Skip to main content

Eczema Herpeticum: Clinical and Pathophysiological Aspects

Abstract

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the world. AD is a complex pathology mainly characterized by an impaired skin barrier, immune response dysfunction, and unbalanced skin microbiota. Moreover, AD patients exhibit an increased risk of developing bacterial and viral infections. One of the most current, and potentially life-threatening, viral infection is caused by herpes simplex virus (HSV), which occurs in about 3% of AD patients under the name of eczema herpeticum (EH). Following a first part dedicated to the clinical features, virological diagnosis, and current treatments of EH, this review will focus on the description of the pathophysiology and, more particularly, the presently known predisposing factors to herpetic complications in AD patients. These factors include those related to impairment of the skin barrier such as deficit in filaggrin and anomalies in tight and adherens junctions. In addition, low production of the antimicrobial peptides cathelicidin LL-37 and human β-defensins; overexpression of cytokines such as interleukin (IL)-4, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP); or downregulation of type I to III interferons as well as defect in functions of immune cells such as dendritic, natural killer, and regulatory T cells have been involved. Otherwise, genetic polymorphisms and AD topical calcineurin inhibitor treatments have been associated with an increased risk of EH. Finally, dysbiosis of skin microbiota characterized in AD patients by Staphylococcus aureus colonization and toxin secretion, such as α-toxin, has been described as promoting HSV replication and could therefore contribute to EH.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, Bieber T, Lauener R, Schmid-Grendelmeier P, Traidl-Hoffmann C, Akdis CA (2016) Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 138(2):336–349. https://doi.org/10.1016/j.jaci.2016.06.010

    CAS  Article  PubMed  Google Scholar 

  2. Bieber T (2008) Atopic dermatitis. N Engl J Med 358(14):1483–1494. https://doi.org/10.1056/NEJMra074081

    CAS  Article  PubMed  Google Scholar 

  3. Nutten S (2015) Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab 66(Suppl 1):8–16. https://doi.org/10.1159/000370220

    CAS  Article  PubMed  Google Scholar 

  4. Carroll CL, Balkrishnan R, Feldman SR, Fleischer AB Jr, Manuel JC (2005) The burden of atopic dermatitis: impact on the patient, family, and society. Pediatr Dermatol 22(3):192–199. https://doi.org/10.1111/j.1525-1470.2005.22303.x

    Article  PubMed  Google Scholar 

  5. Lewis-Jones S (2006) Quality of life and childhood atopic dermatitis: the misery of living with childhood eczema. Int J Clin Pract 60(8):984–992. https://doi.org/10.1111/j.1742-1241.2006.01047.x

    CAS  Article  PubMed  Google Scholar 

  6. Leung DY (2013) New insights into atopic dermatitis: role of skin barrier and immune dysregulation. Allergol Int 62(2):151–161. https://doi.org/10.2332/allergolint.13-RAI-0564

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Peng W, Novak N (2015) Pathogenesis of atopic dermatitis. Clin Exp Allergy 45(3):566–574. https://doi.org/10.1111/cea.12495

    CAS  Article  PubMed  Google Scholar 

  8. Elias PM, Hatano Y, Williams ML (2008) Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J Allergy Clin Immunol 121(6):1337–1343. https://doi.org/10.1016/j.jaci.2008.01.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Ong PY, Leung DY (2016) Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol 51(3):329–337. https://doi.org/10.1007/s12016-016-8548-5

    CAS  Article  PubMed  Google Scholar 

  10. Bussmann C, Peng W-M, Bieber T, Novak N (2008) Molecular pathogenesis and clinical implications of eczema herpeticum. Expert Rev Mol Med 10:e21. https://doi.org/10.1017/s1462399408000756

    Article  PubMed  Google Scholar 

  11. Wollenberg A, Wetzel S, Burgdorf WH, Haas J (2003) Viral infections in atopic dermatitis pathogenic aspects and clinical management. J Allergy Clin Immunol 112(4):667–674. https://doi.org/10.1016/S0091

    Article  PubMed  Google Scholar 

  12. Wollenberg A (2012) Eczema herpeticum. Chem Immunol Allergy 96:89–95. https://doi.org/10.1159/000331892

    CAS  Article  PubMed  Google Scholar 

  13. Novak N, Peng WM (2005) Dancing with the enemy: the interplay of herpes simplex virus with dendritic cells. Clin Exp Immunol 142(3):405–410. https://doi.org/10.1111/j.1365-2249.2005.02927.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Cunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, Douglas MW (2006) The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis 194(Suppl 1):S11–S18. https://doi.org/10.1086/505359

    CAS  Article  PubMed  Google Scholar 

  15. Khan A, Shaw L, Bernatoniene J (2015) Fifteen-minute consultation: eczema herpeticum in a child. Arch Dis Child Educ Pract Ed 100(2):64–68. https://doi.org/10.1136/archdischild-2013-304460

    Article  PubMed  Google Scholar 

  16. Rahn E, Petermann P, Hsu MJ, Rixon FJ, Knebel-Morsdorf D (2011) Entry pathways of herpes simplex virus type 1 into human keratinocytes are dynamin- and cholesterol-dependent. PLoS One 6(10):e25464. https://doi.org/10.1371/journal.pone.0025464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Suazo PA, Ibanez FJ, Retamal-Diaz AR, Paz-Fiblas MV, Bueno SM, Kalergis AM, Gonzalez PA (2015) Evasion of early antiviral responses by herpes simplex viruses. Mediat Inflamm 2015:593757. https://doi.org/10.1155/2015/593757

    CAS  Article  Google Scholar 

  18. Spear PG, Longnecker R (2003) Herpesvirus entry: an update. J Virol 77(19):10179–10185. https://doi.org/10.1128/jvi.77.19.10179-10185.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29(10):3245–3253. https://doi.org/10.1002/(SICI)1521-4141(199910)29:10<3245::AID-IMMU3245>3.0.CO;2-X

    CAS  Article  PubMed  Google Scholar 

  20. Thier K, Mockel M, Palitzsch K, Dohner K, Sodeik B, Knebel-Morsdorf D (2018) Entry of herpes simplex virus 1 into epidermis and dermal fibroblasts is independent of the scavenger receptor MARCO. J Virol 92(15):e00490–e00418. https://doi.org/10.1128/JVI.00490-18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M (2000) The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 10(5):305–319. https://doi.org/10.1002/1099-1654(200009/10)10:5<305::AID-RMV286>3.0.CO;2-T

    CAS  Article  PubMed  Google Scholar 

  22. Nicoll MP, Proenca JT, Efstathiou S (2012) The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 36(3):684–705. https://doi.org/10.1111/j.1574-6976.2011.00320.x

    CAS  Article  PubMed  Google Scholar 

  23. Su C, Zhan G, Zheng C (2016) Evasion of host antiviral innate immunity by HSV-1, an update. Virol J 13:38. https://doi.org/10.1186/s12985-016-0495-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Hsu DY, Shinkai K, Silverberg JI (2018) Epidemiology of eczema herpeticum in hospitalized U.S. children: analysis of a nationwide cohort. J Invest Dermatol 138(2):265–272. https://doi.org/10.1016/j.jid.2017.08.039

    CAS  Article  PubMed  Google Scholar 

  25. Beck LA, Boguniewicz M, Hata T, Schneider LC, Hanifin J, Gallo R, Paller AS, Lieff S, Reese J, Zaccaro D, Milgrom H, Barnes KC, Leung DYM (2009) Phenotype of atopic dermatitis subjects with a history of eczema herpeticum. J Allergy Clin Immunol 124(2):260–269.e267. https://doi.org/10.1016/j.jaci.2009.05.020

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wollenberg A, Zoch C, Wetzel S, Plewig G, Przybilla B (2003) Predisposing factors and clinical features of eczema herpeticum: a retrospective analysis of 100 cases. J Am Acad Dermatol 49(2):198–205 Doi:S019096220300896X

    Article  PubMed  Google Scholar 

  27. Leung DYM (2013) Why is eczema herpeticum unexpectedly rare? Antivir Res 98(2):153–157. https://doi.org/10.1016/j.antiviral.2013.02.010

    CAS  Article  PubMed  Google Scholar 

  28. Kim K, Kang J, Won Kim S, Sung M (2016) Relationship between the presence of eczema herpeticum and the significance of clinical and laboratory tests in Korean children with atopic dermatitis. Iran J Pediatr 26(4):e4683. https://doi.org/10.5812/ijp.4683

    Article  PubMed  PubMed Central  Google Scholar 

  29. Higaki S, Inoue Y, Yoshida A, Maeda N, Watanabe H, Shimomura Y (2008) Case of bilateral multiple herpetic epithelial keratitis manifested as dendriform epithelial edema during primary Kaposi's varicelliform eruption. Jpn J Ophthalmol 52(2):127–129. https://doi.org/10.1007/s10384-007-0514-6

    Article  PubMed  Google Scholar 

  30. Ewing CI, Roper HP, David TJ, Haeney MR (1989) Death from eczema herpeticum in a child with severe eczema, mental retardation and cataracts. J R Soc Med 82(3):169–170. https://doi.org/10.1177/014107688908200319

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. DiCarlo A, Amon E, Gardner M, Barr S, Ott K (2008) Eczema herpeticum in pregnancy and neonatal herpes infection. Obstet Gynecol 112(2 Pt 2):455–457. https://doi.org/10.1097/AOG.0b013e318169ce19

    Article  PubMed  Google Scholar 

  32. Blanter M, Vickers J, Russo M, Safai B (2015) Eczema Herpeticum: would you know it if you saw it? Pediatr Emerg Care 31(8):586–588. https://doi.org/10.1097/PEC.0000000000000516

    Article  PubMed  Google Scholar 

  33. Ferrari B, Taliercio V, Luna P, Abad ME, Larralde M (2015) Kaposi's varicelliform eruption: a case series. Indian Dermatol Online J 6(6):399–402. https://doi.org/10.4103/2229-5178.169714

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harindra V, Paffett MC (2001) Recurrent eczema herpeticum: an underrecognised condition. Sex Transm Infect 77(1):76. https://doi.org/10.1136/sti.77.1.76

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Zhuang K, Wu Q, Ran X, Ran Y, Ding L, Xu X, Lei S, Lama J (2016) Oral treatment with valacyclovir for HSV-2-associated eczema herpeticum in a 9-month-old infant: a case report. Medicine (Baltimore) 95(29):e4284. https://doi.org/10.1097/MD.0000000000004284

    Article  Google Scholar 

  36. Micali G, Lacarrubba F (2017) Eczema herpeticum. N Engl J Med 377(7):e9. https://doi.org/10.1056/NEJMicm1701668

    Article  PubMed  Google Scholar 

  37. Jamil A, Muthupalaniappen L (2014) Vesicles and erosions in a patient with chronic eczema: is it just eczema? Ann Acad Med Singap 43(2):130–131

    PubMed  Google Scholar 

  38. Kim EL, Hohmuth B (2017) Eczema herpeticum in early pregnancy. CMAJ 189(13):E505. https://doi.org/10.1503/cmaj.151544

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shenoy R, Mostow E, Cain G (2015) Eczema herpeticum in a wrestler. Clin J Sport Med 25(1):e18–e19. https://doi.org/10.1097/JSM.0000000000000097

    Article  PubMed  Google Scholar 

  40. Sahoo B, Handa S, Kumar B (2001) Eczema herpeticum in parthenium dermatitis. Contact Dermatitis 44(2):106–107

    CAS  Article  PubMed  Google Scholar 

  41. Cooper BL (2017) Eczema Herpeticum. J Emerg Med 53(3):412–413. https://doi.org/10.1016/j.jemermed.2016.12.004

    Article  PubMed  Google Scholar 

  42. Gurvits GE, Nord JA (2011) Eczema herpeticum in pregnancy. Dermatol Reports 3(2):e32. https://doi.org/10.4081/dr.2011.e32

    Article  PubMed  PubMed Central  Google Scholar 

  43. Boyd DA, Sperling LC, Norton SA (2009) Eczema herpeticum and clinical criteria for investigating smallpox. Emerg Infect Dis 15(7):1102–1104. https://doi.org/10.3201/eid1507.090093

    Article  PubMed  PubMed Central  Google Scholar 

  44. Beverido LG, Nanjappa S, Braswell DS, Messina JL, Greene JN (2017) Eczema Herpeticum: a case report and review of literature. Infect Dis Clin Pract 25(2):94–96. https://doi.org/10.1097/ipc.0000000000000471

    Article  Google Scholar 

  45. Celtik C, Karal Y, Kibris A, Kircuval D, Tuzun B (2011) A life-threatening condition in a child with chicken pox: eczema herpeticum. Open J Pediatr 01(01):1–3. https://doi.org/10.4236/ojped.2011.11001

    CAS  Article  Google Scholar 

  46. Popov Y, Nikolov R, Lalova A (2010) Localized eczema herpeticum with unilateral ocular involvement. Acta Dermatovenerol Alp Pannonica Adriat 19(3):35–37

    CAS  PubMed  Google Scholar 

  47. Terezhalmy GT, Tyler MT, Ross GR (1979) Eczema herpeticum: atopic dermatitis complicated by primary herpetic gingivostomatitis. Oral Surg Oral Med Oral Pathol 48(6):513–516

    CAS  Article  PubMed  Google Scholar 

  48. Sanderson IR, Brueton LA, Savage MO, Harper JI (1987) Eczema herpeticum: a potentially fatal disease. Br Med J (Clin Res Ed) 294(6573):693–694. https://doi.org/10.1136/bmj.294.6573.693

    CAS  Article  Google Scholar 

  49. Finlow C, Thomas J (2018) Disseminated herpes simplex virus: a case of eczema herpeticum causing viral encephalitis. J R Coll Physicians Edinb 48(1):36–39. https://doi.org/10.4997/JRCPE.2018.108

    CAS  Article  PubMed  Google Scholar 

  50. Okamoto M, Takahagi S, Tanaka A, Ogawa A, Nobuki H, Hide M (2018) A case of Kaposi varicelliform eruption progressing to herpes simplex virus hepatitis in an immunocompetent patient. Clin Exp Dermatol 43(5):636–638. https://doi.org/10.1111/ced.13405

    CAS  Article  PubMed  Google Scholar 

  51. Frisch S, Siegfried EC (2011) The clinical spectrum and therapeutic challenge of eczema herpeticum. Pediatr Dermatol 28(1):46–52. https://doi.org/10.1111/j.1525-1470.2010.01356.x

    Article  PubMed  Google Scholar 

  52. Tupe CL, Weiler BA, Verceles AC, McCurdy MT (2016) A fatal case of eczema herpeticum with septic shock due to methicillin-resistant Staphylococcus aureus. Am J Crit Care 25(4):379–382. https://doi.org/10.4037/ajcc2016495

    Article  PubMed  Google Scholar 

  53. Karray M, Souissi A (2018) Kaposi Varicelliform eruption. StatPearls [internet]. Doi:NBK482432

  54. Khan MS, Shaw L, Clark V, Afzal Z (2005) Eczema herpeticum: a case report. Int J Paediatr Dent 15(2):136–139. https://doi.org/10.1111/j.1365-263X.2005.00581.x

    CAS  Article  PubMed  Google Scholar 

  55. Ozcan A, Senol M, Saglam H, Seyhan M, Durmaz R, Aktas E, Ozerol IH (2007) Comparison of the Tzanck test and polymerase chain reaction in the diagnosis of cutaneous herpes simplex and varicella zoster virus infections. Int J Dermatol 46(11):1177–1179. https://doi.org/10.1111/j.1365-4632.2007.03337.x

    Article  PubMed  Google Scholar 

  56. Studdiford JS, Valko GP, Belin LJ, Stonehouse AR (2011) Eczema herpeticum: making the diagnosis in the emergency department. J Emerg Med 40(2):167–169. https://doi.org/10.1016/j.jemermed.2007.11.049

    Article  PubMed  Google Scholar 

  57. Wheeler CE Jr, Abele DC (1966) Eczema herpeticum, primary and recurrent. Arch Dermatol 93(2):162–173

    Article  PubMed  Google Scholar 

  58. Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55(2):459–472. https://doi.org/10.1128/AAC.00615-10

    CAS  Article  PubMed  Google Scholar 

  59. Kukhanova MK, Korovina AN, Kochetkov SN (2014) Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc) 79(13):1635–1652. https://doi.org/10.1134/S0006297914130124

    CAS  Article  Google Scholar 

  60. Darji K, Frisch S, Adjei Boakye E, Siegfried E (2017) Characterization of children with recurrent eczema herpeticum and response to treatment with interferon-gamma. Pediatr Dermatol 34(6):686–689. https://doi.org/10.1111/pde.13301

    Article  PubMed  Google Scholar 

  61. Piret J, Boivin G (2014) Antiviral drug resistance in herpesviruses other than cytomegalovirus. Rev Med Virol 24(3):186–218. https://doi.org/10.1002/rmv.1787

    CAS  Article  PubMed  Google Scholar 

  62. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY (2007) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 120(1):150–155. https://doi.org/10.1016/j.jaci.2007.04.031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Thyssen JP, Kezic S (2014) Causes of epidermal filaggrin reduction and their role in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol 134(4):792–799. https://doi.org/10.1016/j.jaci.2014.06.014

    CAS  Article  PubMed  Google Scholar 

  64. O'Regan GM, Sandilands A, McLean WH, Irvine AD (2008) Filaggrin in atopic dermatitis. J Allergy Clin Immunol 122(4):689–693. https://doi.org/10.1016/j.jaci.2008.08.002

    CAS  Article  PubMed  Google Scholar 

  65. Gao P-S, Rafaels NM, Hand T, Murray T, Boguniewicz M, Hata T, Schneider L, Hanifin JM, Gallo RL, Gao L, Beaty TH, Beck LA, Barnes KC, Leung DYM (2009) Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol 124(3):507–513.e507. https://doi.org/10.1016/j.jaci.2009.07.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. De Benedetto A, Slifka MK, Rafaels NM, Kuo IH, Georas SN, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Johnson DC, Barnes KC, Leung DYM, Beck LA (2011) Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol 128(1):242–246.e245. https://doi.org/10.1016/j.jaci.2011.02.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127(3):773–786 e771-777. https://doi.org/10.1016/j.jaci.2010.10.018

    CAS  Article  PubMed  Google Scholar 

  68. Howell MD, Gao P, Kim BE, Lesley LJ, Streib JE, Taylor PA, Zaccaro DJ, Boguniewicz M, Beck LA, Hanifin JM, Schneider LC, Hata TR, Gallo RL, Kaplan MH, Barnes KC, Leung DYM (2011) The signal transducer and activator of transcription 6 gene (STAT6) increases the propensity of patients with atopic dermatitis toward disseminated viral skin infections. J Allergy Clin Immunol 128(5):1006–1014. https://doi.org/10.1016/j.jaci.2011.06.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Gao P-S, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M, Hata T, Schneider L, Hanifin JM, Gallo RL, Gao L, Beaty TH, Beck LA, Leung DYM, Barnes KC (2010) Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol 125(6):1403–1407.e1404. https://doi.org/10.1016/j.jaci.2010.03.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Gao P-S, Leung DYM, Rafaels NM, Boguniewicz M, Hand T, Gao L, Hata TR, Schneider LC, Hanifin JM, Beaty TH, Beck LA, Weinberg A, Barnes KC (2012) Genetic variants in interferon regulatory factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. J Invest Dermatol 132(3):650–657. https://doi.org/10.1038/jid.2011.374

    CAS  Article  PubMed  Google Scholar 

  71. Leung DYM, Gao P-S, Grigoryev DN, Rafaels NM, Streib JE, Howell MD, Taylor PA, Boguniewicz M, Canniff J, Armstrong B, Zaccaro DJ, Schneider LC, Hata TR, Hanifin JM, Beck LA, Weinberg A, Barnes KC (2011) Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-γ response. J Allergy Clin Immunol 127(4):965–973.e965. https://doi.org/10.1016/j.jaci.2011.02.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Kim BE, Bin L, Ye Y-M, Ramamoorthy P, Leung DYM (2013) IL-25 enhances HSV-1 replication by inhibiting filaggrin expression, and acts synergistically with Th2 cytokines to enhance HSV-1 replication. J Invest Dermatol 133(12):2678–2685. https://doi.org/10.1038/jid.2013.223

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Rosenthal KS, Killius J, Hodnichak CM, Venetta TM, Gyurgyik L, Janiga K (1989) Mild acidic pH inhibition of the major pathway of herpes simplex virus entry into HEp-2 cells. J Gen Virol 70(Pt 4):857–867. https://doi.org/10.1099/0022-1317-70-4-857

    Article  PubMed  Google Scholar 

  74. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 127(11):2525–2532. https://doi.org/10.1038/sj.jid.5700865

    CAS  Article  PubMed  Google Scholar 

  75. Rahn E, Thier K, Petermann P, Rubsam M, Staeheli P, Iden S, Niessen CM, Knebel-Morsdorf D (2017) Epithelial barriers in murine skin during herpes simplex virus 1 infection: the role of tight junction formation. J Invest Dermatol 137(4):884–893. https://doi.org/10.1016/j.jid.2016.11.027

    CAS  Article  PubMed  Google Scholar 

  76. Yoon M, Spear PG (2002) Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol 76(14):7203–7208. https://doi.org/10.1128/jvi.76.14.7203-7208.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Bardan A, Nizet V, Gallo RL (2004) Antimicrobial peptides and the skin. Expert Opin Biol Ther 4(4):543–549. https://doi.org/10.1517/14712598.4.4.543

    CAS  Article  PubMed  Google Scholar 

  78. Harder J, Dressel S, Wittersheim M, Cordes J, Meyer-Hoffert U, Mrowietz U, Folster-Holst R, Proksch E, Schroder JM, Schwarz T, Glaser R (2010) Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol 130(5):1355–1364. https://doi.org/10.1038/jid.2009.432

    CAS  Article  PubMed  Google Scholar 

  79. Roy M, Lebeau L, Chessa C, Damour A, Ladram A, Oury B, Boutolleau D, Bodet C, Leveque N (2019) Comparison of anti-viral activity of frog skin anti-microbial peptides Temporin-Sha and [K(3)]SHa to LL-37 and Temporin-Tb against herpes simplex virus type 1. Viruses 11(1). https://doi.org/10.3390/v11010077

  80. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347(15):1151–1160. https://doi.org/10.1056/NEJMoa021481

    CAS  Article  PubMed  Google Scholar 

  81. Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, Leung DY (2006) Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 121(3):332–338. https://doi.org/10.1016/j.clim.2006.08.008

    CAS  Article  PubMed  Google Scholar 

  82. Howell M, Wollenberg A, Gallo R, Flaig M, Streib J, Wong C, Pavicic T, Boguniewicz M, Leung D (2006) Cathelicidin deficiency predisposes to eczema herpeticum. J Allergy Clin Immunol 117(4):836–841. https://doi.org/10.1016/j.jaci.2005.12.1345

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Hata TR, Kotol P, Boguniewicz M, Taylor P, Paik A, Jackson M, Nguyen M, Kabigting F, Miller J, Gerber M, Zaccaro D, Armstrong B, Dorschner R, Leung DY, Gallo RL (2010) History of eczema herpeticum is associated with the inability to induce human beta-defensin (HBD)-2, HBD-3 and cathelicidin in the skin of patients with atopic dermatitis. Br J Dermatol 163(3):659–661. https://doi.org/10.1111/j.1365-2133.2010.09892.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Wilson SS, Wiens ME, Smith JG (2013) Antiviral mechanisms of human defensins. J Mol Biol 425(24):4965–4980. https://doi.org/10.1016/j.jmb.2013.09.038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Hazrati E, Galen B, Lu W, Wang W, Ouyang Y, Keller MJ, Lehrer RI, Herold BC (2006) Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 177(12):8658–8666 Doi:177/12/8658

    CAS  Article  PubMed  Google Scholar 

  86. Muraro A, Lemanske RF Jr, Hellings PW, Akdis CA, Bieber T, Casale TB, Jutel M, Ong PY, Poulsen LK, Schmid-Grendelmeier P, Simon HU, Seys SF, Agache I (2016) Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 137(5):1347–1358. https://doi.org/10.1016/j.jaci.2016.03.010

    Article  PubMed  Google Scholar 

  87. Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, Mitsui H, Cardinale I, de Guzman SC, Krueger JG, Guttman-Yassky E (2012) Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 130(6):1344–1354. https://doi.org/10.1016/j.jaci.2012.07.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Guttman-Yassky E, Krueger JG (2017) Atopic dermatitis and psoriasis: two different immune diseases or one spectrum? Curr Opin Immunol 48:68–73. https://doi.org/10.1016/j.coi.2017.08.008

    CAS  Article  PubMed  Google Scholar 

  89. Tsakok T, Woolf R, Smith CH, Weidinger S, Flohr C (2018) Atopic dermatitis: the skin barrier and beyond. Br J Dermatol 180(3):464–474. https://doi.org/10.1111/bjd.16934

    Article  PubMed  Google Scholar 

  90. Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2(3):110. https://doi.org/10.4172/2155-9899.1000110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Wollenberg A, Räwer H-C, Schauber J (2010) Innate immunity in atopic dermatitis. Clin Rev Allergy Immunol 41(3):272–281. https://doi.org/10.1007/s12016-010-8227-x

    CAS  Article  Google Scholar 

  92. Traidl S, Kienlin P, Begemann G, Jing L, Koelle DM, Werfel T, Roesner LM (2018) Patients with atopic dermatitis and history of eczema herpeticum elicit herpes simplex virus-specific type 2 immune responses. J Allergy Clin Immunol 141(3):1144–1147 e1145. https://doi.org/10.1016/j.jaci.2017.09.048

    Article  PubMed  Google Scholar 

  93. Hvid M, Vestergaard C, Kemp K, Christensen GB, Deleuran B, Deleuran M (2011) IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol 131(1):150–157. https://doi.org/10.1038/jid.2010.277

    CAS  Article  PubMed  Google Scholar 

  94. Tatsuno K, Fujiyama T, Yamaguchi H, Waki M, Tokura Y (2015) TSLP directly interacts with skin-homing Th2 cells highly expressing its receptor to enhance IL-4 production in atopic dermatitis. J Invest Dermatol 135(12):3017–3024. https://doi.org/10.1038/jid.2015.318

    CAS  Article  PubMed  Google Scholar 

  95. Oyoshi MK, Venturelli N, Geha RS (2016) Thymic stromal lymphopoietin and IL-33 promote skin inflammation and vaccinia virus replication in a mouse model of atopic dermatitis. J Allergy Clin Immunol 138(1):283–286. https://doi.org/10.1016/j.jaci.2015.12.1304

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Kolumam GA, Thomas S, Thompson LJ, Sprent J, Murali-Krishna K (2005) Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J Exp Med 202(5):637–650. https://doi.org/10.1084/jem.20050821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Bogdan C (2000) The function of type I interferons in antimicrobial immunity. Curr Opin Immunol 12(4):419–424 Doi:S0952-7915(00)00111-4

    CAS  Article  PubMed  Google Scholar 

  98. Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1(6):519–525. https://doi.org/10.1016/j.coviro.2011.10.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Mikloska Z, Cunningham AL (2001) Alpha and gamma interferons inhibit herpes simplex virus type 1 infection and spread in epidermal cells after axonal transmission. J Virol 75(23):11821–11826. https://doi.org/10.1128/JVI.75.23.11821-11826.2001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Bin L, Edwards MG, Heiser R, Streib JE, Richers B, Hall CF, Leung DYM (2014) Identification of novel gene signatures in patients with atopic dermatitis complicated by eczema herpeticum. J Allergy Clin Immunol 134(4):848–855. https://doi.org/10.1016/j.jaci.2014.07.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Bin L, Li X, Richers B, Streib JE, Hu JW, Taylor P, Leung DYM (2018) Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: a potential role in eczema herpeticum. J Allergy Clin Immunol 141(6):2085–2093 e2081. https://doi.org/10.1016/j.jaci.2018.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, Rothenfusser S, Wetzel S, Endres S, Hartmann G (2002) Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 119(5):1096–1102. https://doi.org/10.1046/j.1523-1747.2002.19515.x

    CAS  Article  PubMed  Google Scholar 

  103. Frey KG, Ahmed CM, Dabelic R, Jager LD, Noon-Song EN, Haider SM, Johnson HM, Bigley NJ (2009) HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. J Immunol 183(2):1253–1262. https://doi.org/10.4049/jimmunol.0900570

    CAS  Article  PubMed  Google Scholar 

  104. Wolk K, Witte K, Witte E, Raftery M, Kokolakis G, Philipp S, Schonrich G, Warszawska K, Kirsch S, Prosch S, Sterry W, Volk HD, Sabat R (2013) IL-29 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci Transl Med 5(204):204ra129. https://doi.org/10.1126/scitranslmed.3006245

    CAS  Article  PubMed  Google Scholar 

  105. Staudacher A, Hinz T, Novak N, von Bubnoff D, Bieber T (2015) Exaggerated IDO1 expression and activity in Langerhans cells from patients with atopic dermatitis upon viral stimulation: a potential predictive biomarker for high risk of eczema herpeticum. Allergy 70(11):1432–1439. https://doi.org/10.1111/all.12699

    CAS  Article  PubMed  Google Scholar 

  106. Adams O, Besken K, Oberdorfer C, MacKenzie CR, Russing D, Daubener W (2004) Inhibition of human herpes simplex virus type 2 by interferon gamma and tumor necrosis factor alpha is mediated by indoleamine 2,3-dioxygenase. Microbes Infect 6(9):806–812. https://doi.org/10.1016/j.micinf.2004.04.007

    CAS  Article  PubMed  Google Scholar 

  107. Topham NJ, Hewitt EW (2009) Natural killer cell cytotoxicity: how do they pull the trigger? Immunology 128(1):7–15. https://doi.org/10.1111/j.1365-2567.2009.03123.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Nandakumar S, Woolard SN, Yuan D, Rouse BT, Kumaraguru U (2008) Natural killer cells as novel helpers in anti-herpes simplex virus immune response. J Virol 82(21):10820–10831. https://doi.org/10.1128/JVI.00365-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Goodyear HM, McLeish P, Randall S, Buchan A, Skinner GR, Winther M, Rolland J, Morgan G, Harper JI (1996) Immunological studies of herpes simplex virus infection in children with atopic eczema. Br J Dermatol 134(1):85–93

    CAS  Article  PubMed  Google Scholar 

  110. Kawakami Y, Ando T, Lee J-R, Kim G, Kawakami Y, Nakasaki T, Nakasaki M, Matsumoto K, Choi YS, Kawakami T (2017) Defective natural killer cell activity in a mouse model of eczema herpeticum. J Allergy Clin Immunol 139(3):997–1006.e1010. https://doi.org/10.1016/j.jaci.2016.06.034

    CAS  Article  PubMed  Google Scholar 

  111. Fernandez MA, Puttur FK, Wang YM, Howden W, Alexander SI, Jones CA (2008) T regulatory cells contribute to the attenuated primary CD8+ and CD4+ T cell responses to herpes simplex virus type 2 in neonatal mice. J Immunol 180(3):1556–1564 Doi:180/3/1556

    CAS  Article  PubMed  Google Scholar 

  112. Takahashi R, Sato Y, Kurata M, Yamazaki Y, Kimishima M, Shiohara T (2013) Pathological role of regulatory T cells in the initiation and maintenance of eczema herpeticum lesions. J Immunol 192(3):969–978. https://doi.org/10.4049/jimmunol.1300102

    CAS  Article  PubMed  Google Scholar 

  113. Lyons JJ, Milner JD, Stone KD (2015) Atopic dermatitis in children: clinical features, pathophysiology, and treatment. Immunol Allergy Clin N Am 35(1):161–183. https://doi.org/10.1016/j.iac.2014.09.008

    Article  Google Scholar 

  114. Lubbe J, Pournaras CC, Saurat JH (2000) Eczema herpeticum during treatment of atopic dermatitis with 0.1% tacrolimus ointment. Dermatology 201(3):249–251. https://doi.org/10.1159/000018497

    CAS  Article  PubMed  Google Scholar 

  115. Segura S, Romero D, Carrera C, Iranzo P, Estrach T (2005) Eczema herpeticum during treatment of atopic dermatitis with 1% pimecrolimus cream. Acta Derm Venereol 85(6):524–525. https://doi.org/10.1080/00015550510034164

    Article  PubMed  Google Scholar 

  116. Wahn U, Bos JD, Goodfield M, Caputo R, Papp K, Manjra A, Dobozy A, Paul C, Molloy S, Hultsch T, Graeber M, Cherill R, de Prost Y (2002) Efficacy and safety of pimecrolimus cream in the long-term management of atopic dermatitis in children. Pediatrics 110(1 Pt 1):e2. https://doi.org/10.1542/peds.110.1.e2

    Article  PubMed  Google Scholar 

  117. Reitamo S, Wollenberg A, Schopf E, Perrot JL, Marks R, Ruzicka T, Christophers E, Kapp A, Lahfa M, Rubins A, Jablonska S, Rustin M (2000) Safety and efficacy of 1 year of tacrolimus ointment monotherapy in adults with atopic dermatitis. The European Tacrolimus Ointment Study Group. Arch Dermatol 136(8):999–1006 doi:dst0016

    CAS  Article  PubMed  Google Scholar 

  118. Koo JY, Fleischer AB Jr, Abramovits W, Pariser DM, McCall CO, Horn TD, Gottlieb AB, Jaracz E, Rico MJ (2005) Tacrolimus ointment is safe and effective in the treatment of atopic dermatitis: results in 8000 patients. J Am Acad Dermatol 53(2 Suppl 2):S195–S205. https://doi.org/10.1016/j.jaad.2005.04.063

    Article  PubMed  Google Scholar 

  119. Reitamo S, Rustin M, Harper J, Kalimo K, Rubins A, Cambazard F, Brenninkmeijer EE, Smith C, Berth-Jones J, Ruzicka T, Sharpe G, Taieb A (2008) A 4-year follow-up study of atopic dermatitis therapy with 0.1% tacrolimus ointment in children and adult patients. Br J Dermatol 159(4):942–951. https://doi.org/10.1111/j.1365-2133.2008.08747.x

    CAS  Article  PubMed  Google Scholar 

  120. Kim SW, Park YW, Kwon IH, Kim KH (2010) Cyclosporin treatment of atopic dermatitis: is it really associated with infectious diseases? Ann Dermatol 22(2):170–172. https://doi.org/10.5021/ad.2010.22.2.170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Fleming P, Drucker AM (2018) Risk of infection in patients with atopic dermatitis treated with Dupilumab: a meta-analysis of randomized controlled trials. J Am Acad Dermatol 78(1):62–69 e61. https://doi.org/10.1016/j.jaad.2017.09.052

    CAS  Article  PubMed  Google Scholar 

  122. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253. https://doi.org/10.1038/nrmicro2537

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324(5931):1190–1192. https://doi.org/10.1126/science.1171700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Scharschmidt TC, Fischbach MA (2013) What lives on our skin: ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discov Today Dis Mech 10(3–4):e83–e89. https://doi.org/10.1016/j.ddmec.2012.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  125. Yamazaki Y, Nakamura Y, Nunez G (2017) Role of the microbiota in skin immunity and atopic dermatitis. Allergol Int 66(4):539–544. https://doi.org/10.1016/j.alit.2017.08.004

    CAS  Article  PubMed  Google Scholar 

  126. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA (2012) Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22(5):850–859. https://doi.org/10.1101/gr.131029.111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Bjerre RD, Bandier J, Skov L, Engstrand L, Johansen JD (2017) The role of the skin microbiome in atopic dermatitis: a systematic review. Br J Dermatol 177(5):1272–1278. https://doi.org/10.1111/bjd.15390

    CAS  Article  PubMed  Google Scholar 

  128. Oh JE, Kim BC, Chang DH, Kwon M, Lee SY, Kang D, Kim JY, Hwang I, Yu JW, Nakae S, Lee HK (2016) Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proc Natl Acad Sci U S A 113(6):E762–E771. https://doi.org/10.1073/pnas.1518589113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. Bin L, Kim BE, Brauweiler A, Goleva E, Streib J, Ji Y, Schlievert PM, Leung DY (2012) Staphylococcus aureus alpha-toxin modulates skin host response to viral infection. J Allergy Clin Immunol 130(3):683–691 e682. https://doi.org/10.1016/j.jaci.2012.06.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Hepburn L, Hijnen DJ, Sellman BR, Mustelin T, Sleeman MA, May RD, Strickland I (2017) The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. Br J Dermatol 177(1):63–71. https://doi.org/10.1111/bjd.15139

    CAS  Article  PubMed  Google Scholar 

  131. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, Villaruz AE, Cheung GY, McGavin MJ, Travers JB, Otto M, Inohara N, Nunez G (2013) Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature 503(7476):397–401. https://doi.org/10.1038/nature12655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Syed AK, Reed TJ, Clark KL, Boles BR, Kahlenberg JM (2015) Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infect Immun 83(9):3428–3437. https://doi.org/10.1128/IAI.00401-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jeffrey Arsham for the English revision of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Bodet.

Ethics declarations

This manuscript complies with the ethical standards of Clinical Reviews in Allergy and Immunology.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

No ethics issues are raised as this is a review article.

Informed Consent

Informed consent was obtained from all patients for clinical photographs included in this review article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Damour, A., Garcia, M., Seneschal, J. et al. Eczema Herpeticum: Clinical and Pathophysiological Aspects. Clinic Rev Allerg Immunol 59, 1–18 (2020). https://doi.org/10.1007/s12016-019-08768-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-019-08768-3

Keywords

  • Atopic dermatitis
  • Herpes simplex virus
  • Predisposing factors
  • Immune response
  • Skin barrier
  • Microbiota dysbiosis