Skip to main content

Advertisement

Log in

Geoepidemiology and Immunologic Features of Autoinflammatory Diseases: a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The knowledge on systemic autoinflammatory disorders (SAID) is expanding rapidly and new signalling pathways are being decrypted. The concept of autoinflammation has been proposed since 1999, to define a group of diseases with abnormal innate immunity activation. Since then, more than 30 monogenic SAID have been described. In this review, we first describe inflammasomopathies and SAID related to the interleukin-1 pathway. Recent insights into the pathogenesis of familial Mediterranean fever and the function of Pyrin are detailed. In addition, complex or polygenic SAID, such as Still’s disease or PFAPA syndrome, are also discussed. Then, major players driving autoinflammation, such as type-1 interferonopathies (including the recently described haploinsuffiency in A20 and otulipenia), TNF-associated periodic syndromes, defects in ubiquitination, and SAID with overlapping features of autoimmunity or immunodeficiency. Discoveries of the pathogenic role of mosaicism, intronic defects coupled to the likelihood to identify digenic or polygenic diseases are providing new challenges for physicians and geneticists. This comprehensive review depicts the various SAID, presenting them according to their predominant pathophysiological mechanism, with a particular emphasis on recent findings. Epidemiologic data are also presented. Finally, we propose a practical diagnostic approach to the most common monogenic SAID, based on the most characteristic clinical presentation of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25–31. doi:10.1038/ng0997-25

    Article  Google Scholar 

  2. The International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807

  3. Xu H, Yang J, Gao W, Li L, Li P, Zhang L et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513:237–241. doi:10.1038/nature13449

    Article  PubMed  CAS  Google Scholar 

  4. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144

    Article  PubMed  CAS  Google Scholar 

  5. Masters SL, Simon A, Aksentijevich I, Kastner DL (2009) Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu rev Immunol 27:621–668. doi:10.1146/annurev.immunol.25.022106.141627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. doi:10.1038/nature04516

    Article  PubMed  CAS  Google Scholar 

  7. McGonagle D, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS med 3:e297. doi:10.1371/journal.pmed.0030297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Peckham D, Scambler T, Savic S, McDermott MF (2017) The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol 241:123–139. doi:10.1002/path.4812

    Article  PubMed  CAS  Google Scholar 

  9. Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550. doi:10.1146/annurev.immunol.021908.132612

    Article  PubMed  CAS  Google Scholar 

  10. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  11. Heller H, Sohar E, Pras M (1961) Ethnic distribution and amyloidosis in familial Mediterranean fever (FMF). Pathol Microbiol (Basel) 24:718–723

    CAS  Google Scholar 

  12. Cakır N, Pamuk ÖN, Derviş E, Imeryüz N, Uslu H, Benian Ö et al (2012) The prevalences of some rheumatic diseases in western Turkey: Havsa study. Rheumatol Int 32:895–908. doi:10.1007/s00296-010-1699-4

    Article  PubMed  Google Scholar 

  13. Kisacik B, Yildirim B, Tasliyurt T, Ozyurt H, Ozyurt B, Yuce S et al (2009) Increased frequency of familial Mediterranean fever in northern Turkey: a population-based study. Rheumatol Int 29:1307–1309. doi:10.1007/s00296-009-0849-z

    Article  PubMed  Google Scholar 

  14. Sarkisian T, Ajrapetian H, Beglarian A, Shahsuvarian G, Egiazarian A (2008) Familial Mediterranean fever in Armenian population. Georgian Med News 156:105–111

    Google Scholar 

  15. Samuels J, Aksentijevich I, Torosyan Y, Centola M, Deng Z, Sood R et al (1998) Familial Mediterranean fever at the millennium. Clinical spectrum, ancient mutations, and a survey of 100 American referrals to the National Institutes of Health. Medicine (Baltimore) 77:268–297

    Article  CAS  Google Scholar 

  16. Deltas CC, Mean R, Rossou E, Costi C, Koupepidou P, Hadjiyanni I et al (2002) Familial Mediterranean fever (FMF) mutations occur frequently in the Greek-Cypriot population of Cyprus. Genet Test 6:15–21. doi:10.1089/109065702760093861

    Article  PubMed  CAS  Google Scholar 

  17. La Regina M, Nucera G, Diaco M, Procopio A, Gasbarrini G, Notarnicola C et al (2003) Familial Mediterranean fever is no longer a rare disease in Italy. Eur J hum Genet EJHG 11:50–56. doi:10.1038/sj.ejhg.5200916

    Article  PubMed  Google Scholar 

  18. Toplak N, Dolezalovà P, Constantin T, Sedivà A, Pašić S, Cižnar P et al (2010) Periodic fever syndromes in eastern and central European countries: results of a pediatric multinational survey. Pediatr Rheumatol Online J 8:29. doi:10.1186/1546-0096-8-29

    Article  PubMed  PubMed Central  Google Scholar 

  19. Migita K, Izumi Y, Jiuchi Y, Iwanaga N, Kawahara C, Agematsu K et al (2016) Familial Mediterranean fever is no longer a rare disease in Japan. Arthritis res Ther 18:175. doi:10.1186/s13075-016-1071-5

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sohar E, Gafni J, Pras M, Heller H (1967) Familial Mediterranean fever. A survey of 470 cases and review of the literature. Am J med 43:227–253

    Article  PubMed  CAS  Google Scholar 

  21. Livneh A, Langevitz P, Zemer D, Zaks N, Kees S, Lidar T et al (1997) Criteria for the diagnosis of familial Mediterranean fever. Arthritis Rheum 40:1879–1885. doi:10.1002/1529-0131(199710)40:10<1879::AID-ART23>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  22. Berkun Y, Eisenstein EM (2014) Diagnostic criteria of familial Mediterranean fever. Autoimmun Rev 13:388–390. doi:10.1016/j.autrev.2014.01.045

    Article  PubMed  CAS  Google Scholar 

  23. Federici S, Sormani MP, Ozen S, Lachmann HJ, Amaryan G, Woo P et al (2015) Evidence-based provisional clinical classification criteria for autoinflammatory periodic fevers. Ann Rheum Dis 74:799–805. doi:10.1136/annrheumdis-2014-206580

    Article  PubMed  Google Scholar 

  24. Chae JJ, Cho Y-H, Lee G-S, Cheng J, Liu PP, Feigenbaum L et al (2011) Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 34:755–768. doi:10.1016/j.immuni.2011.02.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Booty MG, Chae JJ, Masters SL, Remmers EF, Barham B, Le JM et al (2009) Familial Mediterranean fever with a single MEFV mutation: where is the second hit? Arthritis Rheum 60:1851–1861. doi:10.1002/art.24569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Touitou I (2001) The spectrum of familial Mediterranean fever (FMF) mutations. Eur J hum Genet EJHG 9:473–483. doi:10.1038/sj.ejhg.5200658

    Article  PubMed  CAS  Google Scholar 

  27. Tchernitchko DO, Gérard-Blanluet M, Legendre M, Cazeneuve C, Grateau G, Amselem S (2006) Intrafamilial segregation analysis of the p.E148Q MEFV allele in familial Mediterranean fever. Ann Rheum Dis 65:1154–1157. doi:10.1136/ard.2005.048124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP et al (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604

    Article  PubMed  CAS  Google Scholar 

  29. Federici S, Calcagno G, Finetti M, Gallizzi R, Meini A, Vitale A et al (2012) Clinical impact of MEFV mutations in children with periodic fever in a prevalent western European Caucasian population. Ann Rheum dis 71:1961–1965. doi:10.1136/annrheumdis-2011-200977

    Article  PubMed  Google Scholar 

  30. Omenetti A, Carta S, Delfino L, Martini A, Gattorno M, Rubartelli A (2014) Increased NLRP3-dependent interleukin 1β secretion in patients with familial Mediterranean fever: correlation with MEFV genotype. Ann Rheum Dis 73:462–469. doi:10.1136/annrheumdis-2012-202774

    Article  PubMed  CAS  Google Scholar 

  31. Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17:914–921. doi:10.1038/ni.3457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ et al (2006) The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci U S a 103:9982–9987. doi:10.1073/pnas.0602081103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA et al (2016) Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl med 8:332ra45. doi:10.1126/scitranslmed.aaf1471

    Article  PubMed  CAS  Google Scholar 

  34. Van Gorp H, Saavedra PHV, de Vasconcelos NM, Van Opdenbosch N, Vande Walle L, Matusiak M et al (2016) Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in pyrin inflammasome activation. Proc Natl Acad Sci U S A 113:14384–14389. doi:10.1073/pnas.1613156113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kim ML, Chae JJ, Park YH, De Nardo D, Stirzaker RA, Ko H-J et al (2015) Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1β. J Exp Med 212:927–938. doi:10.1084/jem.20142384

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gao W, Yang J, Liu W, Wang Y, Shao F (2016) Site-specific phosphorylation and microtubule dynamics control pyrin inflammasome activation. Proc Natl Acad Sci U S a 113:E4857–E4866. doi:10.1073/pnas.1601700113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P, Kastner DL et al (2016) The Yersinia virulence factor YopM hijacks host kinases to inhibit type III effector-triggered activation of the pyrin inflammasome. Cell Host Microbe 20:296–306. doi:10.1016/j.chom.2016.07.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ratner D, Orning MPA, Proulx MK, Wang D, Gavrilin MA, Wewers MD et al (2016) The Yersinia pestis effector YopM inhibits pyrin inflammasome activation. PLoS Pathog 12:e1006035. doi:10.1371/journal.ppat.1006035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schaner P, Richards N, Wadhwa A, Aksentijevich I, Kastner D, Tucker P et al (2001) Episodic evolution of pyrin in primates: human mutations recapitulate ancestral amino acid states. Nat Genet 27:318–321. doi:10.1038/85893

    Article  PubMed  CAS  Google Scholar 

  40. Houten SM, Kuis W, Duran M, de Koning TJ, van Royen-Kerkhof A, Romeijn GJ et al (1999) Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Genet 22:175–177. doi:10.1038/9691

    Article  PubMed  CAS  Google Scholar 

  41. Gershoni-Baruch R, Brik R, Zacks N, Shinawi M, Lidar M, Livneh A (2003) The contribution of genotypes at the MEFV and SAA1 loci to amyloidosis and disease severity in patients with familial Mediterranean fever. Arthritis Rheum 48:1149–1155. doi:10.1002/art.10944

    Article  PubMed  Google Scholar 

  42. Vuch J, Marcuzzi A, Bianco AM, Tommasini A, Zanin V, Crovella S (2013) Evolutionary hypothesis of the mevalonate kinase deficiency. Med Hypotheses 80:67–69. doi:10.1016/j.mehy.2012.10.016

    Article  PubMed  CAS  Google Scholar 

  43. van der Hilst JCH, Bodar EJ, Barron KS, Frenkel J, Drenth JPH, van der Meer JWM et al (2008) Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore) 87:301–310. doi:10.1097/MD.0b013e318190cfb7

    Article  CAS  Google Scholar 

  44. Zhang S (2016) Natural history of mevalonate kinase deficiency: a literature review. Pediatr Rheumatol Online J 14:30. doi:10.1186/s12969-016-0091-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lainka E, Neudorf U, Lohse P, Timmann C, Bielak M, Stojanov S et al (2012) Incidence and clinical features of hyperimmunoglobulinemia D and periodic fever syndrome (HIDS) and spectrum of mevalonate kinase (MVK) mutations in German children. Rheumatol Int 32:3253–3260. doi:10.1007/s00296-011-2180-8

    Article  PubMed  CAS  Google Scholar 

  46. Prieur AM, Griscelli C (1983) Nosologic aspects of systemic forms of very early onset juvenile arthritis. Apropos of 17 cases. Ann Pediatr (Paris) 30:565–569

    CAS  Google Scholar 

  47. Galeotti C, Georgin-Lavialle S, Sarrabay G, Touitou I, Koné-Paut I (2016) Mevalonate kinase deficiency in 2016. Rev Med Interne. doi:10.1016/j.revmed.2016.08.019

  48. Lindor NM, Arsenault TM, Solomon H, Seidman CE, McEvoy MT (1997) A new autosomal dominant disorder of pyogenic sterile arthritis, pyoderma gangrenosum, and acne: PAPA syndrome. Mayo Clin Proc 72:611–615. doi:10.1016/S0025-6196(11)63565-9

    Article  PubMed  CAS  Google Scholar 

  49. Yang H, Reinherz EL (2006) CD2BP1 modulates CD2-dependent T cell activation via linkage to protein tyrosine phosphatase (PTP)-PEST. J Immunol Baltim md 1950 176:5898–5907

    CAS  Google Scholar 

  50. Braun-Falco M, Kovnerystyy O, Lohse P, Ruzicka T (2012) Pyoderma gangrenosum, acne, and suppurative hidradenitis (PASH)--a new autoinflammatory syndrome distinct from PAPA syndrome. J Am Acad Dermatol 66:409–415. doi:10.1016/j.jaad.2010.12.025

    Article  PubMed  Google Scholar 

  51. Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA et al (2003) Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S a 100:13501–13506. doi:10.1073/pnas.2135380100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yu J-W, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L et al (2007) Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 28:214–227. doi:10.1016/j.molcel.2007.08.029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Holzinger D, Roth J (2016) Alarming consequences - autoinflammatory disease spectrum due to mutations in proline-serine-threonine phosphatase-interacting protein 1. Curr Opin Rheumatol 28:550–559. doi:10.1097/BOR.0000000000000314

    Article  PubMed  CAS  Google Scholar 

  54. Holzinger D, Fassl SK, de Jager W, Lohse P, Röhrig UF, Gattorno M et al (2015) Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol 136:1337–1345. doi:10.1016/j.jaci.2015.04.016

    Article  PubMed  CAS  Google Scholar 

  55. Leuenberger M, Berner J, Di Lucca J, Fischer L, Kaparos N, Conrad C et al (2016) PASS syndrome: an IL-1-driven autoinflammatory disease. Dermatol Basel Switz 232:254–258. doi:10.1159/000443648

    Article  CAS  Google Scholar 

  56. Standing ASI, Malinova D, Hong Y, Record J, Moulding D, Blundell MP et al (2017) Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp med 214:59–71. doi:10.1084/jem.20161228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305. doi:10.1126/science.1071059

    Article  PubMed  CAS  Google Scholar 

  58. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat rev Microbiol 7:99–109. doi:10.1038/nrmicro2070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jamilloux Y, Henry T (2013) The inflammasomes: platforms of innate immunity. Médecine Sci MS 29:975–984. doi:10.1051/medsci/20132911013

    Article  PubMed  Google Scholar 

  60. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305. doi:10.1038/ng756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mehr S, Allen R, Boros C, Adib N, Kakakios A, Turner PJ et al (2016) Cryopyrin-associated periodic syndrome in Australian children and adults: epidemiological, clinical and treatment characteristics. J Paediatr Child Health 52:889–895. doi:10.1111/jpc.13270

    Article  PubMed  Google Scholar 

  62. Cuisset L, Jeru I, Dumont B, Fabre A, Cochet E, Le Bozec J et al (2011) Mutations in the autoinflammatory cryopyrin-associated periodic syndrome gene: epidemiological study and lessons from eight years of genetic analysis in France. Ann Rheum Dis 70:495–499. doi:10.1136/ard.2010.138420

    Article  PubMed  CAS  Google Scholar 

  63. Lainka E, Neudorf U, Lohse P, Timmann C, Bielak M, Stojanov S et al (2010) Analysis of cryopyrin-associated periodic syndromes (CAPS) in German children: epidemiological, clinical and genetic characteristics. Klin Padiatr 222:356–361. doi:10.1055/s-0030-1265181

    Article  PubMed  CAS  Google Scholar 

  64. Tanaka N, Izawa K, Saito MK, Sakuma M, Oshima K, Ohara O et al (2011) High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum 63:3625–3632. doi:10.1002/art.30512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Levy R, Gérard L, Kuemmerle-Deschner J, Lachmann HJ, Koné-Paut I, Cantarini L et al (2015) Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever registry. Ann Rheum Dis 74:2043–2049. doi:10.1136/annrheumdis-2013-204991

    Article  PubMed  CAS  Google Scholar 

  66. Rowczenio DM, Trojer H, Russell T, Baginska A, Lane T, Stewart NM et al (2013) Clinical characteristics in subjects with NLRP3 V198M diagnosed at a single UK center and a review of the literature. Arthritis res Ther 15:R30. doi:10.1186/ar4171

    Article  PubMed  PubMed Central  Google Scholar 

  67. Goldbach-Mansky R, Dailey NJ, Canna SW, Gelabert A, Jones J, Rubin BI et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355:581–592. doi:10.1056/NEJMoa055137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Goldbach-Mansky R (2009) Blocking interleukin-1 in rheumatic diseases. Ann N Y Acad Sci 1182:111–123. doi:10.1111/j.1749-6632.2009.05159.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215. doi:10.1038/nri2725

    Article  PubMed  CAS  Google Scholar 

  70. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu rev Immunol 27:229–265. doi:10.1146/annurev.immunol.021908.132715

    Article  PubMed  CAS  Google Scholar 

  71. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589. doi:10.1038/sj.cdd.4402195

    Article  PubMed  CAS  Google Scholar 

  72. Baroja-Mazo A, Martín-Sánchez F, Gomez AI, Martínez CM, Amores-Iniesta J, Compan V et al (2014) The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15:738–748. doi:10.1038/ni.2919

    Article  PubMed  CAS  Google Scholar 

  73. Hoffman HM, Broderick L (2017) Editorial: it just takes one: somatic mosaicism in autoinflammatory disease. Arthritis Rheumatol Hoboken NJ 69:253–256. doi:10.1002/art.39961

    Article  Google Scholar 

  74. Nakagawa K, Gonzalez-Roca E, Souto A, Kawai T, Umebayashi H, Campistol JM et al (2015) Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann Rheum Dis 74:603–610. doi:10.1136/annrheumdis-2013-204361

    Article  PubMed  CAS  Google Scholar 

  75. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146. doi:10.1038/ng.3089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139. doi:10.1038/ng.3066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Volker-Touw CML, de Koning HD, Giltay JC, de Kovel CGF, van Kempen TS, Oberndorff KMEJ et al (2017) Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol 176:244–248. doi:10.1111/bjd.14757

    Article  PubMed  CAS  Google Scholar 

  78. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K (2014) An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med 211:2385–2396. doi:10.1084/jem.20141091

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kawasaki Y, Oda H, Ito J, Niwa A, Tanaka T, Hijikata A et al (2017) Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol Hoboken NJ 69:447–459. doi:10.1002/art.39960

    Article  CAS  Google Scholar 

  80. Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J et al (2016) Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. doi:10.1016/j.jaci.2016.10.022

  81. Coers J, Vance RE, Fontana MF, Dietrich WF (2007) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9:2344–2357. doi:10.1111/j.1462-5822.2007.00963.x

    Article  PubMed  CAS  Google Scholar 

  82. Yang J, Zhao Y, Shi J, Shao F (2013) Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci U S A 110:14408–14413. doi:10.1073/pnas.1306376110

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kortmann J, Brubaker SW, Monack DM (2015) Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J Immunol Baltim md 1950 195:815–819. doi:10.4049/jimmunol.1403100

    Article  CAS  Google Scholar 

  84. Raghawan AK, Sripada A, Gopinath G, Pushpanjali P, Kumar Y, Radha V et al (2017) A disease-associated mutant of NLRC4 shows enhanced interaction with SUG1 leading to constitutive FADD-dependent caspase-8 activation and cell death. J Biol Chem 292:1218–1230. doi:10.1074/jbc.M116.763979

    Article  PubMed  CAS  Google Scholar 

  85. Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K et al (2016) Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell 167:187–202.e17. doi:10.1016/j.cell.2016.09.001

    Article  PubMed  CAS  Google Scholar 

  86. Soler VJ, Tran-Viet K-N, Galiacy SD, Limviphuvadh V, Klemm TP, St Germain E et al (2013) Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet 50:246–254. doi:10.1136/jmedgenet-2012-101325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Grandemange S, Sanchez E, Louis-Plence P, Tran Mau-Them F, Bessis D, Coubes C et al (2016) A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. doi:10.1136/annrheumdis-2016-210021

  88. Masters SL, Gerlic M, Metcalf D, Preston S, Pellegrini M, O’Donnell JA et al (2012) NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 37:1009–1023. doi:10.1016/j.immuni.2012.08.027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Jéru I, Duquesnoy P, Fernandes-Alnemri T, Cochet E, Yu JW, Lackmy-Port-Lis M et al (2008) Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A 105:1614–1619. doi:10.1073/pnas.0708616105

    Article  PubMed  PubMed Central  Google Scholar 

  90. Borghini S, Tassi S, Chiesa S, Caroli F, Carta S, Caorsi R et al (2011) Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum 63:830–839. doi:10.1002/art.30170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Jéru I, Le Borgne G, Cochet E, Hayrapetyan H, Duquesnoy P, Grateau G et al (2011) Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum 63:1459–1464. doi:10.1002/art.30241

    Article  PubMed  CAS  Google Scholar 

  92. Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK, Aune MH et al (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107. doi:10.1016/j.immuni.2012.07.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Häfner R et al (2001) CARD15 mutations in Blau syndrome. Nat Genet 29:19–20. doi:10.1038/ng720

    Article  PubMed  CAS  Google Scholar 

  94. Rosé CD, Pans S, Casteels I, Anton J, Bader-Meunier B, Brissaud P et al (2015) Blau syndrome: cross-sectional data from a multicentre study of clinical, radiological and functional outcomes. Rheumatol Oxf Engl 54:1008–1016. doi:10.1093/rheumatology/keu437

    Article  CAS  Google Scholar 

  95. Caso F, Costa L, Rigante D, Vitale A, Cimaz R, Lucherini OM et al (2014) Caveats and truths in genetic, clinical, autoimmune and autoinflammatory issues in Blau syndrome and early onset sarcoidosis. Autoimmun Rev 13:1220–1229. doi:10.1016/j.autrev.2014.08.010

    Article  PubMed  Google Scholar 

  96. Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S et al (2005) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105:1195–1197. doi:10.1182/blood-2004-07-2972

    Article  PubMed  CAS  Google Scholar 

  97. Kobayashi K, Inohara N, Hernandez LD, Galán JE, Núñez G, Janeway CA et al (2002) RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416:194–199. doi:10.1038/416194a

    Article  PubMed  CAS  Google Scholar 

  98. Magalhaes JG, Lee J, Geddes K, Rubino S, Philpott DJ, Girardin SE (2011) Essential role of Rip2 in the modulation of innate and adaptive immunity triggered by Nod1 and Nod2 ligands. Eur J Immunol 41:1445–1455. doi:10.1002/eji.201040827

    Article  PubMed  CAS  Google Scholar 

  99. Aróstegui JI, Arnal C, Merino R, Modesto C, Antonia Carballo M, Moreno P et al (2007) NOD2 gene-associated pediatric granulomatous arthritis: clinical diversity, novel and recurrent mutations, and evidence of clinical improvement with interleukin-1 blockade in a Spanish cohort. Arthritis Rheum 56:3805–3813. doi:10.1002/art.22966

    Article  PubMed  CAS  Google Scholar 

  100. Majeed HA, Kalaawi M, Mohanty D, Teebi AS, Tunjekar MF, al-Gharbawy F et al (1989) Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with sweet syndrome in two siblings. J Pediatr 115:730–734

    Article  PubMed  CAS  Google Scholar 

  101. Ferguson PJ, Chen S, Tayeh MK, Ochoa L, Leal SM, Pelet A et al (2005) Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet 42:551–557. doi:10.1136/jmg.2005.030759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Valdearcos M, Esquinas E, Meana C, Peña L, Gil-de-Gómez L, Balsinde J et al (2012) Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages. J Biol Chem 287:10894–10904. doi:10.1074/jbc.M112.342915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Herlin T, Fiirgaard B, Bjerre M, Kerndrup G, Hasle H, Bing X et al (2013) Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis 72:410–413. doi:10.1136/annrheumdis-2012-201818

    Article  PubMed  CAS  Google Scholar 

  104. Aksentijevich I, Masters SL, Ferguson PJ, Dancey P, Frenkel J, van Royen-Kerkhoff A et al (2009) An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J med 360:2426–2437. doi:10.1056/NEJMoa0807865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Reddy S, Jia S, Geoffrey R, Lorier R, Suchi M, Broeckel U et al (2009) An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med 360:2438–2444. doi:10.1056/NEJMoa0809568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Jesus AA, Osman M, Silva CA, Kim PW, Pham T-H, Gadina M et al (2011) A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum 63:4007–4017. doi:10.1002/art.30588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei X-Y, Fraitag S et al (2011) Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med 365:620–628. doi:10.1056/NEJMoa1013068

    Article  PubMed  CAS  Google Scholar 

  108. Sugiura T, Kawaguchi Y, Harigai M, Terajima-Ichida H, Kitamura Y, Furuya T et al (2002) Association between adult-onset Still’s disease and interleukin-18 gene polymorphisms. Genes Immun 3:394–399. doi:10.1038/sj.gene.6363922

    Article  PubMed  CAS  Google Scholar 

  109. Kanazawa N, Nakamura T, Mikita N, Furukawa F (2013) Novel IL36RN mutation in a Japanese case of early onset generalized pustular psoriasis. J Dermatol 40:749–751. doi:10.1111/1346-8138.12227

    Article  PubMed  Google Scholar 

  110. Blumberg H, Dinh H, Trueblood ES, Pretorius J, Kugler D, Weng N et al (2007) Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med 204:2603–2614. doi:10.1084/jem.20070157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Martini A (2012) Systemic juvenile idiopathic arthritis. Autoimmun Rev 12:56–59. doi:10.1016/j.autrev.2012.07.022

    Article  PubMed  CAS  Google Scholar 

  112. Behrens EM, Beukelman T, Gallo L, Spangler J, Rosenkranz M, Arkachaisri T et al (2008) Evaluation of the presentation of systemic onset juvenile rheumatoid arthritis: data from the Pennsylvania Systemic Onset Juvenile Arthritis Registry (PASOJAR). J Rheumatol 35:343–348

    PubMed  Google Scholar 

  113. Feldman BM, Birdi N, Boone JE, Dent PB, Duffy CM, Ellsworth JE et al (1996) Seasonal onset of systemic-onset juvenile rheumatoid arthritis. J Pediatr 129:513–518

    Article  PubMed  CAS  Google Scholar 

  114. Modesto C, Antón J, Rodriguez B, Bou R, Arnal C, Ros J et al (2010) Incidence and prevalence of juvenile idiopathic arthritis in Catalonia (Spain). Scand J Rheumatol 39:472–479. doi:10.3109/03009741003742722

    Article  PubMed  CAS  Google Scholar 

  115. Schneider R, Laxer RM (1998) Systemic onset juvenile rheumatoid arthritis. Baillieres Clin Rheumatol 12:245–271

    Article  PubMed  CAS  Google Scholar 

  116. Pruunsild C, Uibo K, Liivamägi H, Tarraste S, Talvik T, Pelkonen P (2007) Incidence of juvenile idiopathic arthritis in children in Estonia: a prospective population-based study. Scand J Rheumatol 36:7–13. doi:10.1080/03009740601089259

    Article  PubMed  CAS  Google Scholar 

  117. Huemer C, Huemer M, Dorner T, Falger J, Schacherl H, Bernecker M et al (2001) Incidence of pediatric rheumatic diseases in a regional population in Austria. J Rheumatol 28:2116–2119

    PubMed  CAS  Google Scholar 

  118. Kaipiainen-Seppänen O, Savolainen A (2001) Changes in the incidence of juvenile rheumatoid arthritis in Finland. Rheumatol Oxf Engl 40:928–932

    Article  Google Scholar 

  119. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201:1479–1486. doi:10.1084/jem.20050473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Jamilloux Y, Gerfaud-Valentin M, Martinon F, Belot A, Henry T, Sève P (2015) Pathogenesis of adult-onset Still’s disease: new insights from the juvenile counterpart. Immunol Res 61:53–62. doi:10.1007/s12026-014-8561-9

    Article  PubMed  CAS  Google Scholar 

  121. Ombrello MJ, Remmers EF, Tachmazidou I, Grom A, Foell D, Haas J-P et al (2015) HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc Natl Acad Sci U S A 112:15970–15975. doi:10.1073/pnas.1520779112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Ombrello MJ, Arthur VL, Remmers EF, Hinks A, Tachmazidou I, Grom AA et al (2016) Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum dis. doi:10.1136/annrheumdis-2016-210324

  123. Wakil SM, Monies DM, Abouelhoda M, Al-Tassan N, Al-Dusery H, Naim EA et al (2015) Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol Hoboken NJ 67:288–295. doi:10.1002/art.38877

    Article  CAS  Google Scholar 

  124. Cader MZ, Boroviak K, Zhang Q, Assadi G, Kempster SL, Sewell GW et al (2016) C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol 17:1046–1056. doi:10.1038/ni.3532

    Article  PubMed  CAS  Google Scholar 

  125. Gerfaud-Valentin M, Jamilloux Y, Iwaz J, Sève P (2014) Adult-onset Still’s disease. Autoimmun Rev 13:708–722. doi:10.1016/j.autrev.2014.01.058

    Article  PubMed  CAS  Google Scholar 

  126. Gerfaud-Valentin M, Maucort-Boulch D, Hot A, Iwaz J, Ninet J, Durieu I et al (2014) Adult-onset still disease: manifestations, treatment, outcome, and prognostic factors in 57 patients. Medicine (Baltimore) 93:91–99. doi:10.1097/MD.0000000000000021

    Article  CAS  Google Scholar 

  127. Pouchot J, Sampalis JS, Beaudet F, Carette S, Decary F, Salusinsky-Sternbach M et al (1991) Adult Still’s disease: manifestations, disease course, and outcome in 62 patients. Medicine (Baltimore) 70:118–136

    Article  CAS  Google Scholar 

  128. Ichiki H, Shishido M, Nishiyama S (1992) Two cases of adult onset of Still’s disease in the elderly. Nihon Ronen Igakkai Zasshi Jpn J Geriatr 29:960–964

    Article  CAS  Google Scholar 

  129. Magadur-Joly G, Billaud E, Barrier JH, Pennec YL, Masson C, Renou P et al (1995) Epidemiology of adult Still’s disease: estimate of the incidence by a retrospective study in west France. Ann Rheum dis 54:587–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wakai K, Ohta A, Tamakoshi A, Ohno Y, Kawamura T, Aoki R et al (1997) Estimated prevalence and incidence of adult Still’s disease: findings by a nationwide epidemiological survey in Japan. J Epidemiol 7:221–225

    Article  PubMed  CAS  Google Scholar 

  131. Evensen KJ, Nossent HC (2006) Epidemiology and outcome of adult-onset Still’s disease in northern Norway. Scand J Rheumatol 35:48–51. doi:10.1080/03009740510026616

    Article  PubMed  CAS  Google Scholar 

  132. Chen D-Y, Lan J-L, Lin F-J, Hsieh T-Y (2005) Association of intercellular adhesion molecule-1 with clinical manifestations and interleukin-18 in patients with active, untreated adult-onset Still’s disease. Arthritis Rheum 53:320–327. doi:10.1002/art.21164

    Article  PubMed  CAS  Google Scholar 

  133. Narula N, Narula T, Abril A (2015) Seizing the clinical presentation in adult onset Still’s disease. An extensive literature review. Autoimmun rev 14:472–477. doi:10.1016/j.autrev.2015.01.007

    Article  PubMed  Google Scholar 

  134. Liozon E, Ly KH, Vidal-Cathala E, Fauchais A-L (2014) Adult-onset Still’s disease as a manifestation of malignancy: report of a patient with melanoma and literature review. Rev Médecine Interne Fondée par Société Natl Francaise Médecine Interne 35:60–64. doi:10.1016/j.revmed.2013.02.014

    Article  CAS  Google Scholar 

  135. Jamilloux Y, Gerfaud-Valentin M, Henry T, Sève P (2015) Treatment of adult-onset Still’s disease: a review. Ther Clin Risk Manag 11:33–43. doi:10.2147/TCRM.S64951

    Article  PubMed  CAS  Google Scholar 

  136. Marshall GS, Edwards KM, Butler J, Lawton AR (1987) Syndrome of periodic fever, pharyngitis, and aphthous stomatitis. J Pediatr 110:43–46

    Article  PubMed  CAS  Google Scholar 

  137. Vigo G, Zulian F (2012) Periodic fevers with aphthous stomatitis, pharyngitis, and adenitis (PFAPA). Autoimmun Rev 12:52–55. doi:10.1016/j.autrev.2012.07.021

    Article  PubMed  Google Scholar 

  138. Rigante D, Vitale A, Natale MF, Lopalco G, Andreozzi L, Frediani B et al (2017) A comprehensive comparison between pediatric and adult patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenopathy (PFAPA) syndrome. Clin Rheumatol 36:463–468. doi:10.1007/s10067-016-3317-7

    Article  PubMed  Google Scholar 

  139. Feder HM, Salazar JC (2010) A clinical review of 105 patients with PFAPA (a periodic fever syndrome). Acta Paediatr Oslo nor 1992 99:178–184. doi:10.1111/j.1651-2227.2009.01554.x

    Article  CAS  Google Scholar 

  140. Førsvoll J, Kristoffersen EK, Øymar K (2013) Incidence, clinical characteristics and outcome in Norwegian children with periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis syndrome; a population-based study. Acta Paediatr Oslo nor 1992 102:187–192. doi:10.1111/apa.12069

    Article  Google Scholar 

  141. Hofer M, Pillet P, Cochard M-M, Berg S, Krol P, Kone-Paut I et al (2014) International periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis syndrome cohort: description of distinct phenotypes in 301 patients. Rheumatol Oxf Engl 53:1125–1129. doi:10.1093/rheumatology/ket460

    Article  Google Scholar 

  142. Theodoropoulou K, Vanoni F, Hofer M (2016) Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome: a review of the pathogenesis. Curr Rheumatol Rep 18:18. doi:10.1007/s11926-016-0567-y

    Article  PubMed  CAS  Google Scholar 

  143. Cheung MS, Theodoropoulou K, Lugrin J, Martinon F, Busso N, Hofer M (2017) Periodic fever with aphthous stomatitis, pharyngitis, and cervical adenitis syndrome is associated with a CARD8 variant unable to bind the NLRP3 inflammasome. J Immunol 198:2063–2069. doi:10.4049/jimmunol.1600760

    Article  PubMed  CAS  Google Scholar 

  144. Stojanov S, Lapidus S, Chitkara P, Feder H, Salazar JC, Fleisher TA et al (2011) Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) is a disorder of innate immunity and Th1 activation responsive to IL-1 blockade. Proc Natl Acad Sci U S A 108:7148–7153. doi:10.1073/pnas.1103681108

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cochard M, Clet J, Le L, Pillet P, Onrubia X, Guéron T et al (2010) PFAPA syndrome is not a sporadic disease. Rheumatol Oxf Engl 49:1984–1987. doi:10.1093/rheumatology/keq187

    Article  Google Scholar 

  146. Perko D, Debeljak M, Toplak N, Avčin T (2015) Clinical features and genetic background of the periodic fever syndrome with aphthous stomatitis, pharyngitis, and adenitis: a single center longitudinal study of 81 patients. Mediat Inflamm 2015:293417. doi:10.1155/2015/293417

    Article  Google Scholar 

  147. Ter Haar N, Lachmann H, Özen S, Woo P, Uziel Y, Modesto C et al (2013) Treatment of autoinflammatory diseases: results from the Eurofever registry and a literature review. Ann Rheum Dis 72:678–685. doi:10.1136/annrheumdis-2011-201268

    Article  PubMed  Google Scholar 

  148. Burton MJ, Pollard AJ, Ramsden JD, Chong LY, Venekamp RP (2014) Tonsillectomy for periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis syndrome (PFAPA). Cochrane Database Syst Rev 11:CD008669. doi:10.1002/14651858.CD008669.pub2

    Article  Google Scholar 

  149. Vanoni F, Theodoropoulou K, Hofer M (2016) PFAPA syndrome: a review on treatment and outcome. Pediatr Rheumatol Online J 14. doi:10.1186/s12969-016-0101-9

  150. Schnitzler L, Schubert B, Verret JL, Simon L, Alquier P (1976) Cutaneous manifestations in disseminated intravascular coagulation syndrome. Ann Dermatol Syphiligr (Paris) 103:124–134

    CAS  Google Scholar 

  151. Lipsker D (2010) The Schnitzler syndrome. Orphanet J Rare Dis 5:38. doi:10.1186/1750-1172-5-38

    Article  PubMed  PubMed Central  Google Scholar 

  152. Simon A, Asli B, Braun-Falco M, De Koning H, Fermand J-P, Grattan C et al (2013) Schnitzler’s syndrome: diagnosis, treatment, and follow-up. Allergy 68:562–568. doi:10.1111/all.12129

    Article  PubMed  CAS  Google Scholar 

  153. de Koning HD, Schalkwijk J, van der Meer JWM, Simon A (2011) Successful canakinumab treatment identifies IL-1β as a pivotal mediator in Schnitzler syndrome. J Allergy Clin Immunol 128:1352–1354. doi:10.1016/j.jaci.2011.05.023

    Article  PubMed  CAS  Google Scholar 

  154. de Koning HD, Schalkwijk J, van der Ven-Jongekrijg J, Stoffels M, van der Meer JWM, Simon A (2013) Sustained efficacy of the monoclonal anti-interleukin-1 beta antibody canakinumab in a 9-month trial in Schnitzler’s syndrome. Ann Rheum Dis 72:1634–1638. doi:10.1136/annrheumdis-2012-202192

    Article  PubMed  CAS  Google Scholar 

  155. de Koning HD, van Gijn ME, Stoffels M, Jongekrijg J, Zeeuwen PLJM, Elferink MG et al (2015) Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol 135:561–564. doi:10.1016/j.jaci.2014.07.050

    Article  PubMed  CAS  Google Scholar 

  156. Zhou Q, Aksentijevich I, Wood GM, Walts AD, Hoffmann P, Remmers EF et al (2015) Brief report: cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation. Arthritis Rheumatol Hoboken NJ 67:2482–2486. doi:10.1002/art.39190

    Article  CAS  Google Scholar 

  157. Crow YJ (2011) Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci 1238:91–98. doi:10.1111/j.1749-6632.2011.06220.x

    Article  PubMed  CAS  Google Scholar 

  158. Rodero MP, Crow YJ (2016) Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp med 213:2527–2538. doi:10.1084/jem.20161596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Picard C, Mathieu A-L, Hasan U, Henry T, Jamilloux Y, Walzer T et al (2015) Inherited anomalies of innate immune receptors in pediatric-onset inflammatory diseases. Autoimmun Rev 14:1147–1153. doi:10.1016/j.autrev.2015.08.002

    Article  PubMed  CAS  Google Scholar 

  160. Picard C, Belot A (2016) Type I interferonopathies. Literature review. Rev Med Interne. doi:10.1016/j.revmed.2016.08.016

  161. Atianand MK, Fitzgerald KA (2013) Molecular basis of DNA recognition in the immune system. J Immunol Baltim md 1950 190:1911–1918. doi:10.4049/jimmunol.1203162

    Article  CAS  Google Scholar 

  162. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149. doi:10.1038/ni.3558

    Article  PubMed  CAS  Google Scholar 

  163. Frémond M-L, Rodero MP, Jeremiah N, Belot A, Jeziorski E, Duffy D et al (2016) Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children. J Allergy Clin Immunol 138:1752–1755. doi:10.1016/j.jaci.2016.07.015

    Article  PubMed  CAS  Google Scholar 

  164. Aicardi J, Goutières F (1984) A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 15:49–54. doi:10.1002/ana.410150109

    Article  PubMed  CAS  Google Scholar 

  165. Rice GI, del Toro Duany Y, Jenkinson EM, Forte GMA, Anderson BH, Ariaudo G et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509. doi:10.1038/ng.2933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518. doi:10.1056/NEJMoa1312625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg M-C et al (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520. doi:10.1172/JCI79100

    Article  PubMed  PubMed Central  Google Scholar 

  168. Crow YJ, Casanova J-L (2014) STING-associated vasculopathy with onset in infancy—a new interferonopathy. N Engl J Med 371:568–571. doi:10.1056/NEJMe1407246

    Article  PubMed  Google Scholar 

  169. Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB et al (2010) PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87:866–872. doi:10.1016/j.ajhg.2010.10.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T et al (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A 108:14914–14919. doi:10.1073/pnas.1106015108

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M et al (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121:4150–4160. doi:10.1172/JCI58414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Brehm A, Liu Y, Sheikh A, Marrero B, Omoyinmi E, Zhou Q et al (2015) Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J Clin Invest 125:4196–4211. doi:10.1172/JCI81260

    Article  PubMed  PubMed Central  Google Scholar 

  173. Murarasu A, Dodé C, Sarrabay G, Klein I, Papo T, Sacré K (2017) Digenic MEFV/TNFRSF1A autoinflammatory syndrome with relapsing aseptic neutrophilic meningitis and chronic myelitis. Clin Exp Rheumatol

  174. Stoffels M, Kastner DL (2016) Old dogs, new tricks: monogenic autoinflammatory disease unleashed. Annu Rev Genomics Hum Genet 17:245–272. doi:10.1146/annurev-genom-090413-025334

    Article  PubMed  CAS  Google Scholar 

  175. McDermott A, Jacks J, Kessler M, Emanuel PD, Gao L (2015) Proteasome-associated autoinflammatory syndromes: advances in pathogeneses, clinical presentations, diagnosis, and management. Int J Dermatol 54:121–129. doi:10.1111/ijd.12695

    Article  PubMed  Google Scholar 

  176. Jang M-A, Kim EK, Now H, Nguyen NTH, Kim W-J, Yoo J-Y et al (2015) Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet 96:266–274. doi:10.1016/j.ajhg.2014.11.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B et al (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131. doi:10.1038/ng.748

    Article  PubMed  CAS  Google Scholar 

  178. Lausch E, Janecke A, Bros M, Trojandt S, Alanay Y, De Laet C et al (2011) Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 43:132–137. doi:10.1038/ng.749

    Article  PubMed  CAS  Google Scholar 

  179. Briggs TA, Rice GI, Adib N, Ades L, Barete S, Baskar K et al (2016) Spondyloenchondrodysplasia due to mutations in ACP5: a comprehensive survey. J Clin Immunol 36:220–234. doi:10.1007/s10875-016-0252-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Starokadomskyy P, Gemelli T, Rios JJ, Xing C, Wang RC, Li H et al (2016) DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol 17:495–504. doi:10.1038/ni.3409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Fernandez-Guarino M, Torrelo A, Fernandez-Lorente M, Fraile G, García-Sagredo JM, Jaén P (2008) X-linked reticulate pigmentary disorder: report of a new family. Eur J Dermatol EJD 18:102–103. doi:10.1684/ejd.2007.0336

    Article  PubMed  Google Scholar 

  182. Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D et al (2012) Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337:1684–1688. doi:10.1126/science.1224026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C et al (2015) Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:89–93. doi:10.1038/nature13801

    Article  PubMed  CAS  Google Scholar 

  184. Meuwissen MEC, Schot R, Buta S, Oudesluijs G, Tinschert S, Speer SD et al (2016) Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J Exp Med 213:1163–1174. doi:10.1084/jem.20151529

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bulua AC, Mogul DB, Aksentijevich I, Singh H, He DY, Muenz LR et al (2012) Efficacy of etanercept in the tumor necrosis factor receptor-associated periodic syndrome: a prospective, open-label, dose-escalation study. Arthritis Rheum 64:908–913. doi:10.1002/art.33416

    Article  PubMed  CAS  Google Scholar 

  186. Rebelo SL, Bainbridge SE, Amel-Kashipaz MR, Radford PM, Powell RJ, Todd I et al (2006) Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function. Arthritis Rheum 54:2674–2687. doi:10.1002/art.21964

    Article  PubMed  CAS  Google Scholar 

  187. Hull KM, Drewe E, Aksentijevich I, Singh HK, Wong K, McDermott EM et al (2002) The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine (Baltimore) 81:349–368

    Article  CAS  Google Scholar 

  188. Lainka E, Neudorf U, Lohse P, Timmann C, Stojanov S, Huss K et al (2009) Incidence of TNFRSF1A mutations in German children: epidemiological, clinical and genetic characteristics. Rheumatol Oxf Engl 48:987–991. doi:10.1093/rheumatology/kep140

    Article  CAS  Google Scholar 

  189. Gattorno M, Pelagatti MA, Meini A, Obici L, Barcellona R, Federici S et al (2008) Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58:1516–1520. doi:10.1002/art.23475

    Article  PubMed  CAS  Google Scholar 

  190. Sacré K, Brihaye B, Lidove O, Papo T, Pocidalo M-A, Cuisset L et al (2008) Dramatic improvement following interleukin 1beta blockade in tumor necrosis factor receptor-1-associated syndrome (TRAPS) resistant to anti-TNF-alpha therapy. J Rheumatol 35:357–358

    PubMed  Google Scholar 

  191. Grimwood C, Despert V, Jeru I, Hentgen V (2015) On-demand treatment with anakinra: a treatment option for selected TRAPS patients. Rheumatol Oxf Engl 54:1749–1751. doi:10.1093/rheumatology/kev111

    Article  Google Scholar 

  192. Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim K-Y et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208:519–533. doi:10.1084/jem.20102049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Borghini S, Ferrera D, Prigione I, Fiore M, Ferraris C, Mirisola V et al (2016) Gene expression profile in TNF receptor-associated periodic syndrome reveals constitutively enhanced pathways and new players in the underlying inflammation. Clin Exp Rheumatol 34:S121–S128

    PubMed  Google Scholar 

  194. Jéru I, Cochet E, Duquesnoy P, Hentgen V, Copin B, Mitjavila-Garcia MT et al (2014) Brief report: involvement of TNFRSF11A molecular defects in autoinflammatory disorders. Arthritis Rheumatol Hoboken NJ 66:2621–2627. doi:10.1002/art.38727

    Article  CAS  Google Scholar 

  195. Blaydon DC, Biancheri P, Di W-L, Plagnol V, Cabral RM, Brooke MA et al (2011) Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J med 365:1502–1508. doi:10.1056/NEJMoa1100721

    Article  PubMed  CAS  Google Scholar 

  196. Hu H, Sun S-C (2016) Ubiquitin signaling in immune responses. Cell res 26:457–483. doi:10.1038/cr.2016.40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Cohen P (2014) Immune diseases caused by mutations in kinases and components of the ubiquitin system. Nat Immunol 15:521–529. doi:10.1038/ni.2892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, Zhang Y et al (2016) Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet 48:67–73. doi:10.1038/ng.3459

    Article  PubMed  CAS  Google Scholar 

  199. Shigemura T, Kaneko N, Kobayashi N, Kobayashi K, Takeuchi Y, Nakano N et al (2016) Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic inflammation in autosomal-dominant Behçet’s disease. RMD Open 2:e000223. doi:10.1136/rmdopen-2015-000223

    Article  PubMed  PubMed Central  Google Scholar 

  200. Ohnishi H, Kawamoto N, Seishima M, Ohara O, Fukao T (2017) A Japanese family case with juvenile onset Behçet’s disease caused by TNFAIP3 mutation. Allergol Int Off J Jpn Soc Allergol 66:146–148. doi:10.1016/j.alit.2016.06.006

    Article  Google Scholar 

  201. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699. doi:10.1038/nature02794

    Article  PubMed  CAS  Google Scholar 

  202. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P et al (2014) Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512:69–73. doi:10.1038/nature13322

    Article  PubMed  CAS  Google Scholar 

  203. Duong BH, Onizawa M, Oses-Prieto JA, Advincula R, Burlingame A, Malynn BA et al (2015) A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 42:55–67. doi:10.1016/j.immuni.2014.12.031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Shimizu Y, Taraborrelli L, Walczak H (2015) Linear ubiquitination in immunity. Immunol Rev 266:190–207. doi:10.1111/imr.12309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Fiil BK, Gyrd-Hansen M (2014) Met1-linked ubiquitination in immune signalling. FEBS J 281:4337–4350. doi:10.1111/febs.12944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Elliott PR, Komander D (2016) Regulation of Met1-linked polyubiquitin signalling by the deubiquitinase OTULIN. FEBS J 283:39–53. doi:10.1111/febs.13547

    Article  PubMed  CAS  Google Scholar 

  207. Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai WL et al (2016) Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci U S A 113:10127–10132. doi:10.1073/pnas.1612594113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z et al (2012) Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol 13:1178–1186. doi:10.1038/ni.2457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Zavialov AV et al (2014) Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med 370:911–920. doi:10.1056/NEJMoa1307361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S et al (2014) Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 370:921–931. doi:10.1056/NEJMoa1307362

    Article  PubMed  CAS  Google Scholar 

  211. Ben-Ami T, Revel-Vilk S, Brooks R, Shaag A, Hershfield MS, Kelly SJ et al (2016) Extending the clinical phenotype of adenosine deaminase 2 deficiency. J Pediatr 177:316–320. doi:10.1016/j.jpeds.2016.06.058

    Article  PubMed  CAS  Google Scholar 

  212. Zavialov AV, Gracia E, Glaichenhaus N, Franco R, Zavialov AV, Lauvau G (2010) Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol 88:279–290. doi:10.1189/jlb.1109764

    Article  PubMed  CAS  Google Scholar 

  213. Ombrello MJ, Remmers EF, Sun G, Freeman AF, Datta S, Torabi-Parizi P et al (2012) Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 366:330–338. doi:10.1056/NEJMoa1102140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Zhou Q, Lee G-S, Brady J, Datta S, Katan M, Sheikh A et al (2012) A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 91:713–720. doi:10.1016/j.ajhg.2012.08.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Chae JJ, Park YH, Park C, Hwang I-Y, Hoffmann P, Kehrl JH et al (2015) Connecting two pathways through Ca 2+ signaling: NLRP3 inflammasome activation induced by a hypermorphic PLCG2 mutation. Arthritis Rheumatol Hoboken NJ 67:563–567. doi:10.1002/art.38961

    Article  CAS  Google Scholar 

  216. Wiseman DH, May A, Jolles S, Connor P, Powell C, Heeney MM et al (2013) A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 122:112–123. doi:10.1182/blood-2012-08-439083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Chakraborty PK, Schmitz-Abe K, Kennedy EK, Mamady H, Naas T, Durie D et al (2014) Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–2871. doi:10.1182/blood-2014-08-591370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Sasarman F, Thiffault I, Weraarpachai W, Salomon S, Maftei C, Gauthier J et al (2015) The 3′ addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum Mol Genet 24:2841–2847. doi:10.1093/hmg/ddv044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Kaustio M, Haapaniemi E, Göös H, Hautala T, Park G, Syrjänen J et al (2017) Damaging heterozygous mutations in NFKB1 lead to diverse immunological phenotypes. J Allergy Clin Immunol. doi:10.1016/j.jaci.2016.10.054

  220. Schipp C, Nabhani S, Bienemann K, Simanovsky N, Kfir-Erenfeld S, Assayag-Asherie N et al (2016) Specific antibody deficiency and autoinflammatory disease extend the clinical and immunological spectrum of heterozygous NFKB1 loss-of-function mutations in humans. Haematologica 101:e392–e396. doi:10.3324/haematol.2016.145136

    Article  PubMed  PubMed Central  Google Scholar 

  221. Molho-Pessach V, Lerer I, Abeliovich D, Agha Z, Abu Libdeh A, Broshtilova V et al (2008) The H syndrome is caused by mutations in the nucleoside transporter hENT3. Am J Hum Genet 83:529–534. doi:10.1016/j.ajhg.2008.09.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Melki I, Lambot K, Jonard L, Couloigner V, Quartier P, Neven B et al (2013) Mutation in the SLC29A3 gene: a new cause of a monogenic, autoinflammatory condition. Pediatrics 131:e1308–e1313. doi:10.1542/peds.2012-2255

    Article  PubMed  Google Scholar 

  223. Jordan CT, Cao L, Roberson EDO, Pierson KC, Yang C-F, Joyce CE et al (2012) PSORS2 is due to mutations in CARD14. Am J hum Genet 90:784–795. doi:10.1016/j.ajhg.2012.03.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Fuchs-Telem D, Sarig O, van Steensel MAM, Isakov O, Israeli S, Nousbeck J et al (2012) Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am J Hum Genet 91:163–170. doi:10.1016/j.ajhg.2012.05.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Eytan O, Sarig O, Sprecher E, van Steensel MA (2014) Clinical response to ustekinumab in familial pityriasis rubra pilaris caused by a novel mutation in CARD14. Br J Dermatol 171:420–422. doi:10.1111/bjd.12952

    Article  PubMed  CAS  Google Scholar 

  226. Setta-Kaffetzi N, Simpson MA, Navarini AA, Patel VM, Lu H-C, Allen MH et al (2014) AP1S3 mutations are associated with pustular psoriasis and impaired toll-like receptor 3 trafficking. Am J hum Genet 94:790–797. doi:10.1016/j.ajhg.2014.04.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE et al (2016) AP1S3 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating IL-36 production. J Invest Dermatol 136:2251–2259. doi:10.1016/j.jid.2016.06.618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Gattorno M, Sormani MP, D’Osualdo A, Pelagatti MA, Caroli F, Federici S et al (2008) A diagnostic score for molecular analysis of hereditary autoinflammatory syndromes with periodic fever in children. Arthritis Rheum 58:1823–1832. doi:10.1002/art.23474

    Article  PubMed  CAS  Google Scholar 

  229. Federici S, Gattorno M (2014) A practical approach to the diagnosis of autoinflammatory diseases in childhood. Best Pract Res Clin Rheumatol 28:263–276. doi:10.1016/j.berh.2014.05.005

    Article  PubMed  Google Scholar 

  230. Moghaddas F, Masters SL (2015) Monogenic autoinflammatory diseases: Cytokinopathies. Cytokine 74:237–246. doi:10.1016/j.cyto.2015.02.012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Société Nationale Française de Médecine Interne (SNFMI), the Foundation for the Development of Internal Medicine in Europe, and a « poste d’accueil INSERM » (to Y.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Jamilloux.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamilloux, Y., Belot, A., Magnotti, F. et al. Geoepidemiology and Immunologic Features of Autoinflammatory Diseases: a Comprehensive Review. Clinic Rev Allerg Immunol 54, 454–479 (2018). https://doi.org/10.1007/s12016-017-8613-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-017-8613-8

Keywords

Navigation