Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 54, Issue 3, pp 432–445 | Cite as

Role of Mast Cells in Regulation of T Cell Responses in Experimental and Clinical Settings

  • Daniel Elieh Ali Komi
  • Korneel Grauwet
Article

Abstract

Mast cells secrete a wide spectrum of stored or newly synthesized pro-inflammatory, anti-inflammatory, and/or immunosuppressive mediators and express several costimulatory and inhibitory surface molecules. Mast cells finely tune activities of T cells, B cells, and regulatory cells and effectively contribute to the development of different T cell-associated responses by influencing their recruitment, activation, proliferation, and differentiation. The interaction between mast cells and T cells, with regard to cellular functionality and immune responses, can be assessed in both activating and inhibitory regulations. While Th2 cytokines, including IL-5 and IL-9, stimulate stem cell factor (SCF)-dependent proliferation of mast cells, Th1 cytokine IFN-γ suppresses SCF-mediated differentiation of mast cell progenitors. Mast cell mediators such as CCL5 have a role in the recruitment of CD8+ T cells to viral infection sites where their ability in clearance of viral reservoirs is needed. The capacity of mast cells in presenting antigens by classes I and II MHC molecules to CD4+ and CD8+ T cells respectively is considered one of the main antigen-dependent interactions of mast cells with T cells. Interestingly, Tregs recruit mast cells to different sites through secretion of IL-9, while the OX40L (expressed on mast cell)-OX40(expressed on T cell) interaction inhibits the extent of the mast cell degranulation. Recently, the capability of exosomes to carry regulatory receptors of the mast cell surface and their role in T cell activation has been investigated. Functional interplay between mast cells and T cell subsets has been suggested primarily by investigating their co-localization in inflamed tissues and involvement of mast cells in autoimmune diseases. In this review, the interactions of mast cells with T cells are reviewed in cell-to-cell, cytokine, and exosome categories.

Keywords

Mast cells CD4+ T cells CD8+ T cells Tregs Dendritic cells Exosome 

Abbreviations

RANKL

Receptor activator of NF-κB ligand

LTs

Leukotrienes

PGs

Prostaglandins

PAF

Platelet activating factor

MCs

Mast cells

iDCs

Immature DCs

Notes

Compliance with Ethical Standards

I hereby state that none of the coauthors and the corresponding author of this paper have a conflict of interest, and it has been prepared for publication without using any funding. Moreover, the paper does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Gri G, Frossi B, D'Inca F, Danelli L, Betto E, Mion F, Sibilano R, Pucillo C (2012) Mast cell: an emerging partner in immune interaction. Front Immunol 3:120.  https://doi.org/10.3389/fimmu.2012.00120 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14(7):478–494.  https://doi.org/10.1038/nri3690 CrossRefPubMedGoogle Scholar
  3. 3.
    Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9(11):1215–1223.  https://doi.org/10.1038/ni.f.216 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F (2012) Novel identified receptors on mast cells. Front Immunol 3:238.  https://doi.org/10.3389/fimmu.2012.00238 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Komi DEA, Rambasek T, Wohrl S (2017) Mastocytosis: from a molecular point of view. Clin Rev Allergy Immunol.  https://doi.org/10.1007/s12016-017-8619-2
  6. 6.
    Okayama Y, Kawakami T (2006) Development, migration, and survival of mast cells. Immunol Res 34(2):97–115.  https://doi.org/10.1385/ir:34:2:97 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Krystel-Whittemore M, Dileepan KN, Wood JG (2015) Mast cell: a multi-functional master cell. Front Immunol 6:620.  https://doi.org/10.3389/fimmu.2015.00620 PubMedCrossRefGoogle Scholar
  8. 8.
    Campillo-Navarro M, Chavez-Blanco AD, Wong-Baeza I, Serafin-Lopez J, Flores-Mejia R, Estrada-Parra S, Estrada-Garcia I, Chacon-Salinas R (2014) Mast cells in lung homeostasis: beyond type I hypersensitivity. Curr Respir Med Rev 10(2):115–123.  https://doi.org/10.2174/1573398x10666141024220151 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sandig H, Bulfone-Paus S (2012) TLR signaling in mast cells: common and unique features. Front Immunol 3:185.  https://doi.org/10.3389/fimmu.2012.00185 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hirahara K, Nakayama T (2016) CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol 28(4):163–171.  https://doi.org/10.1093/intimm/dxw006 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135.  https://doi.org/10.1155/2012/925135 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Caza T, Landas S (2015) Functional and phenotypic plasticity of CD4(+) T cell subsets. Biomed Res Int 2015:521957.  https://doi.org/10.1155/2015/521957 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kalesnikoff J, Galli SJ (2011) Antiinflammatory and immunosuppressive functions of mast cells. Methods in molecular biology (Clifton, NJ) 677:207–220.  https://doi.org/10.1007/978-1-60761-869-0_15 CrossRefGoogle Scholar
  14. 14.
    Nakano N, Nishiyama C, Yagita H, Koyanagi A, Ogawa H, Okumura K (2011) Notch1-mediated signaling induces MHC class II expression through activation of class II transactivator promoter III in mast cells. J Biol Chem 286(14):12042–12048.  https://doi.org/10.1074/jbc.M110.138966 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Malaviya R, Twesten NJ, Ross EA, Abraham SN, Pfeifer JD (1996) Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J Immunol (Baltimore, Md : 1950) 156(4):1490–1496Google Scholar
  16. 16.
    Gilfillan AM, Beaven MA (2011) Regulation of mast cell responses in health and disease. Crit Rev Immunol 31(6):475–529CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cardamone C, Parente R, Feo GD, Triggiani M (2016) Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol Lett 178:10–14.  https://doi.org/10.1016/j.imlet.2016.07.003 CrossRefPubMedGoogle Scholar
  18. 18.
    Valitutti S, Espinosa E (2010) Cognate interactions between mast cells and helper T lymphocytes. Self 1(2):114–122.  https://doi.org/10.4161/self.1.2.11795 CrossRefGoogle Scholar
  19. 19.
    Gaudenzio N, Espagnolle N, Mars LT, Liblau R, Valitutti S, Espinosa E (2009) Cell-cell cooperation at the T helper cell/mast cell immunological synapse. Blood 114(24):4979–4988.  https://doi.org/10.1182/blood-2009-02-202648 CrossRefPubMedGoogle Scholar
  20. 20.
    de Vries VC, Noelle RJ (2010) Mast cell mediators in tolerance. Curr Opin Immunol 22(5):643–648.  https://doi.org/10.1016/j.coi.2010.08.015 CrossRefPubMedGoogle Scholar
  21. 21.
    Hershko AY, Rivera J (2010) Mast cell and T cell communication; amplification and control of adaptive immunity. Immunol Lett 128(2):98–104.  https://doi.org/10.1016/j.imlet.2009.10.013 CrossRefPubMedGoogle Scholar
  22. 22.
    Yeatman CF 2nd, Jacobs-Helber SM, Mirmonsef P, Gillespie SR, Bouton LA, Collins HA, Sawyer ST, Shelburne CP, Ryan JJ (2000) Combined stimulation with the T helper cell type 2 cytokines interleukin (IL)-4 and IL-10 induces mouse mast cell apoptosis. J Exp Med 192(8):1093–1103CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic signalling 6(1):3–17.  https://doi.org/10.1007/s11302-009-9173-z CrossRefPubMedGoogle Scholar
  24. 24.
    Kulka M, Metcalfe DD (2005) High-resolution tracking of cell division demonstrates differential effects of TH1 and TH2 cytokines on SCF-dependent human mast cell production in vitro: correlation with apoptosis and Kit expression. Blood 105(2):592–599.  https://doi.org/10.1182/blood-2004-07-2838 CrossRefPubMedGoogle Scholar
  25. 25.
    Suurmond J, van Heemst J, van Heiningen J, Dorjee AL, Schilham MW, van der Beek FB, Huizinga TW, Schuerwegh AJ, Toes RE (2013) Communication between human mast cells and CD4(+) T cells through antigen-dependent interactions. Eur J Immunol 43(7):1758–1768.  https://doi.org/10.1002/eji.201243058 CrossRefPubMedGoogle Scholar
  26. 26.
    Kambayashi T, Laufer TM (2014) Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 14(11):719–730.  https://doi.org/10.1038/nri3754 CrossRefPubMedGoogle Scholar
  27. 27.
    Nakano N, Nishiyama C, Yagita H, Koyanagi A, Akiba H, Chiba S, Ogawa H, Okumura K (2009) Notch signaling confers antigen-presenting cell functions on mast cells. J Allergy Clin Immunol 123(1):74–81.e71.  https://doi.org/10.1016/j.jaci.2008.10.040 CrossRefPubMedGoogle Scholar
  28. 28.
    Hong GU, Kim NG, Kim TJ, Ro JY (2014) CD1d expressed in mast cell surface enhances IgE production in B cells by up-regulating CD40L expression and mediator release in allergic asthma in mice. Cell Signal 26(5):1105–1117.  https://doi.org/10.1016/j.cellsig.2014.01.029 CrossRefPubMedGoogle Scholar
  29. 29.
    Lee YK, Mukasa R, Hatton RD, Weaver CT (2009) Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 21(3):274–280.  https://doi.org/10.1016/j.coi.2009.05.021 CrossRefPubMedGoogle Scholar
  30. 30.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24(6):677–688.  https://doi.org/10.1016/j.immuni.2006.06.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Bi Y, Liu G, Yang R (2007) Th17 cell induction and immune regulatory effects. J Cell Physiol 211(2):273–278.  https://doi.org/10.1002/jcp.20973 CrossRefPubMedGoogle Scholar
  32. 32.
    Suurmond J, Habets KL (2016) Expansion of Th17 cells by human mast cells is driven by inflammasome-independent IL-1beta. J Immunol 197(11):4473–4481CrossRefPubMedGoogle Scholar
  33. 33.
    Ishii N, Takahashi T, Soroosh P, Sugamura K (2010) OX40-OX40 ligand interaction in T-cell-mediated immunity and immunopathology. Adv Immunol 105:63–98.  https://doi.org/10.1016/s0065-2776(10)05003-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Cho KA, Suh JW, Sohn JH, Park JW, Lee H, Kang JL, Woo SY, Cho YJ (2012) IL-33 induces Th17-mediated airway inflammation via mast cells in ovalbumin-challenged mice. Am J Physiol Lung Cell mol physiol 302(4):L429–L440.  https://doi.org/10.1152/ajplung.00252.2011 CrossRefPubMedGoogle Scholar
  35. 35.
    Carroll-Portillo A, Cannon JL, te Riet J, Holmes A, Kawakami Y, Kawakami T, Cambi A, Lidke DS (2015) Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation. J Cell Biol 210(5):851–864.  https://doi.org/10.1083/jcb.201412074 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41(7):1883–1893.  https://doi.org/10.1002/eji.201040994 CrossRefPubMedGoogle Scholar
  37. 37.
    Liu ZQ, Song JP, Liu X, Jiang J, Chen X, Yang L, Hu T, Zheng PY, Liu ZG, Yang PC (2014) Mast cell-derived serine proteinase regulates T helper 2 polarization. Sci Rep 4:4649.  https://doi.org/10.1038/srep04649 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shelburne CP, Ryan JJ (2001) The role of Th2 cytokines in mast cell homeostasis. Immunol Rev 179:82–93CrossRefPubMedGoogle Scholar
  39. 39.
    Bailey DP, Kashyap M, Mirmonsef P, Bouton LA, Domen J, Zhu J, Dessypris EN, Ryan JJ (2004) Interleukin-4 elicits apoptosis of developing mast cells via a Stat6-dependent mitochondrial pathway. Exp Hematol 32(1):52–59CrossRefPubMedGoogle Scholar
  40. 40.
    Yanagida M, Fukamachi H, Ohgami K, Kuwaki T, Ishii H, Uzumaki H, Amano K, Tokiwa T, Mitsui H, Saito H, Iikura Y, Ishizaka T, Nakahata T (1995) Effects of T-helper 2-type cytokines, interleukin-3 (IL-3), IL-4, IL-5, and IL-6 on the survival of cultured human mast cells. Blood 86(10):3705–3714PubMedGoogle Scholar
  41. 41.
    Hu ZQ, Zhao WH, Shimamura T, Galli SJ (2006) Interleukin-4-triggered, STAT6-dependent production of a factor that induces mouse mast cell apoptosis. Eur J Immunol 36(5):1275–1284.  https://doi.org/10.1002/eji.200526275 CrossRefPubMedGoogle Scholar
  42. 42.
    Metz M, Maurer M (2007) Mast cells—key effector cells in immune responses. Trends Immunol 28(5):234–241.  https://doi.org/10.1016/j.it.2007.03.003 CrossRefPubMedGoogle Scholar
  43. 43.
    McLachlan JB, Hart JP, Pizzo SV, Shelburne CP, Staats HF, Gunn MD, Abraham SN (2003) Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat Immunol 4(12):1199–1205.  https://doi.org/10.1038/ni1005 CrossRefPubMedGoogle Scholar
  44. 44.
    Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol(Baltimore, Md : 1950) 176(4):2238–2248Google Scholar
  45. 45.
    Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279.  https://doi.org/10.1182/blood-2008-03-147033 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ (2011) The significant role of mast cells in cancer. Cancer Metastasis Rev 30(1):45–60.  https://doi.org/10.1007/s10555-011-9286-z CrossRefPubMedGoogle Scholar
  47. 47.
    Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8(6):478–486.  https://doi.org/10.1038/nri2327 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ (2009) Mast cells as regulators of adaptive immunity to tumours. Clin Exp Immunol 155(2):140–146.  https://doi.org/10.1111/j.1365-2249.2008.03840.x CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ganeshan K, Bryce PJ (2012) Regulatory T cells enhance mast cell production of IL-6 via surface-bound TGF-beta. J Immunol (Baltimore, Md : 1950) 188(2):594–603.  https://doi.org/10.4049/jimmunol.1102389 CrossRefGoogle Scholar
  50. 50.
    Frossi B, Gri G, Tripodo C, Pucillo C (2010) Exploring a regulatory role for mast cells: ‘MCregs’? Trends Immunol 31(3):97–102.  https://doi.org/10.1016/j.it.2009.12.007 CrossRefPubMedGoogle Scholar
  51. 51.
    Xu Y, Chen G (2015) Mast cell and autoimmune diseases. Mediat Inflamm 2015:246126.  https://doi.org/10.1155/2015/246126 CrossRefGoogle Scholar
  52. 52.
    Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B, Pedotti R, Pucillo CE, Colombo MP (2009) Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114(13):2639–2648.  https://doi.org/10.1182/blood-2009-05-220004 CrossRefPubMedGoogle Scholar
  53. 53.
    Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, Huang B (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS One 5(1):e8922.  https://doi.org/10.1371/journal.pone.0008922 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Groot Kormelink T, Abudukelimu A, Redegeld FA (2009) Mast cells as target in cancer therapy. Curr Pharm Des 15(16):1868–1878CrossRefPubMedGoogle Scholar
  55. 55.
    Christy AL, Brown MA (2007) The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol (Baltimore, Md : 1950) 179(5):2673–2679CrossRefGoogle Scholar
  56. 56.
    Walker ME, Hatfield JK, Brown MA (2012) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta 1822(1):57–65.  https://doi.org/10.1016/j.bbadis.2011.02.009 CrossRefPubMedGoogle Scholar
  57. 57.
    Akdis CA, Akdis M (2014) Mechanisms of immune tolerance to allergens: role of IL-10 and Tregs. J Clin Invest 124(11):4678–4680.  https://doi.org/10.1172/jci78891 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Palomares O, Martin-Fontecha M, Lauener R (2014) Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-beta. Genes Immun 15(8):511–520.  https://doi.org/10.1038/gene.2014.45
  59. 59.
    Bulfone-Paus S, Bahri R (2015) Mast cells as regulators of T cell responses. Front Immunol 6:394.  https://doi.org/10.3389/fimmu.2015.00394 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    McAlpine SM, Issekutz TB, Marshall JS (2012) Virus stimulation of human mast cells results in the recruitment of CD56(+) T cells by a mechanism dependent on CCR5 ligands. FASEB J : Off Publ Fed Am Soc Exp Biol 26(3):1280–1289.  https://doi.org/10.1096/fj.11-188979 CrossRefGoogle Scholar
  61. 61.
    Podlech J, Ebert S, Becker M, Reddehase MJ, Stassen M, Lemmermann NA (2015) Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection. Med Microbiol Immunol 204(3):327–334.  https://doi.org/10.1007/s00430-015-0386-1 CrossRefPubMedGoogle Scholar
  62. 62.
    Ebert S, Becker M, Lemmermann NA, Buttner JK, Michel A, Taube C, Podlech J, Bohm V, Freitag K, Thomas D, Holtappels R, Reddehase MJ, Stassen M (2014) Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog 10(4):e1004100.  https://doi.org/10.1371/journal.ppat.1004100 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ott VL, Cambier JC, Kappler J, Marrack P, Swanson BJ (2003) Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat Immunol 4(10):974–981.  https://doi.org/10.1038/ni971 CrossRefPubMedGoogle Scholar
  64. 64.
    Stelekati E, Bahri R, D'Orlando O, Orinska Z, Mittrucker HW, Langenhaun R, Glatzel M, Bollinger A, Paus R, Bulfone-Paus S (2009) Mast cell-mediated antigen presentation regulates CD8+ T cell effector functions. Immunity 31(4):665–676.  https://doi.org/10.1016/j.immuni.2009.08.022 CrossRefPubMedGoogle Scholar
  65. 65.
    Li YS, Luo W, Zhu SA, Lei GH (2017) T cells in osteoarthritis: alterations and beyond. Front Immunol 8:356.  https://doi.org/10.3389/fimmu.2017.00356 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Woolley DE, Tetlow LC (2000) Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res 2(1):65–74.  https://doi.org/10.1186/ar70 CrossRefPubMedGoogle Scholar
  67. 67.
    Rivellese F, Nerviani A, Rossi FW, Marone G, Matucci-Cerinic M, de Paulis A, Pitzalis C (2017) Mast cells in rheumatoid arthritis: friends or foes? Autoimmun Rev 16(6):557–563.  https://doi.org/10.1016/j.autrev.2017.04.001 CrossRefPubMedGoogle Scholar
  68. 68.
    Schuerwegh AJ, Dombrecht EJ, Stevens WJ, Van Offel JF, Bridts CH, De Clerck LS (2003) Influence of pro-inflammatory (IL-1 alpha, IL-6, TNF-alpha, IFN-gamma) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthr Cartil 11(9):681–687CrossRefPubMedGoogle Scholar
  69. 69.
    Frenzel L, Hermine O (2013) Mast cells and inflammation. Joint, bone, spine : revue du rhumatisme 80 (2):141–145. doi: https://doi.org/10.1016/j.jbspin.2012.08.013
  70. 70.
    Shaik-Dasthagirisaheb YB, Conti P (2016) The role of mast cells in Alzheimer’s disease. Adv Clin Exp Med : Off Organ Wroclaw Med Univ 25(4):781–787.  10.17219/acem/61914 CrossRefGoogle Scholar
  71. 71.
    Folch J, Petrov D, Ettcheto M, Pedros I, Abad S, Beas-Zarate C, Lazarowski A, Marin M, Olloquequi J, Auladell C, Camins A (2015) Masitinib for the treatment of mild to moderate Alzheimer's disease. Expert Rev Neurother 15(6):587–596.  https://doi.org/10.1586/14737175.2015.1045419 CrossRefPubMedGoogle Scholar
  72. 72.
    Xu D, Jiang HR, Kewin P, Li Y, Mu R, Fraser AR, Pitman N, Kurowska-Stolarska M, McKenzie AN, McInnes IB, Liew FY (2008) IL-33 exacerbates antigen-induced arthritis by activating mast cells. Proc Natl Acad Sci U S A 105(31):10913–10918.  https://doi.org/10.1073/pnas.0801898105 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Saluja R, Kumar A, Jain M, Goel SK, Jain A (2017) Role of Sphingosine-1-phosphate in mast cell functions and asthma and its regulation by non-coding RNA. Front Immunol 8:587.  https://doi.org/10.3389/fimmu.2017.00587 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Cahill KN, Katz HR, Cui J, Lai J, Kazani S, Crosby-Thompson A, Garofalo D, Castro M, Jarjour N, DiMango E, Erzurum S, Trevor JL, Shenoy K, Chinchilli VM, Wechsler ME, Laidlaw TM, Boyce JA, Israel E (2017) KIT inhibition by imatinib in patients with severe refractory asthma. N Engl J Med 376(20):1911–1920.  https://doi.org/10.1056/NEJMoa1613125 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Franceschini B, Ceva-Grimaldi G, Russo C, Dioguardi N, Grizzi F (2006) The complex functions of mast cells in chronic human liver diseases. Dig Dis Sci 51(12):2248–2256.  https://doi.org/10.1007/s10620-006-9082-8 CrossRefPubMedGoogle Scholar
  76. 76.
    Bischoff SC (2016) Mast cells in gastrointestinal disorders. Eur J Pharmacol 778:139–145.  https://doi.org/10.1016/j.ejphar.2016.02.018 CrossRefPubMedGoogle Scholar
  77. 77.
    Boeckxstaens G (2015) Mast cells and inflammatory bowel disease. Curr Opin Pharmacol 25:45–49.  https://doi.org/10.1016/j.coph.2015.11.005 CrossRefPubMedGoogle Scholar
  78. 78.
    Gan PY, O'Sullivan KM, Ooi JD, Alikhan MA, Odobasic D, Summers SA, Kitching AR, Holdsworth SR (2016) Mast cell stabilization ameliorates autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol : JASN 27(5):1321–1333.  https://doi.org/10.1681/asn.2014090906 CrossRefPubMedGoogle Scholar
  79. 79.
    Elieh-Ali-Komi D, Cao Y (2017) Role of mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Rev Allergy Immunol 52(3):436–445.  https://doi.org/10.1007/s12016-016-8595-y CrossRefPubMedGoogle Scholar
  80. 80.
    Kolkhir P, Church MK, Weller K, Metz M, Schmetzer O, Maurer M (2017) Autoimmune chronic spontaneous urticaria: what we know and what we do not know. J Allergy Clin Immunol 139(6):1772–1781.e1771.  https://doi.org/10.1016/j.jaci.2016.08.050 CrossRefPubMedGoogle Scholar
  81. 81.
    Rojanapremsuk T, Kasprowicz S, Schafer E, Story R, Clarke MS, Walls T, Snyder V, Gleason BC, Thomas AB, Cibull T (2015) Clinicopathologic findings in (anti-FcepsilonR1alpha) autoimmune-related chronic urticaria. J Cutan Pathol 42(5):329–332.  https://doi.org/10.1111/cup.12471 CrossRefPubMedGoogle Scholar
  82. 82.
    Zebrowska A, Wagrowska-Danilewicz M (2014) Mediators of mast cells in bullous pemphigoid and dermatitis. Herpetiformis 2014:936545.  https://doi.org/10.1155/2014/936545 CrossRefGoogle Scholar
  83. 83.
    Chen R, Ning G, Zhao ML, Fleming MG, Diaz LA, Werb Z, Liu Z (2001) Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J Clin Invest 108(8):1151–1158.  https://doi.org/10.1172/jci11494 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ujiie H, Nishie W, Shimizu H (2012) Pathogenesis of bullous pemphigoid. Immunol Allergy Clin N Am 32(2):207–215, v.  https://doi.org/10.1016/j.iac.2012.04.001 CrossRefGoogle Scholar
  85. 85.
    Betto E, Usuelli V, Mandelli A, Badami E, Sorini C, Capolla S, Danelli L, Frossi B, Guarnotta C, Ingrao S, Tripodo C, Pucillo C, Gri G, Falcone M (2017) Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype. Clin Immunol (Orlando, Fla) 178:29–38.  https://doi.org/10.1016/j.clim.2015.12.013 CrossRefGoogle Scholar
  86. 86.
    Conti P, Kempuraj D (2016) Important role of mast cells in multiple sclerosis. Mult sclerosis and Relat Disord 5:77–80.  https://doi.org/10.1016/j.msard.2015.11.005 CrossRefGoogle Scholar
  87. 87.
    Kawikova I, Askenase PW (2015) Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res 1617:63–71.  https://doi.org/10.1016/j.brainres.2014.09.070 CrossRefPubMedGoogle Scholar
  88. 88.
    Carroll-Portillo A, Surviladze Z, Cambi A, Lidke DS, Wilson BS (2012) Mast cell synapses and exosomes: membrane contacts for information exchange. Front Immunol 3:46.  https://doi.org/10.3389/fimmu.2012.00046 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic (Copenhagen, Denmark) 11(1):110–122.  https://doi.org/10.1111/j.1600-0854.2009.01006.x CrossRefPubMedCentralGoogle Scholar
  90. 90.
    Li F, Wang Y, Lin L, Wang J, Xiao H, Li J, Peng X, Dai H, Li L (2016) Mast cell-derived exosomes promote Th2 cell differentiation via OX40L-OX40 ligation. J Immunol Res 2016:3623898.  https://doi.org/10.1155/2016/3623898 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Grimbaldeston MA, Metz M, Yu M, Tsai M, Galli SJ (2006) Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Curr Opin Immunol 18(6):751–760.  https://doi.org/10.1016/j.coi.2006.09.011 CrossRefPubMedGoogle Scholar
  92. 92.
    Hong GU, Lim JY, Kim NG, Shin JH, Ro JY (2015) IgE and IgA produced by OX40-OX40L or CD40-CD40L interaction in B cells-mast cells re-activate FcepsilonRI or FcalphaRI on mast cells in mouse allergic asthma. Eur J Pharmacol 754:199–210.  https://doi.org/10.1016/j.ejphar.2015.02.023 CrossRefPubMedGoogle Scholar
  93. 93.
    Hong GU, Park BS, Park JW, Kim SY, Ro JY (2013) IgE production in CD40/CD40L cross-talk of Band mast cells and mediator release via TGase 2 in mouse allergic asthma. Cell Signal 25(6):1514–1525.  https://doi.org/10.1016/j.cellsig.2013.03.010
  94. 94.
    Mekori YA, Hershko AY (2012) T cell-mediated modulation of mast cell function: heterotypic adhesion-induced stimulatory or inhibitory effects. Front Immunol 3:6.  https://doi.org/10.3389/fimmu.2012.00006 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mekori YA, Hershko AY, Frossi B, Mion F, Pucillo CE (2016) Integrating innate and adaptive immune cells: mast cells as crossroads between regulatory and effector B and T cells. Eur J Pharmacol 778:84–89.  https://doi.org/10.1016/j.ejphar.2015.03.087 CrossRefPubMedGoogle Scholar
  96. 96.
    Gong J, Yang NS, Croft M, Weng IC, Sun L, Liu FT, Chen SS (2010) The antigen presentation function of bone marrow-derived mast cells is spatiotemporally restricted to a subset expressing high levels of cell surface FcepsilonRI and MHC II. BMC Immunol 11:34.  https://doi.org/10.1186/1471-2172-11-34 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Shefler I, Mekori YA, Mor A (2008) Stimulation of human mast cells by activated T cells leads to N-Ras activation through Ras guanine nucleotide releasing protein 1. J Allergy Clin Immunol 122(6):1222–1225.  https://doi.org/10.1016/j.jaci.2008.07.024 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Immunology Research CenterTabriz University of Medical SciencesTabrizIran
  2. 2.Department of ImmunologyTabriz University of Medical SciencesTabrizIran
  3. 3.Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations