Skip to main content

Advertisement

Log in

Asthma Phenotypes as a Guide for Current and Future Biologic Therapies

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Asthma has been increasingly recognized as being a heterogeneous disease with multiple distinct mechanisms and pathophysiologies. Evidence continues to build regarding the existence of different cell types, environmental exposures, pathogens, and other factors that produce a similar set of symptoms known collectively as asthma. This has led to a movement from a “one size fits all” symptom-based methodology to a more patient-centered, individualized approach to asthma treatment targeting the underlying disease process. A significant contributor to this shift to more personalized asthma therapy has been the increasing availability of numerous biologic therapies in recent years, providing the opportunity for more targeted treatments. When targeted biologics began to be developed for treatment of asthma, the hope was that distinct biomarkers would become available, allowing the clinician to determine which biologic therapy was best suited for which patients. Presence of certain biomarkers, like eosinophilia or antigen-specific IgE, is important features of specific asthma phenotypes. Currently available biomarkers can help with decision making about biologics, but are generally too broad and non-specific to clearly identify an asthma phenotype or the single biologic best suited to an asthmatic. Identification of further biomarkers is the subject of intense research. Yet, identifying a patient’s asthma phenotype can help in predicting disease course, response to treatment, and biologic therapies to consider. In this review, major asthma phenotypes are reviewed, and the evidence for the utility of various biologics, both those currently on the market and those in the development process, in each of these phenotypes is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wenzel SE (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368(9537):804–813. https://doi.org/10.1016/S0140-6736(06)69290-8

    Article  CAS  PubMed  Google Scholar 

  2. Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, Lemanske RF Jr, Wardlaw AJ, Wenzel SE, Greenberger PA (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127(2):355–360. https://doi.org/10.1016/j.jaci.2010.11.037

    Article  PubMed  Google Scholar 

  3. Lloyd CM, Hessel EM (2010) Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 10(12):838–848. https://doi.org/10.1038/nri2870

    Article  CAS  PubMed  Google Scholar 

  4. Fahy JV (2015) Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol 15(1):57–65. https://doi.org/10.1038/nri3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, Hanania NA, Nair P (2017) Revisiting type 2-high and type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 47(2):161–175. https://doi.org/10.1111/cea.12880

    Article  CAS  PubMed  Google Scholar 

  6. Oliphant CJ, Barlow JL, McKenzie AN (2011) Insights into the initiation of type 2 immune responses. Immunology 134(4):378–385. https://doi.org/10.1111/j.1365-2567.2011.03499.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lund S, Walford HH, Doherty TA (2013) Type 2 innate lymphoid cells in allergic disease. Curr Immunol Rev 9(4):214–221. https://doi.org/10.2174/1573395510666140304235916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hershey GK (2003) IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol 111(4):677–690 quiz 691

    Article  CAS  Google Scholar 

  9. Jiang H, Harris MB, Rothman P (2000) IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 105(6 Pt 1):1063–1070

    Article  CAS  Google Scholar 

  10. Walford HH, Doherty TA (2014) Diagnosis and management of eosinophilic asthma: a US perspective. J Asthma Allergy 7:53–65. https://doi.org/10.2147/JAA.S39119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Louahed J, Kermouni A, Van Snick J, Renauld JC (1995) IL-9 induces expression of granzymes and high-affinity IgE receptor in murine T helper clones. J Immunol 154(10):5061–5070

    CAS  PubMed  Google Scholar 

  12. Zhou Y, McLane M, Levitt RC (2001) Th2 cytokines and asthma. Interleukin-9 as a therapeutic target for asthma. Respir Res 2(2):80–84

    Article  CAS  Google Scholar 

  13. de Groot JC, Ten Brinke A, Bel EH (2015) Management of the patient with eosinophilic asthma: a new era begins. ERJ Open Res 1(1):00024–02015. https://doi.org/10.1183/23120541.00024-2015

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bhakta NR, Woodruff PG (2011) Human asthma phenotypes: from the clinic, to cytokines, and back again. Immunol Rev 242(1):220–232. https://doi.org/10.1111/j.1600-065X.2011.01032.x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cui J, Pazdziorko S, Miyashiro JS, Thakker P, Pelker JW, Declercq C, Jiao A, Gunn J, Mason L, Leonard JP, Williams CM, Marusic S (2005) TH1-mediated airway hyperresponsiveness independent of neutrophilic inflammation. J Allergy Clin Immunol 115(2):309–315. https://doi.org/10.1016/j.jaci.2004.10.046

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi N, Yoshimoto T, Izuhara K, Matsui K, Tanaka T, Nakanishi K (2007) T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-gamma and IL-13 production. Proc Natl Acad Sci U S A 104(37):14765–14770. https://doi.org/10.1073/pnas.0706378104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18(5):716–725. https://doi.org/10.1038/nm.2678

    Article  CAS  PubMed  Google Scholar 

  18. Agrawal DK, Shao Z (2010) Pathogenesis of allergic airway inflammation. Curr Allergy Asthma Rep 10(1):39–48. https://doi.org/10.1007/s11882-009-0081-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reuter S, Stassen M, Taube C (2010) Mast cells in allergic asthma and beyond. Yonsei Med J 51(6):797–807. https://doi.org/10.3349/ymj.2010.51.6.797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burrows B, Martinez FD, Cline MG, Lebowitz MD (1995) The relationship between parental and children's serum IgE and asthma. Am J Respir Crit Care Med 152(5 Pt 1):1497–1500. https://doi.org/10.1164/ajrccm.152.5.7582283

    Article  CAS  PubMed  Google Scholar 

  21. Silkoff PE, McClean PA, Slutsky AS, Caramori M, Chapman KR, Gutierrez C, Zamel N (1998) Exhaled nitric oxide and bronchial reactivity during and after inhaled beclomethasone in mild asthma. J Asthma 35(6):473–479

    Article  CAS  Google Scholar 

  22. Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF, Lal P, Arron JR, Harris JM, Busse W (2013) Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 187(8):804–811. https://doi.org/10.1164/rccm.201208-1414OC

    Article  CAS  PubMed  Google Scholar 

  23. Agrawal S, Townley RG (2014) Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma. Expert Opin Biol Ther 14(2):165–181. https://doi.org/10.1517/14712598.2014.859673

    Article  CAS  PubMed  Google Scholar 

  24. Berry A, Busse WW (2016) Biomarkers in asthmatic patients: has their time come to direct treatment? J Allergy Clin Immunol 137(5):1317–1324. https://doi.org/10.1016/j.jaci.2016.03.009

    Article  PubMed  Google Scholar 

  25. National Asthma E, Prevention P (2007) Expert panel report 3 (EPR-3): guidelines for the diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 120 (5 Suppl):S94–138. doi:https://doi.org/10.1016/j.jaci.2007.09.043

  26. Humbert M, Beasley R, Ayres J, Slavin R, Hebert J, Bousquet J, Beeh KM, Ramos S, Canonica GW, Hedgecock S, Fox H, Blogg M, Surrey K (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60(3):309–316. https://doi.org/10.1111/j.1398-9995.2004.00772.x

    Article  CAS  PubMed  Google Scholar 

  27. Weinstein SF, Katial R, Jayawardena S, Pirozzi G, Staudinger H, Eckert L, Joish VN, Amin N, Maroni J, Rowe P, Graham NMH, Teper A (2018) Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J Allergy Clin Immunol 142(1):171–177 e171. https://doi.org/10.1016/j.jaci.2017.11.051

    Article  CAS  PubMed  Google Scholar 

  28. Gauvreau GM, O'Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, FitzGerald JM, Boedigheimer M, Davis BE, Dias C, Gorski KS, Smith L, Bautista E, Comeau MR, Leigh R, Parnes JR (2014) Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 370(22):2102–2110. https://doi.org/10.1056/NEJMoa1402895

    Article  CAS  PubMed  Google Scholar 

  29. Bateman ED, O'Brien C, Rugman P, Luke S, Ivanov S, Uddin M (2018) Efficacy and safety of the CRTh2 antagonist AZD1981 as add-on therapy to inhaled corticosteroids and long-acting beta2-agonists in patients with atopic asthma. Drug Des Devel Ther 12:1093–1106. https://doi.org/10.2147/DDDT.S147389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bateman ED, Guerreros AG, Brockhaus F, Holzhauer B, Pethe A, Kay RA, Townley RG (2017) Fevipiprant, an oral prostaglandin DP2 receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur Respir J 50(2):1700670. https://doi.org/10.1183/13993003.00670-2017

    Article  CAS  PubMed  Google Scholar 

  31. Knutsen AP, Slavin RG (2011) Allergic bronchopulmonary aspergillosis in asthma and cystic fibrosis. Clin Dev Immunol 2011:843763–843713. https://doi.org/10.1155/2011/843763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giavina-Bianchi P, Kalil J (2017) Diagnosis of allergic bronchopulmonary aspergillosis exacerbations. J Allergy Clin Immunol Pract 5(6):1599–1600. https://doi.org/10.1016/j.jaip.2017.06.024

    Article  PubMed  Google Scholar 

  33. Kauffman HF, Tomee JF, van de Riet MA, Timmerman AJ, Borger P (2000) Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 105(6 Pt 1):1185–1193

    Article  CAS  Google Scholar 

  34. Tomee JF, Kauffman HF, Klimp AH, de Monchy JG, Koeter GH, Dubois AE (1994) Immunologic significance of a collagen-derived culture filtrate containing proteolytic activity in Aspergillus-related diseases. J Allergy Clin Immunol 93(4):768–778

    Article  CAS  Google Scholar 

  35. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ (2000) Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404(6776):407–411. https://doi.org/10.1038/35006097

    Article  CAS  PubMed  Google Scholar 

  36. Agarwal R, Dua D, Choudhary H, Aggarwal AN, Sehgal IS, Dhooria S, Garg M, Behera D, Chakrabarti A (2017) Role of Aspergillus fumigatus-specific IgG in diagnosis and monitoring treatment response in allergic bronchopulmonary aspergillosis. Mycoses 60(1):33–39. https://doi.org/10.1111/myc.12541

    Article  CAS  PubMed  Google Scholar 

  37. Moss RB (2012) The use of biological agents for the treatment of fungal asthma and allergic bronchopulmonary aspergillosis. Ann N Y Acad Sci 1272:49–57. https://doi.org/10.1111/j.1749-6632.2012.06810.x

    Article  CAS  PubMed  Google Scholar 

  38. Terashima T, Shinozaki T, Iwami E, Nakajima T, Matsuzaki T (2018) A case of allergic bronchopulmonary aspergillosis successfully treated with mepolizumab. BMC Pulm Med 18(1):53. https://doi.org/10.1186/s12890-018-0617-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jia G, Erickson RW, Choy DF, Mosesova S, Wu LC, Solberg OD, Shikotra A, Carter R, Audusseau S, Hamid Q, Bradding P, Fahy JV, Woodruff PG, Harris JM, Arron JR, Bronchoscopic Exploratory Research Study of Biomarkers in Corticosteroid-refractory Asthma Study G (2012) Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol 130(3):647–654 e610. https://doi.org/10.1016/j.jaci.2012.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Godar M, Blanchetot C, de Haard H, Lambrecht BN, Brusselle G (2018) Personalized medicine with biologics for severe type 2 asthma: current status and future prospects. MAbs 10(1):34–45. https://doi.org/10.1080/19420862.2017.1392425

    Article  PubMed  Google Scholar 

  41. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, Humbert M, Katz LE, Keene ON, Yancey SW, Chanez P, Investigators M (2014) Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 371(13):1198–1207. https://doi.org/10.1056/NEJMoa1403290

    Article  CAS  PubMed  Google Scholar 

  42. Benralizumab (Fasenra) for Severe Eosinophilic Asthma (2018) JAMA 319(14):1501–1502. https://doi.org/10.1001/jama.2018.3609

    Article  Google Scholar 

  43. Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, Sproule S, Gilmartin G, Aurivillius M, Werkstrom V, Goldman M, investigators Ss (2016) Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 388(10056):2115–2127. https://doi.org/10.1016/S0140-6736(16)31324-1

    Article  CAS  PubMed  Google Scholar 

  44. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, Ferguson GT, Busse WW, Barker P, Sproule S, Gilmartin G, Werkstrom V, Aurivillius M, Goldman M, investigators Cs (2016) Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388 (10056):2128–2141. doi:https://doi.org/10.1016/S0140-6736(16)31322-8

  45. Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M (2016) Reslizumab for inadequately controlled Asthma with elevated blood eosinophil levels: a randomized phase 3 study. Chest 150(4):789–798. https://doi.org/10.1016/j.chest.2016.03.032

    Article  PubMed  Google Scholar 

  46. Corren J, Weinstein S, Janka L, Zangrilli J, Garin M (2016) Phase 3 study of Reslizumab in patients with poorly controlled Asthma: effects across a broad range of eosinophil counts. Chest 150(4):799–810. https://doi.org/10.1016/j.chest.2016.03.018

    Article  PubMed  Google Scholar 

  47. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, Katelaris C, Tohda Y, Zhang B, Staudinger H, Pirozzi G, Amin N, Ruddy M, Akinlade B, Khan A, Chao J, Martincova R, Graham NMH, Hamilton JD, Swanson BN, Stahl N, Yancopoulos GD, Teper A (2018) Dupilumab efficacy and safety in moderate-to-severe uncontrolled Asthma. N Engl J Med 378(26):2486–2496. https://doi.org/10.1056/NEJMoa1804092

    Article  CAS  PubMed  Google Scholar 

  48. Identifier NCT03469934. Proof of Concept Study to Investigate ANB020 Activity in Adult Patients With Severe Eosinophilic Asthma. National Library of Medicine: ClinicalTrials.gov.

  49. Pettipher R, Hunter MG, Perkins CM, Collins LP, Lewis T, Baillet M, Steiner J, Bell J, Payton MA (2014) Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy 69(9):1223–1232. https://doi.org/10.1111/all.12451

    Article  CAS  PubMed  Google Scholar 

  50. Hall IP, Fowler AV, Gupta A, Tetzlaff K, Nivens MC, Sarno M, Finnigan HA, Bateman ED, Rand Sutherland E (2015) Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm Pharmacol Ther 32:37–44. https://doi.org/10.1016/j.pupt.2015.03.003

    Article  CAS  PubMed  Google Scholar 

  51. Fevipiprant phase iii exacerbation studies: Luster-1 and luster-2 study design (2017) Respirology 22(S3):170–170. https://doi.org/10.1111/resp.13207_222

    Article  Google Scholar 

  52. Laidlaw TM, Boyce JA (2016) Aspirin-exacerbated respiratory disease--new prime suspects. N Engl J Med 374(5):484–488. https://doi.org/10.1056/NEJMcibr1514013

    Article  CAS  PubMed  Google Scholar 

  53. Laidlaw TM, Boyce JA (2013) Pathogenesis of aspirin-exacerbated respiratory disease and reactions. Immunol Allergy Clin N Am 33(2):195–210. https://doi.org/10.1016/j.iac.2012.11.006

    Article  Google Scholar 

  54. White AA, Stevenson DD (2018) Aspirin-exacerbated respiratory disease. N Engl J Med 379(11):1060–1070. https://doi.org/10.1056/NEJMra1712125

    Article  CAS  PubMed  Google Scholar 

  55. Liu T, Kanaoka Y, Barrett NA, Feng C, Garofalo D, Lai J, Buchheit K, Bhattacharya N, Laidlaw TM, Katz HR, Boyce JA (2015) Aspirin-exacerbated respiratory disease involves a Cysteinyl leukotriene-driven IL-33-mediated mast cell activation pathway. J Immunol 195(8):3537–3545. https://doi.org/10.4049/jimmunol.1500905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Park H, Choi Y, Jung CG, Park HS (2017) Potential biomarkers for NSAID-exacerbated respiratory disease. Mediat Inflamm 2017:8160148–8160148. https://doi.org/10.1155/2017/8160148

    Article  CAS  Google Scholar 

  57. Kim MA, Izuhara K, Ohta S, Ono J, Yoon MK, Ban GY, Yoo HS, Shin YS, Ye YM, Nahm DH, Park HS (2014) Association of serum periostin with aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol 113(3):314–320. https://doi.org/10.1016/j.anai.2014.06.014

    Article  CAS  PubMed  Google Scholar 

  58. Sakalar EG, Muluk NB, Kar M, Cingi C (2017) Aspirin-exacerbated respiratory disease and current treatment modalities. Eur Arch Otorhinolaryngol 274(3):1291–1300. https://doi.org/10.1007/s00405-016-4273-1

    Article  PubMed  Google Scholar 

  59. Dahlen B, Nizankowska E, Szczeklik A, Zetterstrom O, Bochenek G, Kumlin M, Mastalerz L, Pinis G, Swanson LJ, Boodhoo TI, Wright S, Dube LM, Dahlen SE (1998) Benefits from adding the 5-lipoxygenase inhibitor zileuton to conventional therapy in aspirin-intolerant asthmatics. Am J Respir Crit Care Med 157(4 Pt 1):1187–1194. https://doi.org/10.1164/ajrccm.157.4.9707089

    Article  CAS  PubMed  Google Scholar 

  60. Berges-Gimeno MP, Simon RA, Stevenson DD (2003) Long-term treatment with aspirin desensitization in asthmatic patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 111 (1):180–186

  61. Tuttle KL, Buchheit KM, Laidlaw TM, Cahill KN (2018) A retrospective analysis of mepolizumab in subjects with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract 6(3):1045–1047. https://doi.org/10.1016/j.jaip.2018.01.038

    Article  PubMed  PubMed Central  Google Scholar 

  62. Weinstein SF, Katial RK, Bardin P, Korn S, McDonald M, Garin M, Bateman ED, Hoyte FCL, Germinaro M (2018) Effects of Reslizumab on Asthma outcomes in a subgroup of eosinophilic Asthma patients with self-reported chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract 7:589–596.e3. https://doi.org/10.1016/j.jaip.2018.08.021

    Article  PubMed  Google Scholar 

  63. Phillips-Angles E, Barranco P, Lluch-Bernal M, Dominguez-Ortega J, Lopez-Carrasco V, Quirce S (2017) Aspirin tolerance in patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease following treatment with omalizumab. J Allergy Clin Immunol Pract 5(3):842–845. https://doi.org/10.1016/j.jaip.2016.12.013

    Article  PubMed  Google Scholar 

  64. Gao H, Ying S, Dai Y (2017) Pathological roles of neutrophil-mediated inflammation in Asthma and its potential for therapy as a target. J Immunol Res 2017:3743048–3743012. https://doi.org/10.1155/2017/3743048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aujla SJ, Alcorn JF (2011) T(H)17 cells in asthma and inflammation. Biochim Biophys Acta 1810(11):1066–1079. https://doi.org/10.1016/j.bbagen.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  66. Trejo Bittar HE, Yousem SA, Wenzel SE (2015) Pathobiology of severe asthma. Annu Rev Pathol 10:511–545. https://doi.org/10.1146/annurev-pathol-012414-040343

    Article  CAS  PubMed  Google Scholar 

  67. Al-Ramli W, Prefontaine D, Chouiali F, Martin JG, Olivenstein R, Lemiere C, Hamid Q (2009) T(H)17-associated cytokines (IL-17A and IL-17F) in severe asthma. J Allergy Clin Immunol 123(5):1185–1187. https://doi.org/10.1016/j.jaci.2009.02.024

    Article  CAS  PubMed  Google Scholar 

  68. Vroman H, van den Blink B, Kool M (2015) Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity? Immunobiology 220(2):254–261. https://doi.org/10.1016/j.imbio.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  69. Wark PA, Johnston SL, Moric I, Simpson JL, Hensley MJ, Gibson PG (2002) Neutrophil degranulation and cell lysis is associated with clinical severity in virus-induced asthma. Eur Respir J 19(1):68–75

    Article  CAS  Google Scholar 

  70. Manni ML, Robinson KM, Alcorn JF (2014) A tale of two cytokines: IL-17 and IL-22 in asthma and infection. Expert Rev Respir Med 8(1):25–42. https://doi.org/10.1586/17476348.2014.854167

    Article  CAS  PubMed  Google Scholar 

  71. Yu S, Kim HY, Chang YJ, DeKruyff RH, Umetsu DT (2014) Innate lymphoid cells and asthma. J Allergy Clin Immunol 133(4):943–950; quiz 951. https://doi.org/10.1016/j.jaci.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  72. Bruijnzeel PL, Uddin M, Koenderman L (2015) Targeting neutrophilic inflammation in severe neutrophilic asthma: can we target the disease-relevant neutrophil phenotype? J Leukoc Biol 98(4):549–556. https://doi.org/10.1189/jlb.3VMR1214-600RR

    Article  CAS  PubMed  Google Scholar 

  73. Durrant DM, Metzger DW (2010) Emerging roles of T helper subsets in the pathogenesis of asthma. Immunol Investig 39(4–5):526–549. https://doi.org/10.3109/08820131003615498

    Article  CAS  Google Scholar 

  74. Halwani R, Al-Muhsen S, Hamid Q (2013) T helper 17 cells in airway diseases: from laboratory bench to bedside. Chest 143(2):494–501. https://doi.org/10.1378/chest.12-0598

    Article  CAS  PubMed  Google Scholar 

  75. Wang YH, Wills-Karp M (2011) The potential role of interleukin-17 in severe asthma. Curr Allergy Asthma Rep 11(5):388–394. https://doi.org/10.1007/s11882-011-0210-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Asensi V, Valle E, Meana A, Fierer J, Celada A, Alvarez V, Paz J, Coto E, Carton JA, Maradona JA, Dieguez A, Sarasua J, Ocana MG, Arribas JM (2004) In vivo interleukin-6 protects neutrophils from apoptosis in osteomyelitis. Infect Immun 72(7):3823–3828. https://doi.org/10.1128/IAI.72.7.3823-3828.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kukielka GL, Smith CW, Manning AM, Youker KA, Michael LH, Entman ML (1995) Induction of interleukin-6 synthesis in the myocardium. Potential role in postreperfusion inflammatory injury. Circulation 92(7):1866–1875

    Article  CAS  Google Scholar 

  78. Suwa T, Hogg JC, English D, Van Eeden SF (2000) Interleukin-6 induces demargination of intravascular neutrophils and shortens their transit in marrow. Am J Physiol Heart Circ Physiol 279(6):H2954–H2960. https://doi.org/10.1152/ajpheart.2000.279.6.H2954

    Article  CAS  PubMed  Google Scholar 

  79. Essilfie AT, Horvat JC, Kim RY, Mayall JR, Pinkerton JW, Beckett EL, Starkey MR, Simpson JL, Foster PS, Gibson PG, Hansbro PM (2015) Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax 70(5):458–467. https://doi.org/10.1136/thoraxjnl-2014-206067

    Article  PubMed  Google Scholar 

  80. Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177(2):148–155. https://doi.org/10.1164/rccm.200707-1134OC

    Article  CAS  PubMed  Google Scholar 

  81. Identifier NCT03532490. Trial of Roflumilast in Asthma Management (TRIM). National Library of Medicine: ClinicalTrials.gov.

  82. Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin SL (2013) Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med 188(11):1294–1302. https://doi.org/10.1164/rccm.201212-2318OC

    Article  CAS  PubMed  Google Scholar 

  83. Identifier NCT03299686. Study to Assess the Efficacy and Safety of CJM112 in Patients With Inadequately Controlled Severe Asthma. National Library of Medicine: ClinicalTrials.gov.

  84. Shore SA (2008) Obesity and asthma: possible mechanisms. J Allergy Clin Immunol 121(5):1087–1093; quiz 1094-1085. https://doi.org/10.1016/j.jaci.2008.03.004

    Article  PubMed  Google Scholar 

  85. Naimark A, Cherniack RM (1960) Compliance of the respiratory system and its components in health and obesity. J Appl Physiol 15:377–382. https://doi.org/10.1152/jappl.1960.15.3.377

    Article  CAS  PubMed  Google Scholar 

  86. Milic-Emili J, Torchio R, D'Angelo E (2007) Closing volume: a reappraisal (1967-2007). Eur J Appl Physiol 99(6):567–583. https://doi.org/10.1007/s00421-006-0389-0

    Article  PubMed  Google Scholar 

  87. Lugogo NL, Bappanad D, Kraft M (2011) Obesity, metabolic dysregulation and oxidative stress in asthma. Biochim Biophys Acta 1810(11):1120–1126. https://doi.org/10.1016/j.bbagen.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jartti T, Saarikoski L, Jartti L, Lisinen I, Jula A, Huupponen R, Viikari J, Raitakari OT (2009) Obesity, adipokines and asthma. Allergy 64(5):770–777. https://doi.org/10.1111/j.1398-9995.2008.01872.x

    Article  CAS  PubMed  Google Scholar 

  89. Pradeepan S, Garrison G, Dixon AE (2013) Obesity in asthma: approaches to treatment. Curr Allergy Asthma Rep 13(5):434–442. https://doi.org/10.1007/s11882-013-0354-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, Wood LG (2013) Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy 43(1):36–49. https://doi.org/10.1111/cea.12004

    Article  CAS  PubMed  Google Scholar 

  91. Dixon AE, Pratley RE, Forgione PM, Kaminsky DA, Whittaker-Leclair LA, Griffes LA, Garudathri J, Raymond D, Poynter ME, Bunn JY, Irvin CG (2011) Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J allergy Clin Immunol 128 (3):508-515 e501-502. https://doi.org/10.1016/j.jaci.2011.06.009

  92. Ortega H, Albers F, Llanos-Ackert J, Bradford E, Price R, Pouliquen I, Castro M (2017) P506 impact of weight on the efficacy of mepolizumab in patients with severe eosinophilic asthma. Ann Allergy Asthma Immunol 119(5):e3–e4. https://doi.org/10.1016/j.anai.2017.09.072

    Article  Google Scholar 

  93. Bonini M, Palange P (2015) Exercise-induced bronchoconstriction: new evidence in pathogenesis, diagnosis and treatment. Asthma Res Pract 1:2. https://doi.org/10.1186/s40733-015-0004-4

    Article  PubMed  PubMed Central  Google Scholar 

  94. Anderson SD, Daviskas E (2000) The mechanism of exercise-induced asthma is. J Allergy Clin Immunol 106(3):453–459. https://doi.org/10.1067/mai.2000.109822

    Article  CAS  PubMed  Google Scholar 

  95. Hallstrand TS, Moody MW, Wurfel MM, Schwartz LB, Henderson WR Jr, Aitken ML (2005) Inflammatory basis of exercise-induced bronchoconstriction. Am J Respir Crit Care Med 172(6):679–686. https://doi.org/10.1164/rccm.200412-1667OC

    Article  PubMed  PubMed Central  Google Scholar 

  96. Anderson SD, Kippelen P (2008) Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol 122(2):225–235; quiz 236-227. https://doi.org/10.1016/j.jaci.2008.05.001

    Article  PubMed  Google Scholar 

  97. Hashimoto S, Gon Y, Matsumoto K, Takeshita I, Maruoka S, Horie T (2000) Inhalant corticosteroids inhibit hyperosmolarity-induced, and cooling and rewarming-induced interleukin-8 and RANTES production by human bronchial epithelial cells. Am J Respir Crit Care Med 162(3 Pt 1):1075–1080. https://doi.org/10.1164/ajrccm.162.3.9911099

    Article  CAS  PubMed  Google Scholar 

  98. Filipe JA, Falcao-Reis F, Castro-Correia J, Barros H (2003) Assessment of autonomic function in high level athletes by pupillometry. Auton Neurosci 104(1):66–72

    Article  Google Scholar 

  99. Kanazawa H, Asai K, Hirata K, Yoshikawa J (2002) Vascular involvement in exercise-induced airway narrowing in patients with bronchial asthma. Chest 122(1):166–170

    Article  Google Scholar 

  100. Koh YI, Choi S (2002) Blood eosinophil counts for the prediction of the severity of exercise-induced bronchospasm in asthma. Respir Med 96(2):120–125

    Article  CAS  Google Scholar 

  101. Buchvald F, Hermansen MN, Nielsen KG, Bisgaard H (2005) Exhaled nitric oxide predicts exercise-induced bronchoconstriction in asthmatic school children. Chest 128(4):1964–1967. https://doi.org/10.1378/chest.128.4.1964

    Article  CAS  PubMed  Google Scholar 

  102. Barreto M, Villa MP, Olita C, Martella S, Ciabattoni G, Montuschi P (2009) 8-Isoprostane in exhaled breath condensate and exercise-induced bronchoconstriction in asthmatic children and adolescents. Chest 135(1):66–73. https://doi.org/10.1378/chest.08-0722

    Article  PubMed  Google Scholar 

  103. Hancox RJ, Subbarao P, Kamada D, Watson RM, Hargreave FE, Inman MD (2002) Beta2-agonist tolerance and exercise-induced bronchospasm. Am J Respir Crit Care Med 165(8):1068–1070. https://doi.org/10.1164/ajrccm.165.8.200111-091bc

    Article  PubMed  Google Scholar 

  104. Leff JA, Busse WW, Pearlman D, Bronsky EA, Kemp J, Hendeles L, Dockhorn R, Kundu S, Zhang J, Seidenberg BC, Reiss TF (1998) Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N Engl J Med 339(3):147–152. https://doi.org/10.1056/NEJM199807163390302

    Article  CAS  PubMed  Google Scholar 

  105. Edelman JM, Turpin JA, Bronsky EA, Grossman J, Kemp JP, Ghannam AF, DeLucca PT, Gormley GJ, Pearlman DS (2000) Oral montelukast compared with inhaled salmeterol to prevent exercise-induced bronchoconstriction. A randomized, double-blind trial. Exercise Study Group Ann Intern Med 132(2):97–104

    CAS  Google Scholar 

  106. IdentifierNCT03327701 The Effect of Benralizumab on Exercise-induced Bronchoconstriction. National Library of Medicine: ClinicalTrials.gov.

  107. Ayres JG (1990) Late onset asthma. BMJ 300(6740):1602–1603

    Article  CAS  Google Scholar 

  108. Hirano T, Matsunaga K (2018) Late-onset asthma: current perspectives. J Asthma Allergy 11:19–27. https://doi.org/10.2147/JAA.S125948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. de Nijs SB, Venekamp LN, Bel EH (2013) Adult-onset asthma: is it really different? Eur Respir Rev 22(127):44–52. https://doi.org/10.1183/09059180.00007112

    Article  PubMed  Google Scholar 

  110. Dunn RM, Busse PJ, Wechsler ME (2018) Asthma in the elderly and late-onset adult asthma. Allergy 73(2):284–294. https://doi.org/10.1111/all.13258

    Article  CAS  PubMed  Google Scholar 

  111. Ilmarinen P, Tuomisto LE, Kankaanranta H (2015) Phenotypes, risk factors, and mechanisms of adult-onset Asthma. Mediat Inflamm 2015:514868–514819. https://doi.org/10.1155/2015/514868

    Article  CAS  Google Scholar 

  112. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, Wardlaw AJ, Pavord ID (2002) Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360(9347):1715–1721. https://doi.org/10.1016/S0140-6736(02)11679-5

    Article  PubMed  Google Scholar 

  113. Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, Wardlaw AJ, Green RH (2008) Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178(3):218–224. https://doi.org/10.1164/rccm.200711-1754OC

    Article  PubMed  PubMed Central  Google Scholar 

  114. Szczeklik A, Stevenson DD (2003) Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol 111(5):913–921 quiz 922

    Article  CAS  Google Scholar 

  115. van Veen IH, Ten Brinke A, Gauw SA, Sterk PJ, Rabe KF, Bel EH (2009) Consistency of sputum eosinophilia in difficult-to-treat asthma: a 5-year follow-up study. J allergy Clin Immunol 124 (3):615-617, 617 e611-612. doi:https://doi.org/10.1016/j.jaci.2009.06.029

  116. Kim TB, Jang AS, Kwon HS, Park JS, Chang YS, Cho SH, Choi BW, Park JW, Nam DH, Yoon HJ, Cho YJ, Moon HB, Cho YS, Park CS, Group CS (2013) Identification of asthma clusters in two independent Korean adult asthma cohorts. Eur Respir J 41(6):1308–1314. https://doi.org/10.1183/09031936.00100811

    Article  PubMed  Google Scholar 

  117. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365(12):1088–1098. https://doi.org/10.1056/NEJMoa1106469

    Article  CAS  PubMed  Google Scholar 

  118. Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade LM, Shah PL, Fiss E, Olivenstein R, Thomson NC, Niven RM, Pavord ID, Simoff M, Duhamel DR, McEvoy C, Barbers R, Ten Hacken NH, Wechsler ME, Holmes M, Phillips MJ, Erzurum S, Lunn W, Israel E, Jarjour N, Kraft M, Shargill NS, Quiring J, Berry SM, Cox G, Group AIRTS (2010) Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med 181(2):116–124. https://doi.org/10.1164/rccm.200903-0354OC

    Article  PubMed  PubMed Central  Google Scholar 

  119. Cox G, Miller JD, McWilliams A, Fitzgerald JM, Lam S (2006) Bronchial thermoplasty for asthma. Am J Respir Crit Care Med 173(9):965–969. https://doi.org/10.1164/rccm.200507-1162OC

    Article  Google Scholar 

  120. Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, Pavord ID, Mccormack D, Chaudhuri R, Miller JD, Laviolette M, Group AIRTS (2007) Asthma control during the year after bronchial thermoplasty. N Engl J Med 356(13):1327–1337. https://doi.org/10.1056/NEJMoa064707

    Article  CAS  Google Scholar 

  121. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D’Agostino R Jr, Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER, National Heart L, Blood Institute's Severe Asthma Research P (2010) Identification of asthma phenotypes using cluster analysis in the severe Asthma research program. Am J Respir Crit Care Med 181(4):315–323. https://doi.org/10.1164/rccm.200906-0896OC

    Article  PubMed  Google Scholar 

  122. Schatz M, Hsu JW, Zeiger RS, Chen W, Dorenbaum A, Chipps BE, Haselkorn T (2014) Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J Allergy Clin Immunol 133(6):1549–1556. https://doi.org/10.1016/j.jaci.2013.10.006

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Lehman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, D., Lehman, H. Asthma Phenotypes as a Guide for Current and Future Biologic Therapies. Clinic Rev Allerg Immunol 59, 160–174 (2020). https://doi.org/10.1007/s12016-019-08760-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-019-08760-x

Keywords

Navigation