu XW, Xia W, Guo YF, Wang MJ, Zeng KQ, Wu J, Qiu YH, Lin X, Zhang YH, Liu YZ, Yi NJ, Deng FY, Lei SF (2019) Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells. Ann Rheum Dis 78(1):36–42. https://doi.org/10.1136/annrheumdis-2018-213970

    Article  CAS  PubMed  Google Scholar 

  75. Imgenberg-Kreuz J, Sandling JK, Almlof JC, Nordlund J, Signer L, Norheim KB, Omdal R, Ronnblom L, Eloranta ML, Syvanen AC, Nordmark G (2016) Genome-wide DNA methylation analysis in multiple tissues in primary Sjogren’s syndrome reveals regulatory effects at interferon-induced genes. Ann Rheum Dis 75(11):2029–2036. https://doi.org/10.1136/annrheumdis-2015-208659

    Article  CAS  PubMed  Google Scholar 

  76. Ding W, Pu W, Wang L, Jiang S, Zhou X, Tu W, Yu L, Zhang J, Guo S, Liu Q, Ma Y, Chen S, Wu W, Reveille J, Zou H, Jin L, Wang J (2018) Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4(+) and CD8(+) T cells. J Investig Dermatol 138(5):1069–1077. https://doi.org/10.1016/j.jid.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  77. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, Makarov V, Budhu S, Slamon DJ, Wolchok JD, Pardoll DM, Beckmann MW, Zahnow CA, Merghoub T, Chan TA, Baylin SB, Strick R (2015) Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162(5):974–986. https://doi.org/10.1016/j.cell.2015.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20(3):341–348. https://doi.org/10.1016/j.ceb.2008.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fang TC, Schaefer U, Mecklenbrauker I, Stienen A, Dewell S, Chen MS, Rioja I, Parravicini V, Prinjha RK, Chandwani R, MacDonald MR, Lee K, Rice CM, Tarakhovsky A (2012) Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response. J Exp Med 209(4):661–669. https://doi.org/10.1084/jem.20112343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen K, Liu J, Liu S, Xia M, Zhang X, Han D, Jiang Y, Wang C, Cao X (2017) Methyltransferase SETD2-mediated methylation of STAT1 is critical for interferon antiviral activity. Cell 170(3):492–506 e414. https://doi.org/10.1016/j.cell.2017.06.042

    Article  CAS  Google Scholar 

  81. Chen X, Liu X, Zhang Y, Huai W, Zhou Q, Xu S, Chen X, Li N, Cao X (2020) Methyltransferase Dot1l preferentially promotes innate IL-6 and IFN-beta production by mediating H3K79me2/3 methylation in macrophages. Cell Mol Immunol 17(1):76–84. https://doi.org/10.1038/s41423-018-0170-4

    Article  CAS  PubMed  Google Scholar 

  82. Munshi N, Agalioti T, Lomvardas S, Merika M, Chen G, Thanos D (2001) Coordination of a transcriptional switch by HMGI(Y) acetylation. Science 293(5532):1133–1136. https://doi.org/10.1126/science.293.5532.1133

    Article  CAS  PubMed  Google Scholar 

  83. Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D (2000) Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103(4):667–678. https://doi.org/10.1016/s0092-8674(00)00169-0

    Article  CAS  PubMed  Google Scholar 

  84. Meng J, Liu X, Zhang P, Li D, Xu S, Zhou Q, Guo M, Huai W, Chen X, Wang Q, Li N, Cao X (2016) Rb selectively inhibits innate IFN-beta production by enhancing deacetylation of IFN-beta promoter through HDAC1 and HDAC8. J Autoimmun 73:42–53. https://doi.org/10.1016/j.jaut.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  85. Marie IJ, Chang HM, Levy DE (2018) HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 215(12):3194–3212. https://doi.org/10.1084/jem.20180520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Decque A, Joffre O, Magalhaes JG, Cossec JC, Blecher-Gonen R, Lapaquette P, Silvin A, Manel N, Joubert PE, Seeler JS, Albert ML, Amit I, Amigorena S, Dejean A (2016) Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat Immunol 17(2):140–149. https://doi.org/10.1038/ni.3342

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Y, Mao D, Roswit WT, Jin X, Patel AC, Patel DA, Agapov E, Wang Z, Tidwell RM, Atkinson JJ, Huang G, McCarthy R, Yu J, Yun NE, Paessler S, Lawson TG, Omattage NS, Brett TJ, Holtzman MJ (2015) PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat Immunol 16(12):1215–1227. https://doi.org/10.1038/ni.3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fonseca GJ, Thillainadesan G, Yousef AF, Ablack JN, Mossman KL, Torchia J, Mymryk JS (2012) Adenovirus evasion of interferon-mediated innate immunity by direct antagonism of a cellular histone posttranslational modification. Cell Host Microbe 11(6):597–606. https://doi.org/10.1016/j.chom.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  89. Li Y, Fan X, He X, Sun H, Zou Z, Yuan H, Xu H, Wang C, Shi X (2012) MicroRNA-466l inhibits antiviral innate immune response by targeting interferon-alpha. Cell Mol Immunol 9(6):497–502. https://doi.org/10.1038/cmi.2012.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Han X, Wang Y, Zhang X, Qin Y, Qu B, Wu L, Ma J, Zhou Z, Qian J, Dai M, Tang Y, Chan EK, Harley JB, Zhou S, Shen N (2016) MicroRNA-130b ameliorates murine lupus nephritis through targeting the type I interferon pathway on renal mesangial cells. Arthritis Rheumatol (Hoboken, NJ) 68(9):2232–2243. https://doi.org/10.1002/art.39725

    Article  CAS  Google Scholar 

  91. Rossato M, Affandi AJ, Thordardottir S, Wichers CGK, Cossu M, Broen JCA, Moret FM, Bossini-Castillo L, Chouri E, van Bon L, Wolters F, Marut W, van der Kroef M, Silva-Cardoso S, Bekker CPJ, Dolstra H, van Laar JM, Martin J, van Roon JAG, Reedquist KA, Beretta L, Radstake T (2017) Association of MicroRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ) 69(9):1891–1902. https://doi.org/10.1002/art.40163

    Article  CAS  Google Scholar 

  92. Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, Lin SW, Lee CN, Yang PC, Yu SL (2014) Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun 5:3344. https://doi.org/10.1038/ncomms4344

    Article  CAS  PubMed  Google Scholar 

  93. Smith S, Fernando T, Wu PW, Seo J, Ni Gabhann J, Piskareva O, McCarthy E, Howard D, O'Connell P, Conway R, Gallagher P, Molloy E, Stallings RL, Kearns G, Forbess L, Ishimori M, Venuturupalli S, Wallace D, Weisman M, Jefferies CA (2017) MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE. J Autoimmun 79:105–111. https://doi.org/10.1016/j.jaut.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  94. Yoon WH, Meinhardt H, Montell DJ (2011) miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nat Cell Biol 13(9):1062–1069. https://doi.org/10.1038/ncb2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kohanbash G, Okada H (2012) MicroRNAs and STAT interplay. Semin Cancer Biol 22(1):70–75. https://doi.org/10.1016/j.semcancer.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  96. Gracias DT, Stelekati E, Hope JL, Boesteanu AC, Doering TA, Norton J, Mueller YM, Fraietta JA, Wherry EJ, Turner M, Katsikis PD (2013) The microRNA miR-155 controls CD8(+) T cell responses by regulating interferon signaling. Nat Immunol 14(6):593–602. https://doi.org/10.1038/ni.2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Navarro A, Pairet S, Alvarez-Larran A, Pons A, Ferrer G, Longaron R, Fernandez-Rodriguez C, Camacho L, Monzo M, Besses C, Bellosillo B (2016) miR-203 and miR-221 regulate SOCS1 and SOCS3 in essential thrombocythemia. Blood. Cancer J 6:e406. https://doi.org/10.1038/bcj.2016.10

    Article  CAS  Google Scholar 

  98. Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S, Liu Y, Wu J (2013) HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 9(4):e1003248. https://doi.org/10.1371/journal.ppat.1003248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nishitsuji H, Ujino S, Yoshio S, Sugiyama M, Mizokami M, Kanto T, Shimotohno K (2016) Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression. Proc Natl Acad Sci U S A 113(37):10388–10393. https://doi.org/10.1073/pnas.1525022113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhou Y, Li M, Xue Y, Li Z, Wen W, Liu X, Ma Y, Zhang L, Shen Z, Cao X (2019) Interferon-inducible cytoplasmic lncLrrc55-AS promotes antiviral innate responses by strengthening IRF3 phosphorylation. Cell Res 29(8):641–654. https://doi.org/10.1038/s41422-019-0193-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, Carnero E, Barriocanal M, Fortes P, Anthony DD, Valadkhan S (2014) Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res 42(16):10668–10680. https://doi.org/10.1093/nar/gku713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cui Y, Sheng Y, Zhang X (2013) Genetic susceptibility to SLE: recent progress from GWAS. J Autoimmun 41:25–33. https://doi.org/10.1016/j.jaut.2013.01.008

    Article  CAS  PubMed  Google Scholar 

  103. Deng Y, Tsao BP (2010) Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 6(12):683–692. https://doi.org/10.1038/nrrheum.2010.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ghodke-Puranik Y, Niewold TB (2015) Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun 64:125–136. https://doi.org/10.1016/j.jaut.2015.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Delgado-Vega A, Sanchez E, Lofgren S, Castillejo-Lopez C, Alarcon-Riquelme ME (2010) Recent findings on genetics of systemic autoimmune diseases. Curr Opin Immunol 22(6):698–705. https://doi.org/10.1016/j.coi.2010.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhai Y, Xu K, Leng RX, Cen H, Wang W, Zhu Y, Zhou M, Feng CC, Ye DQ (2013) Association of interleukin-1 receptor-associated kinase (IRAK1) gene polymorphisms (rs3027898, rs1059702) with systemic lupus erythematosus in a Chinese Han population. Inflamm Res 62(6):555–560. https://doi.org/10.1007/s00011-013-0607-2

    Article  CAS  PubMed  Google Scholar 

  107. Jacob CO, Zhu J, Armstrong DL, Yan M, Han J, Zhou XJ, Thomas JA, Reiff A, Myones BL, Ojwang JO, Kaufman KM, Klein-Gitelman M, McCurdy D, Wagner-Weiner L, Silverman E, Ziegler J, Kelly JA, Merrill JT, Harley JB, Ramsey-Goldman R, Vila LM, Bae SC, Vyse TJ, Gilkeson GS, Gaffney PM, Moser KL, Langefeld CD, Zidovetzki R, Mohan C (2009) Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci U S A 106(15):6256–6261. https://doi.org/10.1073/pnas.0901181106

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tyler DR, Persky ME, Matthews LA, Chan S, Farrar JD (2007) Pre-assembly of STAT4 with the human IFN-alpha/beta receptor-2 subunit is mediated by the STAT4 N-domain. Mol Immunol 44(8):1864–1872. https://doi.org/10.1016/j.molimm.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  109. Hagberg N, Joelsson M, Leonard D, Reid S, Eloranta ML, Mo J, Nilsson MK, Syvanen AC, Bryceson YT, Ronnblom L (2018) The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-gamma production in T cells from patients with SLE. Ann Rheum Dis 77(7):1070–1077. https://doi.org/10.1136/annrheumdis-2017-212794

    Article  CAS  PubMed  Google Scholar 

  110. Hagberg N, Ronnblom L (2019) Interferon-alpha enhances the IL-12-induced STAT4 activation selectively in carriers of the STAT4 SLE risk allele rs7574865[T]. Ann Rheum Dis 78(3):429–431. https://doi.org/10.1136/annrheumdis-2018-213836

    Article  PubMed  Google Scholar 

  111. Wang Y, Shaked I, Stanford SM, Zhou W, Curtsinger JM, Mikulski Z, Shaheen ZR, Cheng G, Sawatzke K, Campbell AM, Auger JL, Bilgic H, Shoyama FM, Schmeling DO, Balfour HH Jr, Hasegawa K, Chan AC, Corbett JA, Binstadt BA, Mescher MF, Ley K, Bottini N, Peterson EJ (2013) The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity. Immunity 39(1):111–122. https://doi.org/10.1016/j.immuni.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  112. Chuang TH, Ulevitch RJ (2004) Triad3A, an E3 ubiquitin-protein ligase regulating toll-like receptors. Nat Immunol 5(5):495–502. https://doi.org/10.1038/ni1066

    Article  CAS  PubMed  Google Scholar 

  113. Yarwood A, Huizinga TW, Worthington J (2016) The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford, England) 55(2):199–209. https://doi.org/10.1093/rheumatology/keu323

    Article  CAS  Google Scholar 

  114. Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, Martin P, Comeau ME, Sajuthi S, Andrews R, Brown M, Chen WM, Concannon P, Deloukas P, Edkins S, Eyre S, Gaffney PM, Guthery SL, Guthridge JM, Hunt SE, James JA, Keddache M, Moser KL, Nigrovic PA, Onengut-Gumuscu S, Onslow ML, Rose CD, Rich SS, Steel KJ, Wakeland EK, Wallace CA, Wedderburn LR, Woo P, Boston Children's JIAR, British Society of P, Adolescent Rheumatology Study G, Childhood Arthritis Prospective S, Childhood Arthritis Response to Medication S, German Society for Pediatric R, Study JIAGE, Registry NJG, Study T, United Kingdom Juvenile Idiopathic Arthritis Genetics C, Bohnsack JF, Haas JP, Glass DN, Langefeld CD, Thomson W, Thompson SD (2013) Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat Genet 45(6):664–669. https://doi.org/10.1038/ng.2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nordang GB, Viken MK, Amundsen SS, Sanchez ES, Flato B, Forre OT, Martin J, Kvien TK, Lie BA (2012) Interferon regulatory factor 5 gene polymorphism confers risk to several rheumatic diseases and correlates with expression of alternative thymic transcripts. Rheumatology (Oxford, England) 51(4):619–626. https://doi.org/10.1093/rheumatology/ker364

    Article  CAS  Google Scholar 

  116. Harris VM, Scofield RH, Sivils KL (2019) Genetics in Sjogren’s syndrome: where we are and where we go. Clin Exp Rheumatol 37 Suppl 118(3):234–239

    PubMed  Google Scholar 

  117. Burbelo PD, Ambatipudi K, Alevizos I (2014) Genome-wide association studies in Sjogren’s syndrome: what do the genes tell us about disease pathogenesis? Autoimmun Rev 13(7):756–761. https://doi.org/10.1016/j.autrev.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Crow YJ (2015) Type I interferonopathies: mendelian type I interferon up-regulation. Curr Opin Immunol 32:7–12. https://doi.org/10.1016/j.coi.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  119. Lee-Kirsch MA, Wolf C, Kretschmer S, Roers A (2015) Type I interferonopathies--an expanding disease spectrum of immunodysregulation. Semin Immunopathol 37(4):349–357. https://doi.org/10.1007/s00281-015-0500-x

    Article  CAS  PubMed  Google Scholar 

  120. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, Black DN, van Bokhoven H, Brunner HG, Hamel BC, Corry PC, Cowan FM, Frints SG, Klepper J, Livingston JH, Lynch SA, Massey RF, Meritet JF, Michaud JL, Ponsot G, Voit T, Lebon P, Bonthron DT, Jackson AP, Barnes DE, Lindahl T (2006) Mutations in the gene encoding the 3′-5' DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet 38(8):917–920. https://doi.org/10.1038/ng1845

    Article  CAS  PubMed  Google Scholar 

  121. Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, Ali M, Semple C, Aicardi J, Babul-Hirji R, Baumann C, Baxter P, Bertini E, Chandler KE, Chitayat D, Cau D, Dery C, Fazzi E, Goizet C, King MD, Klepper J, Lacombe D, Lanzi G, Lyall H, Martinez-Frias ML, Mathieu M, McKeown C, Monier A, Oade Y, Quarrell OW, Rittey CD, Rogers RC, Sanchis A, Stephenson JB, Tacke U, Till M, Tolmie JL, Tomlin P, Voit T, Weschke B, Woods CG, Lebon P, Bonthron DT, Ponting CP, Jackson AP (2006) Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet 38(8):910–916. https://doi.org/10.1038/ng1842

    Article  CAS  PubMed  Google Scholar 

  122. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41(7):829–832. https://doi.org/10.1038/ng.373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Coquel F, Neumayer C, Lin YL, Pasero P (2019) SAMHD1 and the innate immune response to cytosolic DNA during DNA replication. Curr Opin Immunol 56:24–30. https://doi.org/10.1016/j.coi.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  124. Rice GI, Kasher PR, Forte GM, Mannion NM, Greenwood SM, Szynkiewicz M, Dickerson JE, Bhaskar SS, Zampini M, Briggs TA, Jenkinson EM, Bacino CA, Battini R, Bertini E, Brogan PA, Brueton LA, Carpanelli M, De Laet C, de Lonlay P, del Toro M, Desguerre I, Fazzi E, Garcia-Cazorla A, Heiberg A, Kawaguchi M, Kumar R, Lin JP, Lourenco CM, Male AM, Marques W Jr, Mignot C, Olivieri I, Orcesi S, Prabhakar P, Rasmussen M, Robinson RA, Rozenberg F, Schmidt JL, Steindl K, Tan TY, van der Merwe WG, Vanderver A, Vassallo G, Wakeling EL, Wassmer E, Whittaker E, Livingston JH, Lebon P, Suzuki T, McLaughlin PJ, Keegan LP, O'Connell MA, Lovell SC, Crow YJ (2012) Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature. Nat Genet 44(11):1243–1248. https://doi.org/10.1038/ng.2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M, Hijikata A, Nishikomori R, Funatsuka M, Ohshima Y, Sugawara Y, Yasumi T, Kato H, Shirai T, Ohara O, Fujita T, Heike T (2014) Aicardi-Goutieres syndrome is caused by IFIH1 mutations. Am J Hum Genet 95(1):121–125. https://doi.org/10.1016/j.ajhg.2014.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pelzer N, Hoogeveen ES, Haan J, Bunnik R, Poot CC, van Zwet EW, Inderson A, Fogteloo AJ, Reinders MEJ, Middelkoop HAM, Kruit MC, van den Maagdenberg A, Ferrari MD, Terwindt GM (2019) Systemic features of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations: a monogenic small vessel disease. J Intern Med 285(3):317–332. https://doi.org/10.1111/joim.12848

    Article  CAS  PubMed  Google Scholar 

  127. Konig N, Fiehn C, Wolf C, Schuster M, Cura Costa E, Tungler V, Alvarez HA, Chara O, Engel K, Goldbach-Mansky R, Gunther C, Lee-Kirsch MA (2017) Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 76(2):468–472. https://doi.org/10.1136/annrheumdis-2016-209841

    Article  CAS  PubMed  Google Scholar 

  128. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371(6):507–518. https://doi.org/10.1056/NEJMoa1312625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Navarro V, Scott C, Briggs TA, Barete S, Frances C, Lebon P, Maisonobe T, Rice GI, Wouters CH, Crow YJ (2008) Two further cases of spondyloenchondrodysplasia (SPENCD) with immune dysregulation. Am J Med Genet A 146A(21):2810–2815. https://doi.org/10.1002/ajmg.a.32518

    Article  CAS  PubMed  Google Scholar 

  130. Costa-Reis P, Sullivan KE (2017) Monogenic lupus: it’s all new! Curr Opin Immunol 49:87–95. https://doi.org/10.1016/j.coi.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  131. Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y, Rice GI, Erlandsen H, Kehl HG, Thiele H, Nurnberg P, Hohne W, Crow YJ, Feigenbaum A, Hennekam RC (2015) A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet 96(2):275–282. https://doi.org/10.1016/j.ajhg.2014.12.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ, Yoo JY, Lee J, Jeong YM, Kim CH, Kim OH, Sohn S, Nam SH, Hong Y, Lee YS, Chang SA, Jang SY, Kim JW, Lee MS, Lim SY, Sung KS, Park KT, Kim BJ, Lee JH, Kim DK, Kee C, Ki CS (2015) Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet 96(2):266–274. https://doi.org/10.1016/j.ajhg.2014.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Shipman L (2014) Cytokines: ISG15--human deficiency reveals new proficiency. Nat Rev Immunol 14(12):780–781. https://doi.org/10.1038/nri3767

    Article  CAS  PubMed  Google Scholar 

  134. Cavalcante MP, Brunelli JB, Miranda CC, Novak GV, Malle L, Aikawa NE, Jesus AA, Silva CA (2016) CANDLE syndrome: chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature-a rare case with a novel mutation. Eur J Pediatr 175(5):735–740. https://doi.org/10.1007/s00431-015-2668-4

    Article  CAS  PubMed  Google Scholar 

  135. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q, Montealegre G, Biancotto A, Reinhardt A, Almeida de Jesus A, Pelletier M, Tsai WL, Remmers EF, Kardava L, Hill S, Kim H, Lachmann HJ, Megarbane A, Chae JJ, Brady J, Castillo RD, Brown D, Casano AV, Gao L, Chapelle D, Huang Y, Stone D, Chen Y, Sotzny F, Lee CC, Kastner DL, Torrelo A, Zlotogorski A, Moir S, Gadina M, McCoy P, Wesley R, Rother KI, Hildebrand PW, Brogan P, Kruger E, Aksentijevich I, Goldbach-Mansky R (2015) Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 125(11):4196–4211. https://doi.org/10.1172/JCI81260

    Article  PubMed  PubMed Central  Google Scholar 

  136. Alsohime F, Martin-Fernandez M, Temsah MH, Alabdulhafid M, Le Voyer T, Alghamdi M, Qiu X, Alotaibi N, Alkahtani A, Buta S, Jouanguy E, Al-Eyadhy A, Gruber C, Hasan GM, Bashiri FA, Halwani R, Hassan HH, Al-Muhsen S, Alkhamis N, Alsum Z, Casanova JL, Bustamante J, Bogunovic D, Alangari AA (2020) JAK inhibitor therapy in a child with inherited USP18 deficiency. N Engl J Med 382(3):256–265. https://doi.org/10.1056/NEJMoa1905633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ, Berkun Y, Schalm S, Murias S, Dare JA, Brown D, Stone DL, Gao L, Klausmeier T, Foell D, de Jesus AA, Chapelle DC, Kim H, Dill S, Colbert RA, Failla L, Kost B, O'Brien M, Reynolds JC, Folio LR, Calvo KR, Paul SM, Weir N, Brofferio A, Soldatos A, Biancotto A, Cowen EW, Digiovanna JJ, Gadina M, Lipton AJ, Hadigan C, Holland SM, Fontana J, Alawad AS, Brown RJ, Rother KI, Heller T, Brooks KM, Kumar P, Brooks SR, Waldman M, Singh HK, Nickeleit V, Silk M, Prakash A, Janes JM, Ozen S, Wakim PG, Brogan PA, Macias WL, Goldbach-Mansky R (2018) JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 128(7):3041–3052. https://doi.org/10.1172/JCI98814

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fremond ML, Rodero MP, Jeremiah N, Belot A, Jeziorski E, Duffy D, Bessis D, Cros G, Rice GI, Charbit B, Hulin A, Khoudour N, Caballero CM, Bodemer C, Fabre M, Berteloot L, Le Bourgeois M, Reix P, Walzer T, Moshous D, Blanche S, Fischer A, Bader-Meunier B, Rieux-Laucat F, Crow YJ, Neven B (2016) Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children. J Allergy Clin Immunol 138(6):1752–1755. https://doi.org/10.1016/j.jaci.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  139. Tungler V, Konig N, Gunther C, Engel K, Fiehn C, Smitka M, von der Hagen M, Berner R, Lee-Kirsch MA (2016) Response to: 'JAK inhibition in STING-associated interferonopathy' by Crow et al. cJ. Clin Invest 128(7):2760–2762. https://doi.org/10.1172/JCI121526

    Article  Google Scholar 

  140. Meesilpavikkai K, Dik WA, Schrijver B, van Helden-Meeuwsen CG, Versnel MA, van Hagen PM, Bijlsma EK, Ruivenkamp CAL, Oele MJ, Dalm V (2019) Efficacy of baricitinib in the treatment of chilblains associated with Aicardi-Goutieres syndrome, a type I interferonopathy. Arthritis Rheumatol (Hoboken, NJ) 71(5):829–831. https://doi.org/10.1002/art.40805

    Article  Google Scholar 

  141. Briand C, Fremond ML, Bessis D, Carbasse A, Rice GI, Bondet V, Duffy D, Chatenoud L, Blanche S, Crow YJ, Neven B (2019) Efficacy of JAK1/2 inhibition in the treatment of chilblain lupus due to TREX1 deficiency. Ann Rheum Dis 78(3):431–433. https://doi.org/10.1136/annrheumdis-2018-214037

    Article  PubMed  Google Scholar 

  142. Zimmermann N, Wolf C, Schwenke R, Luth A, Schmidt F, Engel K, Lee-Kirsch MA, Gunther C (2019) Assessment of clinical response to Janus kinase inhibition in patients with familial chilblain lupus and TREX1 mutation. JAMA Dermatol 155(3):342–346. https://doi.org/10.1001/jamadermatol.2018.5077

    Article  PubMed  PubMed Central  Google Scholar 

  143. Fragoulis GE, McInnes IB, Siebert S (2019) JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford, England) 58(Suppl 1):i43–i54. https://doi.org/10.1093/rheumatology/key276

    Article  CAS  Google Scholar 

  144. Winthrop KL (2017) The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol 13(4):234–243. https://doi.org/10.1038/nrrheum.2017.23

    Article  CAS  PubMed  Google Scholar 

  145. Bronson PG, Chaivorapol C, Ortmann W, Behrens TW, Graham RR (2012) The genetics of type I interferon in systemic lupus erythematosus. Curr Opin Immunol 24(5):530–537. https://doi.org/10.1016/j.coi.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  146. Psarras A, Emery P, Vital EM (2017) Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford, England) 56(10):1662–1675. https://doi.org/10.1093/rheumatology/kew431

    Article  CAS  Google Scholar 

  147. Guiducci C, Gong M, Xu Z, Gill M, Chaussabel D, Meeker T, Chan JH, Wright T, Punaro M, Bolland S, Soumelis V, Banchereau J, Coffman RL, Pascual V, Barrat FJ (2010) TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465(7300):937–941. https://doi.org/10.1038/nature09102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rizza P, Moretti F, Capone I, Belardelli F (2015) Role of type I interferon in inducing a protective immune response: perspectives for clinical applications. Cytokine Growth Factor Rev 26(2):195–201. https://doi.org/10.1016/j.cytogfr.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  149. Wolf SJ, Estadt SN, Theros J, Moore T, Ellis J, Liu J, Reed TJ, Jacob CO, Gudjonsson JE, Kahlenberg JM (2019) Ultraviolet light induces increased T cell activation in lupus-prone mice via type I IFN-dependent inhibition of T regulatory cells. J Autoimmun 103:102291. https://doi.org/10.1016/j.jaut.2019.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu M, Guo Q, Wu C, Sterlin D, Goswami S, Zhang Y, Li T, Bao C, Shen N, Fu Q, Zhang X (2019) Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients. Cell Mol Immunol 16(4):367–379. https://doi.org/10.1038/s41423-018-0010-6

    Article  CAS  PubMed  Google Scholar 

  151. Dieudonne Y, Gies V, Guffroy A, Keime C, Bird AK, Liesveld J, Barnas JL, Poindron V, Douiri N, Soulas-Sprauel P, Martin T, Meffre E, Anolik JH, Korganow AS (2019) Transitional B cells in quiescent SLE: An early checkpoint imprinted by IFN. J Autoimmun 102:150–158. https://doi.org/10.1016/j.jaut.2019.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hamilton JA, Hsu HC, Mountz JD (2019) Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 292(1):120–138. https://doi.org/10.1111/imr.12815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chyuan IT, Tzeng HT, Chen JY (2019) Signaling pathways of type I and type III interferons and targeted therapies in systemic lupus erythematosus. Cells 8(9). https://doi.org/10.3390/cells8090963

  154. Sarkar MK, Hile GA, Tsoi LC, Xing X, Liu J, Liang Y, Berthier CC, Swindell WR, Patrick MT, Shao S, Tsou PS, Uppala R, Beamer MA, Srivastava A, Bielas SL, Harms PW, Getsios S, Elder JT, Voorhees JJ, Gudjonsson JE, Kahlenberg JM (2018) Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis 77(11):1653–1664. https://doi.org/10.1136/annrheumdis-2018-213197

    Article  CAS  PubMed  Google Scholar 

  155. Lo MS (2018) Insights gained from the study of pediatric systemic lupus erythematosus. Front Immunol 9:1278. https://doi.org/10.3389/fimmu.2018.01278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rice GI, Melki I, Fremond ML, Briggs TA, Rodero MP, Kitabayashi N, Oojageer A, Bader-Meunier B, Belot A, Bodemer C, Quartier P, Crow YJ (2017) Assessment of type I interferon signaling in pediatric inflammatory disease. J Clin Immunol 37(2):123–132. https://doi.org/10.1007/s10875-016-0359-1

    Article  CAS  PubMed  Google Scholar 

  157. Wahadat MJ, Bodewes ILA, Maria NI, van Helden-Meeuwsen CG, van Dijk-Hummelman A, Steenwijk EC, Kamphuis S, Versnel MA (2018) Type I IFN signature in childhood-onset systemic lupus erythematosus: a conspiracy of DNA- and RNA-sensing receptors? Arthritis Res Therapy 20(1):4. https://doi.org/10.1186/s13075-017-1501-z

    Article  CAS  Google Scholar 

  158. Midgley A, Thorbinson C, Beresford MW (2012) Expression of toll-like receptors and their detection of nuclear self-antigen leading to immune activation in JSLE. Rheumatology (Oxford, England) 51(5):824–832. https://doi.org/10.1093/rheumatology/ker400

    Article  CAS  Google Scholar 

  159. Fava A, Petri M (2019) Systemic lupus erythematosus: diagnosis and clinical management. J Autoimmun 96:1–13. https://doi.org/10.1016/j.jaut.2018.11.001

    Article  PubMed  Google Scholar 

  160. Kalunian KC, Merrill JT, Maciuca R, McBride JM, Townsend MJ, Wei X, Davis JC Jr, Kennedy WP (2016) A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis 75(1):196–202. https://doi.org/10.1136/annrheumdis-2014-206090

    Article  PubMed  Google Scholar 

  161. McBride JM, Jiang J, Abbas AR, Morimoto A, Li J, Maciuca R, Townsend M, Wallace DJ, Kennedy WP, Drappa J (2012) Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum 64(11):3666–3676. https://doi.org/10.1002/art.34632

    Article  CAS  PubMed  Google Scholar 

  162. Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, Drappa J, Wang L, Greth W, investigators CDs (2016) Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis 75 (11):1909–1916. https://doi.org/10.1136/annrheumdis-2015-208562

  163. Chasset F, Arnaud L (2018) Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev 17(1):44–52. https://doi.org/10.1016/j.autrev.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  164. Ducreux J, Houssiau FA, Vandepapeliere P, Jorgensen C, Lazaro E, Spertini F, Colaone F, Roucairol C, Laborie M, Croughs T, Grouard-Vogel G, Lauwerys BR (2016) Interferon alpha kinoid induces neutralizing anti-interferon alpha antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon alpha kinoid phase I/II study. Rheumatology (Oxford, England) 55(10):1901–1905. https://doi.org/10.1093/rheumatology/kew262

    Article  CAS  Google Scholar 

  165. Houssiau FA, Thanou A, Mazur M, Ramiterre E, Gomez Mora DA, Misterska-Skora M, Perich-Campos RA, Smakotina SA, Cerpa Cruz S, Louzir B, Croughs T, Tee ML (2020) IFN-alpha kinoid in systemic lupus erythematosus: results from a phase IIb, randomised, placebo-controlled study. Ann Rheum Dis 79(3):347–355. https://doi.org/10.1136/annrheumdis-2019-216379

    Article  PubMed  Google Scholar 

  166. Furie R, Khamashta M, Merrill JT, Werth VP, Kalunian K, Brohawn P, Illei GG, Drappa J, Wang L, Yoo S, Investigators CDS (2017) Anifrolumab, an anti-interferon-alpha receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis & rheumatology (Hoboken, NJ) 69(2):376–386. https://doi.org/10.1002/art.39962

    Article  CAS  Google Scholar 

  167. Morand EF, Trasieva T, Berglind A, Illei GG, Tummala R (2018) Lupus low disease activity state (LLDAS) attainment discriminates responders in a systemic lupus erythematosus trial: post-hoc analysis of the phase IIb MUSE trial of anifrolumab. Ann Rheum Dis 77(5):706–713. https://doi.org/10.1136/annrheumdis-2017-212504

    Article  CAS  PubMed  Google Scholar 

  168. Salmon JE, Niewold TB (2020) A successful trial for lupus - how good is good enough? N Engl J Med 382(3):287–288. https://doi.org/10.1056/NEJMe1915490

    Article  PubMed  Google Scholar 

  169. Furie R, Werth VP, Merola JF, Stevenson L, Reynolds TL, Naik H, Wang W, Christmann R, Gardet A, Pellerin A, Hamann S, Auluck P, Barbey C, Gulati P, Rabah D, Franchimont N (2019) Monoclonal antibody targeting BDCA2 ameliorates skin lesions in systemic lupus erythematosus. J Clin Invest 129(3):1359–1371. https://doi.org/10.1172/JCI124466

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zhan Y, Carrington EM, Ko HJ, Vikstrom IB, Oon S, Zhang JG, Vremec D, Brady JL, Bouillet P, Wu L, Huang DC, Wicks IP, Morand EF, Strasser A, Lew AM (2015) Bcl-2 antagonists kill plasmacytoid dendritic cells from lupus-prone mice and dampen interferon-alpha production. Arthritis & rheumatology (Hoboken, NJ) 67(3):797–808. https://doi.org/10.1002/art.38966

    Article  CAS  Google Scholar 

  171. Lu P, Fleischmann R, Curtis C, Ignatenko S, Clarke SH, Desai M, Wong SL, Grebe KM, Black K, Zeng J, Stolzenbach J, Medema JK (2018) Safety and pharmacodynamics of venetoclax (ABT-199) in a randomized single and multiple ascending dose study in women with systemic lupus erythematosus. Lupus 27(2):290–302. https://doi.org/10.1177/0961203317719334

    Article  CAS  PubMed  Google Scholar 

  172. Nader A, Minocha M, Othman AA (2020) Exposure-response analyses of the effects of venetoclax, a selective BCL-2 inhibitor, on B-lymphocyte and total lymphocyte counts in women with systemic lupus erythematosus. Clin Pharmacokinet 59(3):335–347. https://doi.org/10.1007/s40262-019-00818-5

    Article  CAS  PubMed  Google Scholar 

  173. Li J, Wang X, Zhang F, Yin H (2013) Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol Ther 138(3):441–451. https://doi.org/10.1016/j.pharmthera.2013.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad DS, Karunanithi P, Srivastava R, Venkatesh K, Selvam S, Krishnamurthy P, Mariappan TT, Saxena A, Fan L, Stetsko DK, Holloway DA, Li X, Zhu J, Yang WP, Ruepp S, Nair S, Santella J, Duncia J, Hynes J, McIntyre KW, Carman JA (2017) Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J Immunol 198(3):1308–1319. https://doi.org/10.4049/jimmunol.1600583

    Article  CAS  PubMed  Google Scholar 

  175. Haselmayer P, Camps M, Liu-Bujalski L, Nguyen N, Morandi F, Head J, O'Mahony A, Zimmerli SC, Bruns L, Bender AT, Schroeder P, Grenningloh R (2019) Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J Immunol 202(10):2888–2906. https://doi.org/10.4049/jimmunol.1800583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Klavdianou K, Lazarini A, Fanouriakis A (2020) Targeted biologic therapy for systemic lupus erythematosus: emerging pathways and drug pipeline. BioDrugs. https://doi.org/10.1007/s40259-020-00405-2

  177. You H, Xu D, Zhao J, Li J, Wang Q, Tian X, Li M, Zeng X (2020) JAK inhibitors: prospects in connective tissue diseases. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-020-08786-6

  178. Malemud CJ (2018) The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis 10(5–6):117–127. https://doi.org/10.1177/1759720X18776224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hojjati SM, Heidari B, Babaei M (2016) Development of rheumatoid arthritis during treatment of multiple sclerosis with interferon beta 1-a. coincidence of two conditions or a complication of treatment: a case report. J Adv Res 7(5):611–613. https://doi.org/10.1016/j.jare.2016.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lubbers J, Brink M, van de Stadt LA, Vosslamber S, Wesseling JG, van Schaardenburg D, Rantapaa-Dahlqvist S, Verweij CL (2013) The type I IFN signature as a biomarker of preclinical rheumatoid arthritis. Ann Rheum Dis 72(5):776–780. https://doi.org/10.1136/annrheumdis-2012-202753

    Article  CAS  PubMed  Google Scholar 

  181. Nader A, Stodtmann S, Friedel A, Mohamed MF, Othman AA (2020) Pharmacokinetics of Upadacitinib in healthy subjects and subjects with rheumatoid arthritis, Crohn’s disease, ulcerative colitis, or atopic dermatitis: population analyses of phase 1 and 2 clinical trials. J Clin Pharmacol 60(4):528–539. https://doi.org/10.1002/jcph.1550

    Article  CAS  PubMed  Google Scholar 

  182. Genovese MC, Kalunian K, Gottenberg JE, Mozaffarian N, Bartok B, Matzkies F, Gao J, Guo Y, Tasset C, Sundy JS, de Vlam K, Walker D, Takeuchi T (2019) Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy: the FINCH 2 randomized clinical trial. JAMA 322(4):315–325. https://doi.org/10.1001/jama.2019.9055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Takeuchi T, Tanaka Y, Tanaka S, Kawakami A, Iwasaki M, Katayama K, Rokuda M, Izutsu H, Ushijima S, Kaneko Y, Shiomi T, Yamada E, van der Heijde D (2019) Efficacy and safety of peficitinib (ASP015K) in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase III randomised, double-blind, placebo-controlled trial (RAJ4) in Japan. Ann Rheum Dis 78(10):1305–1319. https://doi.org/10.1136/annrheumdis-2019-215164

    Article  CAS  PubMed  Google Scholar 

  184. Genovese MC, Greenwald M, Codding C, Zubrzycka-Sienkiewicz A, Kivitz AJ, Wang A, Shay K, Wang X, Garg JP, Cardiel MH (2017) Peficitinib, a JAK inhibitor, in combination with limited conventional synthetic disease-modifying antirheumatic drugs in the treatment of moderate-to-severe rheumatoid arthritis. Arthritis & rheumatology (Hoboken, NJ) 69(5):932–942. https://doi.org/10.1002/art.40054

    Article  CAS  Google Scholar 

  185. Westhovens R (2019) Clinical efficacy of new JAK inhibitors under development. Just more of the same? Rheumatology (Oxford, England) 58(Suppl 1):i27–i33. https://doi.org/10.1093/rheumatology/key256

    Article  CAS  Google Scholar 

  186. Harigai M (2019) Growing evidence of the safety of JAK inhibitors in patients with rheumatoid arthritis. Rheumatology (Oxford, England) 58(Suppl 1):i34–i42. https://doi.org/10.1093/rheumatology/key287

    Article  CAS  Google Scholar 

  187. Kjelgaard-Petersen CF, Platt A, Braddock M, Jenkins MA, Musa K, Graham E, Gantzel T, Slynn G, Weinblatt ME, Karsdal MA, Thudium CS, Bay-Jensen AC (2018) Translational biomarkers and ex vivo models of joint tissues as a tool for drug development in rheumatoid arthritis. Arthritis & rheumatology (Hoboken, NJ) 70(9):1419–1428. https://doi.org/10.1002/art.40527

    Article  CAS  Google Scholar 

  188. Schafer PH, Kivitz AJ, Ma J, Korish S, Sutherland D, Li L, Azaryan A, Kosek J, Adams M, Capone L, Hur EM, Hough DR, Ringheim GE (2020) Spebrutinib (CC-292) affects markers of B cell activation, chemotaxis, and osteoclasts in patients with rheumatoid arthritis: results from a mechanistic study. Rheumatology and therapy 7(1):101–119. https://doi.org/10.1007/s40744-019-00182-7

    Article  PubMed  Google Scholar 

  189. Nehmar R, Mariotte A, de Cauwer A, Sibilia J, Bahram S, Georgel P (2018) Therapeutic perspectives for interferons and plasmacytoid dendritic cells in rheumatoid arthritis. Trends Mol Med 24(4):338–347. https://doi.org/10.1016/j.molmed.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  190. van Holten J, Pavelka K, Vencovsky J, Stahl H, Rozman B, Genovese M, Kivitz AJ, Alvaro J, Nuki G, Furst DE, Herrero-Beaumont G, McInnes IB, Musikic P, Tak PP (2005) A multicentre, randomised, double blind, placebo controlled phase II study of subcutaneous interferon beta-1a in the treatment of patients with active rheumatoid arthritis. Ann Rheum Dis 64(1):64–69. https://doi.org/10.1136/ard.2003.020347

    Article  CAS  PubMed  Google Scholar 

  191. Mauro A, Rigante D, Cimaz R (2017) Investigational drugs for treatment of juvenile idiopathic arthritis. Expert Opin Investig Drugs 26(4):381–387. https://doi.org/10.1080/13543784.2017.1301929

    Article  CAS  PubMed  Google Scholar 

  192. Bracaglia C, de Graaf K, Pires Marafon D, Guilhot F, Ferlin W, Prencipe G, Caiello I, Davi S, Schulert G, Ravelli A, Grom AA, de Min C, De Benedetti F (2017) Elevated circulating levels of interferon-gamma and interferon-gamma-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Ann Rheum Dis 76(1):166–172. https://doi.org/10.1136/annrheumdis-2015-209020

    Article  CAS  PubMed  Google Scholar 

  193. Gattorno M, Chicha L, Gregorio A, Ferlito F, Rossi F, Jarrossay D, Lanzavecchia A, Martini A, Manz MG (2007) Distinct expression pattern of IFN-alpha and TNF-alpha in juvenile idiopathic arthritis synovial tissue. Rheumatology (Oxford, England) 46(4):657–665. https://doi.org/10.1093/rheumatology/kel346

    Article  CAS  Google Scholar 

  194. Myles A, Aggarwal A (2011) Expression of toll-like receptors 2 and 4 is increased in peripheral blood and synovial fluid monocytes of patients with enthesitis-related arthritis subtype of juvenile idiopathic arthritis. Rheumatology (Oxford, England) 50(3):481–488. https://doi.org/10.1093/rheumatology/keq362

    Article  CAS  Google Scholar 

  195. Stanford SM, Bottini N (2014) PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol 10(10):602–611. https://doi.org/10.1038/nrrheum.2014.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ruperto N, Brunner HI, Zuber Z, Tzaribachev N, Kingsbury DJ, Foeldvari I, Horneff G, Smolewska E, Vehe RK, Hazra A, Wang R, Mebus CA, Alvey C, Lamba M, Krishnaswami S, Stock TC, Wang M, Suehiro R, Martini A, Lovell DJ, Pediatric Rheumatology International Trials O, Pediatric Rheumatology Collaborative Study G (2017) Pharmacokinetic and safety profile of tofacitinib in children with polyarticular course juvenile idiopathic arthritis: results of a phase 1, open-label, multicenter study. Pediatr Rheumatol Online J 15(1):86. https://doi.org/10.1186/s12969-017-0212-y

    Article  PubMed  PubMed Central  Google Scholar 

  197. Huang Z, Lee PY, Yao X, Zheng S, Li T (2019) Tofacitinib treatment of refractory systemic juvenile idiopathic arthritis. Pediatrics 143(5). https://doi.org/10.1542/peds.2018-2845

  198. Feldman BM, Rider LG, Reed AM, Pachman LM (2008) Juvenile dermatomyositis and other idiopathic inflammatory myopathies of childhood. Lancet (London, England) 371(9631):2201–2212. https://doi.org/10.1016/S0140-6736(08)60955-1

    Article  Google Scholar 

  199. Niewold TB, Kariuki SN, Morgan GA, Shrestha S, Pachman LM (2009) Elevated serum interferon-alpha activity in juvenile dermatomyositis: associations with disease activity at diagnosis and after thirty-six months of therapy. Arthritis Rheum 60(6):1815–1824. https://doi.org/10.1002/art.24555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Moneta GM, Pires Marafon D, Marasco E, Rosina S, Verardo M, Fiorillo C, Minetti C, Bracci-Laudiero L, Ravelli A, De Benedetti F, Nicolai R (2019) Muscle expression of type I and type II interferons is increased in juvenile dermatomyositis and related to clinical and histologic features. Arthritis & rheumatology (Hoboken, NJ) 71(6):1011–1021. https://doi.org/10.1002/art.40800

    Article  CAS  Google Scholar 

  201. O'Connor KA, Abbott KA, Sabin B, Kuroda M, Pachman LM (2006) MxA gene expression in juvenile dermatomyositis peripheral blood mononuclear cells: association with muscle involvement. Clin Immunol 120(3):319–325. https://doi.org/10.1016/j.clim.2006.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Baechler EC, Bilgic H, Reed AM (2011) Type I interferon pathway in adult and juvenile dermatomyositis. Arthritis research & therapy 13(6):249. https://doi.org/10.1186/ar3531

    Article  CAS  Google Scholar 

  203. Cappelletti C, Baggi F, Zolezzi F, Biancolini D, Beretta O, Severa M, Coccia EM, Confalonieri P, Morandi L, Mora M, Mantegazza R, Bernasconi P (2011) Type I interferon and toll-like receptor expression characterizes inflammatory myopathies. Neurology 76(24):2079–2088. https://doi.org/10.1212/WNL.0b013e31821f440a

    Article  CAS  PubMed  Google Scholar 

  204. Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, Adams S, Marasco E, Rosser EC, Radziszewska A, Carsetti R, Ioannou Y, Beales PL, Kelberman D, Isenberg DA, Mauri C, Nistala K, Wedderburn LR (2018) CD19(+)CD24(hi)CD38(hi) B cells are expanded in juvenile dermatomyositis and exhibit a pro-inflammatory phenotype after activation through toll-like receptor 7 and interferon-alpha. Front Immunol 9:1372. https://doi.org/10.3389/fimmu.2018.01372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gitiaux C, Latroche C, Weiss-Gayet M, Rodero MP, Duffy D, Bader-Meunier B, Glorion C, Nusbaum P, Bodemer C, Mouchiroud G, Chelly J, Germain S, Desguerre I, Chazaud B (2018) Myogenic progenitor cells exhibit type I interferon-driven proangiogenic properties and molecular signature during juvenile dermatomyositis. Arthritis & rheumatology (Hoboken, NJ) 70(1):134–145. https://doi.org/10.1002/art.40328

    Article  CAS  Google Scholar 

  206. Ladislau L, Suarez-Calvet X, Toquet S, Landon-Cardinal O, Amelin D, Depp M, Rodero MP, Hathazi D, Duffy D, Bondet V, Preusse C, Bienvenu B, Rozenberg F, Roos A, Benjamim CF, Gallardo E, Illa I, Mouly V, Stenzel W, Butler-Browne G, Benveniste O, Allenbach Y (2018) JAK inhibitor improves type I interferon induced damage: proof of concept in dermatomyositis. Brain 141(6):1609–1621. https://doi.org/10.1093/brain/awy105

    Article  PubMed  Google Scholar 

  207. Moghadam-Kia S, Charlton D, Aggarwal R, Oddis CV (2019) Management of refractory cutaneous dermatomyositis: potential role of Janus kinase inhibition with tofacitinib. Rheumatology (Oxford, England) 58(6):1011–1015. https://doi.org/10.1093/rheumatology/key366

    Article  Google Scholar 

  208. Papadopoulou C, Hong Y, Omoyinmi E, Brogan PA, Eleftheriou D (2019) Janus kinase 1/2 inhibition with baricitinib in the treatment of juvenile dermatomyositis. Brain 142(3):e8. https://doi.org/10.1093/brain/awz005

    Article  PubMed  PubMed Central  Google Scholar 

  209. Higgs BW, Zhu W, Morehouse C, White WI, Brohawn P, Guo X, Rebelatto M, Le C, Amato A, Fiorentino D, Greenberg SA, Drappa J, Richman L, Greth W, Jallal B, Yao Y (2014) A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-alpha monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann Rheum Dis 73(1):256–262. https://doi.org/10.1136/annrheumdis-2012-202794

    Article  CAS  PubMed  Google Scholar 

  210. Yao Y, Liu Z, Jallal B, Shen N, Ronnblom L (2013) Type I interferons in Sjogren’s syndrome. Autoimmun Rev 12(5):558–566. https://doi.org/10.1016/j.autrev.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  211. Zheng L, Zhang Z, Yu C, Tu L, Zhong L, Yang C (2009) Association between IFN-alpha and primary Sjogren’s syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(1):e12–e18. https://doi.org/10.1016/j.tripleo.2008.09.015

    Article  PubMed  Google Scholar 

  212. Brkic Z, Maria NI, van Helden-Meeuwsen CG, van de Merwe JP, van Daele PL, Dalm VA, Wildenberg ME, Beumer W, Drexhage HA, Versnel MA (2013) Prevalence of interferon type I signature in CD14 monocytes of patients with Sjogren’s syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis 72(5):728–735. https://doi.org/10.1136/annrheumdis-2012-201381

    Article  CAS  PubMed  Google Scholar 

  213. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, Jacques S, Ba N, Ittah M, Lepajolec C, Labetoulle M, Ardizzone M, Sibilia J, Fournier C, Chiocchia G, Mariette X (2006) Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren’s syndrome. Proc Natl Acad Sci U S A 103(8):2770–2775. https://doi.org/10.1073/pnas.0510837103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bave U, Nordmark G, Lovgren T, Ronnelid J, Cajander S, Eloranta ML, Alm GV, Ronnblom L (2005) Activation of the type I interferon system in primary Sjogren’s syndrome: a possible etiopathogenic mechanism. Arthritis Rheum 52(4):1185–1195. https://doi.org/10.1002/art.20998

    Article  CAS  PubMed  Google Scholar 

  215. Lee J, Lee J, Kwok SK, Baek S, Jang SG, Hong SM, Min JW, Choi SS, Lee J, Cho ML, Park SH (2018) JAK-1 inhibition suppresses interferon-induced BAFF production in human salivary gland: potential therapeutic strategy for primary Sjogren’s syndrome. Arthritis & rheumatology (Hoboken, NJ) 70(12):2057–2066. https://doi.org/10.1002/art.40589

    Article  CAS  Google Scholar 

  216. Charras A, Arvaniti P, Le Dantec C, Arleevskaya MI, Zachou K, Dalekos GN, Bordon A, Renaudineau Y (2020) JAK inhibitors suppress innate epigenetic reprogramming: a promise for patients with Sjogren’s syndrome. Clin Rev Allergy Immunol 58(2):182–193. https://doi.org/10.1007/s12016-019-08743-y

    Article  CAS  PubMed  Google Scholar 

  217. Bodewes ILA, Huijser E, van Helden-Meeuwsen CG, Tas L, Huizinga R, Dalm V, van Hagen PM, Groot N, Kamphuis S, van Daele PLA, Versnel MA (2018) TBK1: a key regulator and potential treatment target for interferon positive Sjogren’s syndrome, systemic lupus erythematosus and systemic sclerosis. J Autoimmun 91:97–102. https://doi.org/10.1016/j.jaut.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  218. Bodewes ILA, Gottenberg JE, van Helden-Meeuwsen CG, Mariette X, Versnel MA (2020) Hydroxychloroquine treatment downregulates systemic interferon activation in primary Sjogren's syndrome in the JOQUER randomized trial. Rheumatology (Oxford, England) 59(1):107–111. https://doi.org/10.1093/rheumatology/kez242

    Article  Google Scholar 

  219. Meijer JM, Pijpe J, Bootsma H, Vissink A, Kallenberg CG (2007) The future of biologic agents in the treatment of Sjogren’s syndrome. Clin Rev Allergy Immunol 32(3):292–297. https://doi.org/10.1007/s12016-007-8005-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Skaug B, Assassi S (2019) Type I interferon dysregulation in systemic sclerosis Cytokine:154635. https://doi.org/10.1016/j.cyto.2018.12.018

  221. Wu M, Assassi S (2013) The role of type 1 interferon in systemic sclerosis. Front Immunol 4:266. https://doi.org/10.3389/fimmu.2013.00266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Assassi S, Mayes MD, Arnett FC, Gourh P, Agarwal SK, McNearney TA, Chaussabel D, Oommen N, Fischbach M, Shah KR, Charles J, Pascual V, Reveille JD, Tan FK (2010) Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum 62(2):589–598. https://doi.org/10.1002/art.27224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu X, Mayes MD, Tan FK, Wu M, Reveille JD, Harper BE, Draeger HT, Gonzalez EB, Assassi S (2013) Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum 65(1):226–235. https://doi.org/10.1002/art.37742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Guo X, Higgs BW, Bay-Jensen AC, Karsdal MA, Yao Y, Roskos LK, White WI (2015) Suppression of T cell activation and collagen accumulation by an anti-IFNAR1 mAb, anifrolumab, in adult patients with systemic sclerosis. The Journal of investigative dermatology 135(10):2402–2409. https://doi.org/10.1038/jid.2015.188

    Article  CAS  PubMed  Google Scholar 

  225. Goldberg A, Geppert T, Schiopu E, Frech T, Hsu V, Simms RW, Peng SL, Yao Y, Elgeioushi N, Chang L, Wang B, Yoo S (2014) Dose-escalation of human anti-interferon-alpha receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis research & therapy 16(1):R57. https://doi.org/10.1186/ar4492

    Article  Google Scholar 

  226. Ah Kioon MD, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK, Gordon JK, Barrat FJ (2018) Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med 10(423). https://doi.org/10.1126/scitranslmed.aam8458

  227. Cattalini M, Soliani M, Caparello MC, Cimaz R (2019) Sex differences in pediatric rheumatology. Clin Rev Allergy Immunol 56(3):293–307. https://doi.org/10.1007/s12016-017-8642-3

    Article  CAS  PubMed  Google Scholar 

  228. Axtell RC, Raman C (2012) Janus-like effects of type I interferon in autoimmune diseases. Immunol Rev 248(1):23–35. https://doi.org/10.1111/j.1600-065X.2012.01131.x

    Article  PubMed  PubMed Central  Google Scholar 

  229. Axtell RC, Raman C, Steinman L (2013) Type I interferons: beneficial in Th1 and detrimental in Th17 autoimmunity. Clin Rev Allergy Immunol 44(2):114–120. https://doi.org/10.1007/s12016-011-8296-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Xing Wang, Meixi Liu, Zhenwei Tang, and Bowen Li for their guidance in revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Concept and design: Qianjin Lu, Haijing Wu, Ming Zhao, Jiao Jiang; Drafting of the manuscript: Jiao Jiang; Revising of the manuscript: Qianjin Lu, Haijing Wu, Christopher Chang, Ming Zhao, Jiao Jiang.

Funding information

This work was supported by the National Natural Science Foundation of China (No. 81972943 and No. 81830097) and the Hunan Talent Young Investigator (No. 2019RS2012).

Corresponding authors

Correspondence to Haijing Wu or Qianjin Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Zhao, M., Chang, C. et al. Type I Interferons in the Pathogenesis and Treatment of Autoimmune Diseases. Clinic Rev Allerg Immunol 59, 248–272 (2020). https://doi.org/10.1007/s12016-020-08798-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08798-2

Keywords

Navigation