Clinical Reviews in Allergy & Immunology

, Volume 54, Issue 3, pp 386–396 | Cite as

Immunology of Bee Venom

  • Daniel Elieh Ali Komi
  • Farzaneh Shafaghat
  • Ricardo D. Zwiener


Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.


Allergen Anaphylaxis Bee venom Immune response Immunotherapy 



The authors acknowledge the professional revising of Dr. Todd Rambasek and Dr. Anton Pieter Bussink.

Compliance with Ethical Standards

I hereby state that none of the coauthors and the corresponding author of this paper have conflict of interest, and it has been prepared for publication without using any fund. Moreover, the paper does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

Daniel Elieh Ali Komi, Farzaneh Shafaghat, and Ricardo D. Zwiener declare that they have no conflict of interest.


  1. 1.
    Vetter RS, Visscher PK (1998) Bites and stings of medically important venomous arthropods. Int J Dermatol 37(7):481–496CrossRefPubMedGoogle Scholar
  2. 2.
    Danforth BN et al (2006) The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci U S A 103(41):15118–15123CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Denis Michez AN, Jean-Jacques Menier, and Pierre Rasmont (2007) The oldest fossil of a melittid bee (Hymenoptera: Apiformes) from the early Eocene of Oise (France). Zoological Journal of the Linnean Society doi:  10.1111/j.1096-3642.2007.00307.x CrossRefGoogle Scholar
  4. 4.
    Fitzgerald KT, Flood AA (2006) Hymenoptera stings. Clin Tech Small Anim Pract 21(4):194–204CrossRefPubMedGoogle Scholar
  5. 5.
    Wang Z et al (2016) Honey bees modulate their olfactory learning in the presence of hornet predators and alarm component. PLoS One 11(2):e0150399CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nitecka-Buchta, A. and P. Buchta (2014) Myorelaxant effect of bee venom topical skin application in patients with RDC/TMD Ia and RDC/TMD Ib: a randomized, double blinded study. 2014: p. 296053Google Scholar
  7. 7.
    Bilo BM et al (2005) Diagnosis of hymenoptera venom allergy. Allergy 60(11):1339–1349CrossRefPubMedGoogle Scholar
  8. 8.
    Silva J et al (2015) Pharmacological alternatives for the treatment of neurodegenerative disorders: wasp and bee venoms and their components as new neuroactive tools. Toxins (Basel) 7(8):3179–3209CrossRefGoogle Scholar
  9. 9.
    Kim KH et al (2013) Bee venom ameliorates compound 48/80-induced atopic dermatitis-related symptoms. Int J Clin Exp Pathol 6(12):2896–2903PubMedPubMedCentralGoogle Scholar
  10. 10.
    Han SM, Lee GG, Park KK (2012) Acute dermal toxicity study of bee venom (Apis mellifera L.) in rats. Toxicol Res 28(2):99–102CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hoffman DR (1996) Hymenoptera venom proteins. Adv Exp Med Biol 391:169–186CrossRefPubMedGoogle Scholar
  12. 12.
    Habermann E (1972) Bee and wasp venoms. Science 177(4046):314–322CrossRefPubMedGoogle Scholar
  13. 13.
    Banks BE et al (1981) New methods of isolating been venom peptides. Anal Biochem 116(1):48–52CrossRefPubMedGoogle Scholar
  14. 14.
    Gauldie J et al (1976) The peptide components of bee venom. Eur J Biochem 61(2):369–376CrossRefPubMedGoogle Scholar
  15. 15.
    Dotimas EM et al (1987) Isolation and structure analysis of bee venom mast cell degranulating peptide. Biochim Biophys Acta 911(3):285–293CrossRefPubMedGoogle Scholar
  16. 16.
    Abd-Elhakim YM et al (2014) Combined cytogenotoxic effects of bee venom and bleomycin on rat lymphocytes: an in vitro study. Biomed Res Int 2014:173903CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen J et al (2016) Melittin, the major pain-producing substance of bee venom. Neurosci Bull 32:265–272CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Flach CR, Prendergast FG, Mendelsohn R (1996) Infrared reflection-absorption of melittin interaction with phospholipid monolayers at the air/water interface. Biophys J 70(1):539–546CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zolfagharian H, Mohajeri M, Babaie M (2015) Honey bee venom (Apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J Pharmacopuncture 18(4):7–11CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Petroianu G et al (2000) Phospholipase A2-induced coagulation abnormalities after bee sting. Am J Emerg Med 18(1):22–27CrossRefPubMedGoogle Scholar
  21. 21.
    Banks BE et al (1979) Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 282(5737):415–417CrossRefPubMedGoogle Scholar
  22. 22.
    Lazdunski M (1983) Apamin, a neurotoxin specific for one class of Ca2+−dependent K+ channels. Cell Calcium 4(5–6):421–428CrossRefPubMedGoogle Scholar
  23. 23.
    Six DA, Dennis EA (2000) The expanding superfamily of phospholipase a(2) enzymes: classification and characterization. Biochim Biophys Acta 1488(1–2):1–19PubMedGoogle Scholar
  24. 24.
    Park S et al (2015) Bee venom phospholipase A2 suppresses allergic airway inflammation in an ovalbumin-induced asthma model through the induction of regulatory T cells. Immun Inflamm Dis 3(4):386–397CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Urasaki T et al (2000) Induction of the activation-related antigen CD69 on human eosinophils by type IIA phospholipase A2. Inflamm Res 49(4):177–183CrossRefPubMedGoogle Scholar
  26. 26.
    Moreno M, Giralt E (2015) Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel) 7(4):1126–1150CrossRefGoogle Scholar
  27. 27.
    Ye M et al (2016) Neuroprotective effects of bee venom phospholipase A2 in the 3xTg AD mouse model of Alzheimer's disease. J Neuroinflammation 13(1):10CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Choo YM et al (2010) Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoS One 5(5):e10393CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Markovic-Housley Z et al (2000) Crystal structure of hyaluronidase, a major allergen of bee venom. Structure 8(10):1025–1035CrossRefPubMedGoogle Scholar
  30. 30.
    Gmachl M, Kreil G (1993) Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc Natl Acad Sci U S A 90(8):3569–3573CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hoffman DR (2006) Hymenoptera venom allergens. Clin Rev Allergy Immunol 30(2):109–128CrossRefPubMedGoogle Scholar
  32. 32.
    Hider RC (1988) Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 12(2):60–65CrossRefPubMedGoogle Scholar
  33. 33.
    Sharma JN (2014) Basic and clinical aspects of bradykinin receptor antagonists. Prog Drug Res 69:1–14PubMedGoogle Scholar
  34. 34.
    Buku A, Price JA (2001) Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release. Peptides 22(12):1987–1991CrossRefPubMedGoogle Scholar
  35. 35.
    Chen J, Lariviere WR (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 92(2):151–183CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tiffany CW, Burch RM (1989) Bradykinin stimulates tumor necrosis factor and interleukin-1 release from macrophages. FEBS Lett 247(2):189–192CrossRefPubMedGoogle Scholar
  37. 37.
    Danneels EL et al (2015) Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach. Toxins (Basel) 7(11):4468–4483CrossRefGoogle Scholar
  38. 38.
    Teoh AC, KH Ryu and EG Lee (2016) One-Step Purification of Melittin Derived from Apis mellifera Bee Venom. J Microbiol BiotechnolGoogle Scholar
  39. 39.
    Ramalingam K, Snyder GH (1993) Selective disulfide formation in truncated apamin and sarafotoxin. Biochemistry 32(41):11155–11161CrossRefPubMedGoogle Scholar
  40. 40.
    Buku A (1999) Mast cell degranulating (MCD) peptide: a prototypic peptide in allergy and inflammation. Peptides 20(3):415–420CrossRefPubMedGoogle Scholar
  41. 41.
    Jones S, Howl J (2006) Biological applications of the receptor mimetic peptide mastoparan. Curr Protein Pept Sci 7(6):501–508CrossRefPubMedGoogle Scholar
  42. 42.
    Yamamoto T et al (2014) Mastoparan peptide causes mitochondrial permeability transition not by interacting with specific membrane proteins but by interacting with the phospholipid phase. FEBS J 281(17):3933–3944CrossRefPubMedGoogle Scholar
  43. 43.
    Konno K, Kazuma K, Nihei K (2016) Peptide toxins in solitary wasp venoms. Toxins (Basel) 8(4):114CrossRefGoogle Scholar
  44. 44.
    Konno K et al (2002) Identification of bradykinins in solitary wasp venoms. Toxicon 40(3):309–312CrossRefPubMedGoogle Scholar
  45. 45.
    Heo Y et al (2015) Evaluation of phototoxic and skin sensitization potentials of PLA 2-free bee venom. Evid Based Complement Alternat Med 2015:157367CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Baek YH et al (2006) Antinociceptive effect and the mechanism of bee venom acupuncture (Apipuncture) on inflammatory pain in the rat model of collagen-induced arthritis: mediation by alpha2-adrenoceptors. Brain Res 1073-1074:305–310CrossRefPubMedGoogle Scholar
  47. 47.
    Yang EJ et al (2010) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation 7:69CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Baghian A et al (1997) An amphipathic alpha-helical synthetic peptide analogue of melittin inhibits herpes simplex virus-1 (HSV-1)-induced cell fusion and virus spread. Peptides 18(2):177–183CrossRefPubMedGoogle Scholar
  49. 49.
    Wade D et al (1992) Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res 40(5):429–436CrossRefPubMedGoogle Scholar
  50. 50.
    Tragust, D.B.a.S. (2015) Venom as a component of external immune defense in Hymenoptera. Springer Science+Business Media DordrechtGoogle Scholar
  51. 51.
    Wachinger M et al (1998) Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79(Pt 4):731–740CrossRefPubMedGoogle Scholar
  52. 52.
    Liu X et al (2002) Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol 54(8):1083–1089CrossRefPubMedGoogle Scholar
  53. 53.
    Matysiak J et al (2011) Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. J Pharm Biomed Anal 54(2):273–278CrossRefPubMedGoogle Scholar
  54. 54.
    Peiren N et al (2005) The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim Biophys Acta 1752(1):1–5CrossRefPubMedGoogle Scholar
  55. 55.
    Blank S et al (2013) Vitellogenins are new high molecular weight components and allergens (Api m 12 and Ves v 6) of Apis mellifera and Vespula Vulgaris venom. PLoS One 8(4):e62009CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Blank S et al (2010) Identification, recombinant expression, and characterization of the 100 kDa high molecular weight hymenoptera venom allergens Api m 5 and Ves v 3. J Immunol 184(9):5403–5413CrossRefPubMedGoogle Scholar
  57. 57.
    Spillner E, Blank S, Jakob T (2014) Hymenoptera allergens: from venom to "venome". Front Immunol 5:77CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ollert M, Blank S (2015) Anaphylaxis to insect venom allergens: role of molecular diagnostics. Curr Allergy Asthma Rep 15(5):26CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Seismann H et al (2010) Dissecting cross-reactivity in hymenoptera venom allergy by circumvention of alpha-1,3-core fucosylation. Mol Immunol 47(4):799–808CrossRefPubMedGoogle Scholar
  60. 60.
    de Graaf DC et al (2009) Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. J Proteome 72(2):145–154CrossRefGoogle Scholar
  61. 61.
    Muller UR (1993) Epidemiology of insect sting allergy. Monogr Allergy 31:131–146PubMedGoogle Scholar
  62. 62.
    Shin YS et al (2012) Clinical features and the diagnostic value of component allergen-specific IgE in hymenoptera venom allergy. Allergy Asthma Immunol Res 4(5):284–289CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ludman SW, Boyle RJ (2015) Stinging insect allergy: current perspectives on venom immunotherapy. J Asthma Allergy 8:75–86PubMedPubMedCentralGoogle Scholar
  64. 64.
    Savi E et al (2016) Comparing the ability of molecular diagnosis and CAP-inhibition in identifying the really causative venom in patients with positive tests to Vespula and Polistes species. Clin Mol Allergy 14:3CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Selb J et al (2016) Improved recombinant Api m 1- and Ves v 5-based IgE testing to dissect bee and yellow jacket allergy and their correlation with the severity of the sting reaction. Clin Exp Allergy 46(4):621–630CrossRefPubMedGoogle Scholar
  66. 66.
    Rueff F, Placzek M, Przybilla B (2006) Mastocytosis and Hymenoptera venom allergy. Curr Opin Allergy Clin Immunol 6(4):284–288CrossRefPubMedGoogle Scholar
  67. 67.
    Carter MC, Metcalfe DD, Komarow HD (2014) Mastocytosis. Immunol Allergy Clin N Am 34(1):181–196CrossRefGoogle Scholar
  68. 68.
    Bonadonna P et al (2016) Hymenoptera allergy and mast cell activation syndromes. Curr Allergy Asthma Rep 16(1):5CrossRefPubMedGoogle Scholar
  69. 69.
    Rueff F, Dugas-Breit S, Przybilla B (2009) Stinging hymenoptera and mastocytosis. Curr Opin Allergy Clin Immunol 9(4):338–342CrossRefPubMedGoogle Scholar
  70. 70.
    Niedoszytko M et al (2009) Mastocytosis and insect venom allergy: diagnosis, safety and efficacy of venom immunotherapy. Allergy 64(9):1237–1245CrossRefPubMedGoogle Scholar
  71. 71.
    Ozdemir C et al (2011) Mechanisms of immunotherapy to wasp and bee venom. Clin Exp Allergy 41(9):1226–1234CrossRefPubMedGoogle Scholar
  72. 72.
    Mirshafiey A (2007) Venom therapy in multiple sclerosis. Neuropharmacology 53(3):353–361CrossRefPubMedGoogle Scholar
  73. 73.
    Karimi A et al (2012) Effect of honey bee venom on Lewis rats with experimental allergic encephalomyelitis, a model for multiple sclerosis. Iran J Pharm Res 11(2):671–678PubMedPubMedCentralGoogle Scholar
  74. 74.
    Hamedani M et al (2005) Bee venom, immunostimulant or immunosuppressor? Insight into the effect on matrix metalloproteinases and interferons. Immunopharmacol Immunotoxicol 27(4):671–681CrossRefPubMedGoogle Scholar
  75. 75.
    Sur B et al (2016) Bee venom acupuncture alleviates trimellitic anhydride-induced atopic dermatitis-like skin lesions in mice. BMC Complement Altern Med 16(1):38CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Subramaniam S et al (2016) Elevated and cross-responsive CD1a-reactive T cells in bee and wasp venom allergic individuals. Eur J Immunol 46(1):242–252CrossRefPubMedGoogle Scholar
  77. 77.
    Dhami S et al (2015) Allergen immunotherapy for insect venom allergy: protocol for a systematic review. Clin Transl Allergy 6:6CrossRefPubMedGoogle Scholar
  78. 78.
    Maggi E (2010) T-cell responses induced by allergen-specific immunotherapy. Clin Exp Immunol 161(1):10–18PubMedPubMedCentralGoogle Scholar
  79. 79.
    Goldberg A, Yogev A, Confino-Cohen R (2011) Three days rush venom immunotherapy in bee allergy: safe, inexpensive and instantaneously effective. Int Arch Allergy Immunol 156(1):90–98CrossRefPubMedGoogle Scholar
  80. 80.
    Sturm G et al (2002) Rush hymenoptera venom immunotherapy: a safe and practical protocol for high-risk patients. J Allergy Clin Immunol 110(6):928–933CrossRefPubMedGoogle Scholar
  81. 81.
    Calabria CW (2013) Accelerated immunotherapy schedules. Curr Allergy Asthma Rep 13(4):389–398CrossRefPubMedGoogle Scholar
  82. 82.
    Goldberg A, Confino-Cohen R (2010) Bee venom immunotherapy—how early is it effective? Allergy 65(3):391–395CrossRefPubMedGoogle Scholar
  83. 83.
    Akdis CA, Blaser K (2000) Mechanisms of allergen-specific immunotherapy. Allergy 55(6):522–530CrossRefPubMedGoogle Scholar
  84. 84.
    Akdis CA et al (1998) Role of interleukin 10 in specific immunotherapy. J Clin Invest 102(1):98–106CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sicherer SH, Leung DY (2012) Advances in allergic skin disease, anaphylaxis, and hypersensitivity reactions to foods, drugs, and insects in 2011. J Allergy Clin Immunol 129(1):76–85CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Daniel Elieh Ali Komi
    • 1
  • Farzaneh Shafaghat
    • 1
  • Ricardo D. Zwiener
    • 2
  1. 1.Immunology Research Center, Department of Immunology, and Student’s Research CommitteeTabriz University of Medical SciencesTabrizIran
  2. 2.Allergy and Immunology DepartmentHospital Universitario AustralPilarArgentina

Personalised recommendations