Skip to main content
Log in

Cytoskeletal Organization and Cell Polarity in the Pathogenesis of Crohn’s Disease

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Crohn’s disease (CD) is a type of inflammatory bowel disease (IBD) and affects diverse segments of the entire gastrointestinal tract. Although the underlying causes of CD are not completely known, it is believed that disruption of the intestinal barrier and cell polarity may contribute to pathogenesis. The formation of the intestinal epithelial barrier, which is mainly regulated by cytoskeletal modulations, and apico-basal cell polarity are two major and mutually dependent features of the intestinal epithelial layer. As this layer serves as an important barrier between the external environment and the internal milieu, the defect can start an inflammatory cascade by failing to block the entrance of luminal pathogens and lead to CD. In this review, we highlight the factors and impact of intestinal barrier function and cell polarity in the natural history of CD. The discussion in the present review further strengthens the new challenge in facilitating the development of viable pharmacological targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9(11):799–809. https://doi.org/10.1038/nri2653

    Article  CAS  PubMed  Google Scholar 

  2. Katz KD, Hollander D, Vadheim CM, McElree C, Delahunty T, Dadufalza VD, Krugliak P, Rotter JI (1989) Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterology 97(4):927–931. https://doi.org/10.1016/0016-5085(89)91499-6

    Article  CAS  PubMed  Google Scholar 

  3. Sandle GI, Higgs N, Crowe P, Marsh MN, Venkatesan S, Peters TJ (1990) Cellular basis for defective electrolyte transport in inflamed human colon. Gastroenterology 99(1):97–105

    CAS  PubMed  Google Scholar 

  4. Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, Mankertz J, Gitter AH, Burgel N, Fromm M, Zeitz M, Fuss I, Strober W, Schulzke JD (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129(2):550–564. https://doi.org/10.1016/j.gastro.2005.05.002

    Article  CAS  PubMed  Google Scholar 

  5. Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, Ma TY (2014) Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9(3):e85345. https://doi.org/10.1371/journal.pone.0085345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walter F, Alessandra B, Stefania V (2013) Sealing the broken barrier in IBD: intestinal permeability, epithelial cells and junctions. Curr Drug Targets 14(12)

  7. Lopez-Posadas R, Sturzl M, Atreya I, Neurath MF, Britzen-Laurent N (2017) Interplay of GTPases and cytoskeleton in cellular barrier defects during gut inflammation. Front Immunol 8:1240. https://doi.org/10.3389/fimmu.2017.01240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh J-T, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci 98(26):15191–15196. https://doi.org/10.1073/pnas.261452898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR (2010) Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21(7):1200–1213. https://doi.org/10.1091/mbc.E09-08-0734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garcia-Hernandez V, Quiros M, Nusrat A (2017) Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci 1397(Suppl. 2):66–79

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143(2):391–401. https://doi.org/10.1083/jcb.143.2.391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fumie S, Toshio N (1991) Three-dimensional model of tight junction fibrils based on freeze-fracture images. 264 (2):381-384

  13. Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, Colegio OR, Anderson JM (2008) The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci 121(Pt 3):298–305. https://doi.org/10.1242/jcs.021485

    Article  CAS  PubMed  Google Scholar 

  14. Itoh M, Furuse M, Morita K, Kubota K, Tsukita S (1999) Direct binding of three tight junction - associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 13:147–163

    Google Scholar 

  15. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153(2):263–272

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, Collins JE (2005) Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab Investig 85(9):1139–1162. https://doi.org/10.1038/labinvest.3700316

    Article  CAS  PubMed  Google Scholar 

  17. Capaldo CT, Farkas AE, Hilgarth RS, Krug SM, Wolf MF, Benedik JK, Fromm M, Koval M, Parkos C, Nusrat A (2014) Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Mol Biol Cell 25(18):2710–2719. https://doi.org/10.1091/mbc.E14-02-0773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krug SM, Schulzke JD, Fromm M (2014) Tight junction, selective permeability, and related diseases. Semin Cell Dev Biol 36:166–176. https://doi.org/10.1016/j.semcdb.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  19. Gumbiner BM (1993) Breaking through the tight junction barrier. J Cell Biol 123(6 Pt 2):1631–1633. https://doi.org/10.1083/jcb.123.6.1631

    Article  CAS  PubMed  Google Scholar 

  20. Claude P (1978) Morphological factors influencing transepithelial permeability: a model for the resistance of the Zonula Occludens. J Membr Biol 39(2):219–232

    CAS  PubMed  Google Scholar 

  21. Diamond JM (1977) Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist 20(1):10–18

    CAS  PubMed  Google Scholar 

  22. Itallie C, Van RC, Anderson JM (2001) Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Investig 107(10):1319–1327

    PubMed  PubMed Central  Google Scholar 

  23. Al-Sadi R, Khatib K, Guo S, Ye D, Youssef M, Ma T (2011) Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am J Physiol Gastrointest Liver Physiol 300(6):G1054–G1064. https://doi.org/10.1152/ajpgi.00055.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buschmann MM, Shen L, Rajapakse H, Raleigh DR, Wang Y, Wang Y, Lingaraju A, Zha J, Abbott E, McAuley EM, Breskin LA, Wu L, Anderson K, Turner JR, Weber CR (2013) Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell 24(19):3056–3068. https://doi.org/10.1091/mbc.E12-09-0688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73(1):283–309. https://doi.org/10.1146/annurev-physiol-012110-142150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mehta S, Nijhuis A, Kumagai T, Lindsay J, Silver A (2015) Defects in the adherens junction complex (E-cadherin/ beta-catenin) in inflammatory bowel disease. Cell Tissue Res 360(3):749–760. https://doi.org/10.1007/s00441-014-1994-6

    Article  CAS  PubMed  Google Scholar 

  27. Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123(5):903–915. https://doi.org/10.1016/j.cell.2005.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Michael M, Yap AS (2013) The regulation and functional impact of actin assembly at cadherin cell-cell adhesions. Semin Cell Dev Biol 24(4):298–307. https://doi.org/10.1016/j.semcdb.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  29. Romagnoli C, Frezza S, Cingolani A, De Luca A, Puopolo M, De Carolis MP, Vento G, Antinori A, Tortorolo G (2001) Plasma levels of interleukin-6 and interleukin-10 in preterm neonates evaluated for sepsis. Eur J Pediatr 160(6):345–350. https://doi.org/10.1007/pl00008445

    Article  CAS  PubMed  Google Scholar 

  30. van Hogezand RA, Verspaget HW (1996) Selective immunomodulation in patients with inflammatory bowel disease--future therapy or reality? Neth J Med 48(2):64–67. https://doi.org/10.1016/0300-2977(95)00091-7

    Article  PubMed  Google Scholar 

  31. Ito H (2005) Treatment of Crohn’s disease with anti-IL-6 receptor antibody. J Gastroenterol 40 Suppl 16(S16):32–34

    Google Scholar 

  32. Dinarello CA (1994) The interleukin-1 family: 10 years of discovery. FASEB J 8(15):1314–1325

    CAS  PubMed  Google Scholar 

  33. Dunne A, O’Neill LA (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003(171):re3. https://doi.org/10.1126/stke.2003.171.re3

    Article  PubMed  Google Scholar 

  34. Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Raedler A (1993) Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol 94(1):174–181

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dinarello CA (2003) Anti-cytokine therapeutics and infections. 21(2):S24–S34

  36. Barksby HE, Lea SR, Preshaw PM, Taylor JJ (2007) The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. 149 (2):217-225

  37. Al-Sadi R, Ye D, Dokladny K, Ma TY (2008) Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. J Immunol 180(8):5653–5661. https://doi.org/10.4049/jimmunol.180.8.5653

    Article  CAS  PubMed  Google Scholar 

  38. Coleman TR, Mooseker MS (1985) Effects of actin filament cross-linking and filament length on actin-myosin interaction. J Cell Biol 101(5 Pt 1):1850–1857

    CAS  PubMed  Google Scholar 

  39. Schliwa M (1982) Action of cytochalasin D on cytoskeletal networks. J Cell Biol 92(1):79–91

    CAS  PubMed  Google Scholar 

  40. Madara JL, Moore R, Carlson S (1987) Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol 253(6 Pt 1):C854–C861

    CAS  PubMed  Google Scholar 

  41. Ma TY, Hoa NT, Tran DD, Bui V, Pedram A, Mills S, Merryfield M (2000) Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. Am J Physiol Gastrointest Liver Physiol 279(5):G875–G885

  42. Youakim A, Ahdieh M (1999) Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Physiol 276(5 Pt 1):G1279

    CAS  PubMed  Google Scholar 

  43. Van Itallie CM, Fanning AS, Bridges A, Anderson JM (2009) ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell 20(17):3930–3940

    PubMed  PubMed Central  Google Scholar 

  44. Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT (1993) Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut 34(12):1705–1709. https://doi.org/10.1136/gut.34.12.1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Braegger CP, Nicholls S, Murch SH, Stephens S, MacDonald TT (1992) Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 339(8785):89–91. https://doi.org/10.1016/0140-6736(92)90999-j

    Article  CAS  PubMed  Google Scholar 

  46. Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 337(15):1029–1035. https://doi.org/10.1056/nejm199710093371502

    Article  CAS  PubMed  Google Scholar 

  47. Sands BE (1997) Biologic therapy for inflammatory bowel disease. 3 (2):95-113

  48. Hollander D (1988) Crohn’s disease--a permeability disorder of the tight junction? Gut 29(12):1621–1624. https://doi.org/10.1136/gut.29.12.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma TY, Iwamoto GK, Hoa NT, Vimesh A, Ali P, Boivin MA, Said HM (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286(3):G367–G376

    CAS  PubMed  Google Scholar 

  50. Bogatcheva NV, Garcia JGN, Verin AD (2002) Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochem Mosc 67(1):75–84

    CAS  Google Scholar 

  51. McKenzie JAG, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-α-induced changes in endothelial morphology and permeability. J Cell Physiol 213(1):221–228. https://doi.org/10.1002/jcp.21114

    Article  CAS  PubMed  Google Scholar 

  52. Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, Iwamatsu A, Kita T (1999) Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 163(2):553

    CAS  PubMed  Google Scholar 

  53. Wojciak-Stothard B, Entwistle A, Garg R, Ridley AJ (1998) Regulation of TNF-alpha-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells. J Cell Physiol 176(1):150–165. https://doi.org/10.1002/(sici)1097-4652(199807)176:1<150::Aid-jcp17>3.0.Co;2-b

    Article  CAS  PubMed  Google Scholar 

  54. Ferrero E, Villa A, Ferrero ME, Toninelli E, Zocchi MR (1996) Tumor necrosis factor α-induced vascular leakage involves PECAM1 phosphorylation. Cancer Res 56(14):3211–3215

    CAS  PubMed  Google Scholar 

  55. Stallmach A, Schmidt C, Meuer SC, Giese T (2003) Cytokine/chemokine transcript profiles reflect mucosal inflammation in crohns disease and predict relapses after steroid-induced remission. 124 (4):A199-A199

  56. Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA, Nusrat A (2005) Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 16(10):5040–5052. https://doi.org/10.1091/mbc.e05-03-0193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Capaldo CT, Nusrat A (2009) Cytokine regulation of tight junctions. Biochim Biophys Acta 1788(4):864–871. https://doi.org/10.1016/j.bbamem.2008.08.027

    Article  CAS  PubMed  Google Scholar 

  58. Chiba H, Kojima T, Osanai M, Sawada N (2006, 2006) The significance of interferon-gamma-triggered internalization of tight-junction proteins in inflammatory bowel disease. Sci STKE (316):pe1. https://doi.org/10.1126/stke.3162006pe1

  59. Bruewer M, Utech M, Ivanov A, Hopkins A, Parkos C, Nusrat A (2005) Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19:923–933. https://doi.org/10.1096/fj.04-3260com

    Article  CAS  PubMed  Google Scholar 

  60. Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166(2):409–419. https://doi.org/10.1016/s0002-9440(10)62264-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hermiston ML, Gordon JI (1995) In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J Cell Biol 129(2):489–506. https://doi.org/10.1083/jcb.129.2.489

    Article  CAS  PubMed  Google Scholar 

  62. van Heel DA, Dechairo BM, Dawson G, McGovern DP, Negoro K, Carey AH, Cardon LR, Mackay I, Jewell DP, Lench NJ (2003) The IBD6 Crohn’s disease locus demonstrates complex interactions with CARD15 and IBD5 disease-associated variants. Hum Mol Genet 12(20):2569–2575. https://doi.org/10.1093/hmg/ddg281

    Article  CAS  PubMed  Google Scholar 

  63. Jankowski JA, Bedford FK, Boulton RA, Cruickshank N, Hall C, Elder J, Allan R, Forbes A, Kim YS, Wright NA (1998) Alterations in classical cadherins associated with progression in ulcerative and. Crohn’s colitis 78(9):1155–1167

    CAS  Google Scholar 

  64. Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A (2001) Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. 159 (6):2001-2009

  65. Karayiannakis AJ, Syrigos KN, Efstathiou J, Valizadeh A, Pignatelli M (1998) Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J Pathol 185(4):413–418

    CAS  PubMed  Google Scholar 

  66. Soletti RC, Rodrigues NALV, Biasoli D, Luiz RR, de Souza HSP, Borges HL (2013) Immunohistochemical analysis of retinoblastoma and β-catenin as an assistant tool in the differential diagnosis between Crohn’s disease and ulcerative colitis. PLoS One 8(8):e70786–e70786. https://doi.org/10.1371/journal.pone.0070786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bruewer M, Luegering A, Kucharzik T, Parkos CA, Madara JL, Hopkins AM, Nusrat A (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. Journal Immunol 171(11):6164–6172. https://doi.org/10.4049/jimmunol.171.11.6164

    Article  CAS  Google Scholar 

  68. Giatromanolaki A, Sivridis E, Maltezos E, Papazoglou D, Koukourakis MI (2003) Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol 56(3):209–213

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Glover LE, Bowers BE, Saeedi B, Ehrentraut SF, Campbell EL, Bayless AJ, Dobrinskikh E, Kendrick AA, Kelly CJ, Burgess A, Miller L, Kominsky DJ, Jedlicka P, Colgan SP (2013) Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc Natl Acad Sci U S A 110(49):19820–19825. https://doi.org/10.1073/pnas.1302840110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hollander D (1986) Intestinal permeability in patients with Crohn’s disease and their relatives. Ann Intern Med 33(8):649–651

    Google Scholar 

  71. Su L, Shen L, Clayburgh DR, Nalle SC, Sullivan EA, Meddings JB, Abraham C, Turner JR (2009) Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136(2):551–563. https://doi.org/10.1053/j.gastro.2008.10.081

    Article  CAS  PubMed  Google Scholar 

  72. Irvine EJ, Marshall JK (2000) Increased intestinal permeability precedes the onset of Crohn’s disease in a subject with familial risk. Gastroenterology 119(6):1740–1744. https://doi.org/10.1053/gast.2000.20231

    Article  CAS  PubMed  Google Scholar 

  73. Leaphart CL, Cavallo J, Gribar SC, Cetin S, Li J, Branca MF, Dubowski TD, Sodhi CP, Hackam DJ (2007) A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol 179(7):4808–4820. https://doi.org/10.4049/jimmunol.179.7.4808

    Article  CAS  PubMed  Google Scholar 

  74. Vetrano S, Rescigno M, Cera MR, Correale C, Rumio C, Doni A, Fantini M, Sturm A, Borroni E, Repici A, Locati M, Malesci A, Dejana E, Danese S (2008) Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology 135(1):173–184. https://doi.org/10.1053/j.gastro.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  75. Wyatt J, Vogelsang H, Hübl W, Waldhoer T, Lochs H (1993) Intestinal permeability and the prediction of relapse in Crohri’s disease. Lancet 341(8858):1437–1439

    CAS  PubMed  Google Scholar 

  76. Arnott ID, Kingstone K, Ghosh S (2000) Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand J Gastroenterol 35(11):1163–1169

    CAS  PubMed  Google Scholar 

  77. Bruewer M, Samarin S, Nusrat A (2006) Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci 1072:242–252. https://doi.org/10.1196/annals.1326.017

    Article  CAS  PubMed  Google Scholar 

  78. Kazmierczak BI, Mostov K, Engel JN (2001) Interaction of bacterial pathogens with polarized epithelium. Annu Rev Microbiol 55(1):407–435

    CAS  PubMed  Google Scholar 

  79. Klunder LJ, Faber KN, Dijkstra G, van IJzendoorn SCD (2017) Mechanisms of cell polarity-controlled epithelial homeostasis and immunity in the intestine. Cold Spring Harb Perspect Biol 9(7). https://doi.org/10.1101/cshperspect.a027888

  80. Fölsch H, Ohno H, Bonifacino JS, Mellman I (1999) A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99(2):189–198

    PubMed  Google Scholar 

  81. Maria Antonietta DM, Alberto L (2008) Exiting the Golgi complex. Nat Rev Mol Cell Biol 9(4):273–284

    Google Scholar 

  82. Elisabeth K, Olaf B (2002) Composition and formation of intercellular junctions in epithelial cells. Science 298(5600):1955–1959

    Google Scholar 

  83. Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I (2008) Tight junction and polarity interaction in the transporting epithelial phenotype. Biochim Biophys Acta 1778(3):770–793. https://doi.org/10.1016/j.bbamem.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  84. Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235. https://doi.org/10.1146/annurev.cellbio.22.010305.104219

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Li J, Ren Y, Liu P (2014) DLG5 in cell polarity maintenance and cancer development. Int J Biol Sci 10(5):543–549. https://doi.org/10.7150/ijbs.8888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ivanov AI, Young C, Den Beste K, Capaldo CT, Humbert PO, Brennwald P, Parkos CA, Nusrat A (2010) Tumor suppressor scribble regulates assembly of tight junctions in the intestinal epithelium. Am J Pathol 176(1):134–145. https://doi.org/10.2353/ajpath.2010.090220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McConnell RE, Higginbotham JN, Shifrin DA Jr, Tabb DL, Coffey RJ, Tyska MJ (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185(7):1285–1298. https://doi.org/10.1083/jcb.200902147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McConnell RE, Tyska MJ (2007) Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 177(4):671–681. https://doi.org/10.1083/jcb.200701144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Goldberg RF, Austen WG, Xiaobo Z, Gitonga M, Golam M, Shaluk B, Michael MC, Eberlin KR, Nguyen JT, Tatlidede HS (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A 105(9):3551–3556

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2(6):371–382. https://doi.org/10.1016/j.chom.2007.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koyama I, Matsunaga T, Harada T, Hokari S, Komoda T (2002) Alkaline phosphatases reduce toxicity of lipopolysaccharides in vivo and in vitro through dephosphorylation. Clin Biochem 35(6):455–461

    CAS  PubMed  Google Scholar 

  92. Shifrin DA Jr, McConnell RE, Nambiar R, Higginbotham JN, Coffey RJ, Tyska MJ (2012) Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol 22(7):627–631. https://doi.org/10.1016/j.cub.2012.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shifrin DA Jr, Tyska MJ (2012) Ready...aim...fire into the lumen: a new role for enterocyte microvilli in gut host defense. Gut Microbes 3(5):460–462. https://doi.org/10.4161/gmic.21247

    Article  PubMed  Google Scholar 

  94. Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y, Sato T, Date Y, Ebisawa M, Kato T, Obata Y, Fukuda S, Kawamura YI, Dohi T, Katsuno T, Yokosuka O, Waguri S, Ohno H (2011) The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology 141(2):621–632. https://doi.org/10.1053/j.gastro.2011.04.056

    Article  CAS  PubMed  Google Scholar 

  95. Casanova JE (2010) Transepithelial transport of polymeric immunoglobulins. Ann N Y Acad Sci 664(1):27–38

    Google Scholar 

  96. Cheng-Yuan K, Yin C, Philip T, Shinichiro W, Fei H, Christy K, Harper RW, Reen W (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173(5):3482–3491

    Google Scholar 

  97. Kolls JK, McCray PB Jr, Chan YR (2008) Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol 8(11):829–835. https://doi.org/10.1038/nri2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee J, Mo JH, Katakura K, Alkalay I, Rucker AN, Liu YT, Lee HK, Shen C, Cojocaru G, Shenouda S, Kagnoff M, Eckmann L, Ben-Neriah Y, Raz E (2006) Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8(12):1327–1336. https://doi.org/10.1038/ncb1500

    Article  CAS  PubMed  Google Scholar 

  99. Goldenring JR (2013) A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer 13(11):813–820

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yu S, Nie Y, Knowles B, Sakamori R, Stypulkowski E, Patel C, Das S, Douard V, Ferraris RP, Bonder EM, Goldenring JR, Ip YT, Gao N (2014) TLR sorting by Rab11 endosomes maintains intestinal epithelial-microbial homeostasis. EMBO J 33(17):1882–1895. https://doi.org/10.15252/embj.201487888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, Yoshizaki K, Shimoyama T, Kishimoto T (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126(4):989–996; discussion 947. https://doi.org/10.1053/j.gastro.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  102. Chatterjee S, Seifried L, Feigin ME, Gibbons DL, Scuoppo C, Lin W, Rizvi ZH, Lind E, Dissanayake D, Kurie J, Ohashi P, Muthuswamy SK (2012) Dysregulation of cell polarity proteins synergize with oncogenes or the microenvironment to induce invasive behavior in epithelial cells. PLoS One 7(4):e34343. https://doi.org/10.1371/journal.pone.0034343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu S, Zhou F, Tao J, Song L, Ng SC, Wang X, Chen L, Yi F, Ran Z, Zhou R, Xia B (2014) Exome sequencing identifies DLG1 as a novel gene for potential susceptibility to Crohn’s disease in a Chinese family study. PLoS One 9(6):e99807. https://doi.org/10.1371/journal.pone.0099807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Plevy SE, Targan SR (2011) Future therapeutic approaches for inflammatory bowel diseases. Gastroenterology 140(6):1838–1846. https://doi.org/10.1053/j.gastro.2011.02.014

    Article  PubMed  Google Scholar 

  105. Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61(6):918–932. https://doi.org/10.1136/gutjnl-2011-300904

    Article  CAS  PubMed  Google Scholar 

  106. Friedrichs F, Stoll M (2006) Role of discs large homolog 5. World J Gastroenterol 12(23):3651–3656

    PubMed  PubMed Central  Google Scholar 

  107. Tamilla N, Olga K, Liem N, Valeri V (2013) Dlg5 maintains apical aPKC and regulates progenitor differentiation during lung morphogenesis. Dev Biol 377(2):375–384

    Google Scholar 

  108. Nechiporuk T, Fernandez TE, Vasioukhin V (2007) Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in −/− mice. Dev Cell 13(3):338–350

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Watabe-Uchida M, Uchida N, Imamura Y, Nagafuchi A, Fujimoto K, Uemura T, Vermeulen S, Roy F, Van AED, Takeichi M (1998) alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142(3):847–857

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mary S, Charrasse S, Meriane M, Comunale F, Travo P, Blangy A, Gauthier-Rouviã Re C (2002) Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol Biol Cell 13(1):285–301

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Li Y, Chen P, Sun J, Huang J, Tie H, Li L, Li H, Ren G (2016) Meta-analysis of associations between DLG5 R30Q and P1371Q polymorphisms and susceptibility to inflammatory bowel disease. Sci Rep 6:33550. https://doi.org/10.1038/srep33550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yamanaka T, Ohno S (2008) Role of Lgl/Dlg/Scribble in the regulation of epithelial junction, polarity and growth. Front Biosci 13(13):6693

  113. Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE (2008) Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 27(55):6888–6907

    CAS  PubMed  Google Scholar 

  114. Atsushi S, Shigeo O (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119(6):979–987

    Google Scholar 

  115. Goldstein B, Macara I (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370(2):361–371

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Tianyan G, Newton AC (2006) Invariant Leu preceding turn motif phosphorylation site controls the interaction of protein kinase C with Hsp70. Jbiolchem 281(43):32461–32468

    Google Scholar 

  118. Mashukova A, Oriolo AS, Wald FA, Casanova ML, Kröger C, Magin TM, Omary MB, Salas PJI (2009) Rescue of atypical protein kinase C in epithelia by the cytoskeleton and Hsp70 family chaperones. J Cell Sci 122(14):2491–2503

  119. Ciancio MJ, Chang EB (2010) Do heat shock proteins play any role in gut inflammation? Inflamm Bowel Dis 14(S2):S102–S103

    Google Scholar 

  120. Mashukova A, Wald FA, Salas PJ (2010) Tumor necrosis factor alpha and inflammation disrupt the polarity complex in intestinal epithelial cells by a posttranslational mechanism. Mol Cell Biol 31(4):756–765. https://doi.org/10.1128/mcb.00811-10

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wald FA, Forteza R, Diwadkar-Watkins R, Mashukova A, Duncan R, Abreu MT, Salas PJ (2011) Aberrant expression of the polarity complex atypical PKC and non-muscle myosin IIA in active and inactive inflammatory bowel disease. Virchows Arch 459(3):331–338. https://doi.org/10.1007/s00428-011-1102-1

  122. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10(11):778–790. https://doi.org/10.1038/nrm2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ivanov AI, Moshe B, Babbin BA, Adelstein RS, Asma N, Parkos CA (2007) A unique role for nonmuscle myosin heavy chain IIA in regulation of epithelial apical junctions. PLoS One 2(7):e658

    PubMed  PubMed Central  Google Scholar 

  124. Ivanov AI, Parkos CA, Nusrat A (2010) Cytoskeletal regulation of epithelial barrier function during inflammation. Am J Pathol 177(2):512–524. https://doi.org/10.2353/ajpath.2010.100168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 81770545) and MDT Project of Clinical Research Innovation Foundation, Renji Hospital, School of Medicine, Shanghai Jiaotong University (PYI-17-003).

Author information

Authors and Affiliations

Authors

Contributions

CG collected the data and drafted the article; JS provided the idea, revised it critically for intellectual content, and supported the funding.

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Shen, J. Cytoskeletal Organization and Cell Polarity in the Pathogenesis of Crohn’s Disease. Clinic Rev Allerg Immunol 60, 164–174 (2021). https://doi.org/10.1007/s12016-020-08795-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-020-08795-5

Keywords

Navigation