Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 54, Issue 3, pp 480–492 | Cite as

Diagnostic Potential of Extracellular MicroRNA in Respiratory Diseases

  • Dhamotharan Pattarayan
  • Rajesh K. Thimmulappa
  • Vilwanathan Ravikumar
  • Subbiah Rajasekaran
Article

Abstract

Lack of markers of subclinical disease state and clinical phenotype other than pulmonary function test has made the diagnosis and interventions of environmental respiratory diseases a major challenge. MicroRNAs (miRNAs), small non-coding single stranded RNAs, have emerged as potential disease-modifier in various environmental respiratory diseases. They can also be found in various body fluids and are remarkably stable. Because of their high stability, disease-specific expression, and the ease to detect and quantify them have raised the potential of miRNAs in body fluids to be useful clinical diagnostic biomarkers for lung disease phenotyping. In the present review, we provide a comprehensive overview of progress made in identifying miRNAs in various body fluids including blood, serum, plasma, bronchoalveolar lavage (BAL) fluid, and sputum as biomarkers for a wide range of human respiratory diseases such as acute lung injury/acute respiratory distress syndrome (ALI/ARDS), idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and asthma. Finally, we discuss several challenges remain to be concerned and suggest few disease-specific and non-specific miRNAs to become part of future clinical practice.

Keywords

MicroRNAs Extracellular miRNA Biological fluids Biomarker Lung diseases 

Notes

Acknowledgments

Subbiah Rajasekaran and Rajesh K. Thimmulappa acknowledge funding from the Department of Biotechnology, Ramalingaswami fellowship, Government of India (Project numbers BT/RLF/Re-entry/36/2013 and BT/RLF/Re-entry/37/2013). This work was also supported in part by the Department of Science and Technology (DST), Government of India, award number YSS/2014/000125 (to SR).

Compliance with Ethical Standards

Conflict of Interest

All authors have read the journal’s policy on disclosure of potential conflicts of interest and have none to declare.

Funding

Corresponding author acknowledges funding sources.

1. Contract grant sponsor: Department of Biotechnology (DBT), Government of India; Project Number: BT/RLF/Re-entry/36/2013.

2. Contract grant sponsor: Department of Science and Technology (DST), Government of India; Project Number: YSS/2014/000125.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Supplementary material

12016_2016_8589_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 13 kb)
12016_2016_8589_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 16 kb)
12016_2016_8589_MOESM3_ESM.docx (34 kb)
ESM 3 (DOCX 33 kb)

References

  1. 1.
    Ferkol T, Schraufnagel D (2014) The global burden of respiratory disease. Ann Am Thorac Soc 11:404–406. doi: 10.1513/AnnalsATS.201311-405PS CrossRefPubMedGoogle Scholar
  2. 2.
    Rabe KF, Hurd S, Anzueto A et al (2007) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 176:532–555. doi: 10.1164/rccm.200703-456SO CrossRefPubMedGoogle Scholar
  3. 3.
    Spagnolo P, Tonelli R, Cocconcelli E et al (2012) Idiopathic pulmonary fibrosis: diagnostic pitfalls and therapeutic challenges. Multidiscip Respir Med 7:42. doi: 10.1186/2049-6958-7-42 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kolb M, Collard HR (2014) Staging of idiopathic pulmonary fibrosis: past, present and future. Eur Respir Rev 23:220–224. doi: 10.1183/09059180.00002114 CrossRefPubMedGoogle Scholar
  5. 5.
    De Haro C, Martin-Loeches I, Torrents E, Artigas A (2013) Acute respiratory distress syndrome: prevention and early recognition. Ann Intensive Care 3:11. doi: 10.1186/2110-5820-3-11 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aberle DR, Berg CD, Black WC et al (2011) The national lung screening trial: overview and study design 1. Radiology 258:243–253. doi: 10.1148/radiol.10091808 CrossRefPubMedGoogle Scholar
  7. 7.
    Cordier JF, Cottin V (2013) Neglected evidence in idiopathic pulmonary fibrosis: from history to earlier diagnosis. Eur Respir J 42:916–923. doi: 10.1183/09031936.00027913 CrossRefPubMedGoogle Scholar
  8. 8.
    Csikesz NG, Gartman EJ (2014) New developments in the assessment of COPD: early diagnosis is key. Int J COPD 9:277–286. doi: 10.2147/COPD.S46198 Google Scholar
  9. 9.
    Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80:193–208. doi: 10.1016/j.critrevonc.2010.11.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Ulivi P, Zoli W (2014) MiRNAs as non-invasive biomarkers for lung cancer diagnosis. Molecules 19:8220–8237. doi: 10.3390/molecules19068220 CrossRefPubMedGoogle Scholar
  11. 11.
    Tijsen AJ, Pinto YM, Creemers EE (2012) Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. AJP Hear Circ Physiol 303:H1085–H1095. doi: 10.1152/ajpheart.00191.2012 CrossRefGoogle Scholar
  12. 12.
    Bhatia P, Raina S, Chugh J, Sharma S (2015) miRNAs: early prognostic biomarkers for type 2 diabetes mellitus? Biomark Med 9:1025–1040. doi: 10.2217/bmm.15.69 CrossRefPubMedGoogle Scholar
  13. 13.
    Bala S (2009) Emerging role of microRNAs in liver diseases. World J Gastroenterol 15:5633. doi: 10.3748/wjg.15.5633 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS (2015) MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 6:254. doi: 10.3389/fphar.2015.00254 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rajasekaran S, Pattarayan D, Rajaguru P et al (2016) MicroRNA regulation of acute lung injury and acute respiratory distress syndrome. J Cell Physiol 231:2097–2106. doi: 10.1002/jcp.25316 CrossRefPubMedGoogle Scholar
  16. 16.
    Brown D, Rahman M, Nana-Sinkam SP (2014) MicroRNAs in respiratory disease: a clinician’s overview. Ann Am Thorac Soc 11:1277–1285. doi: 10.1513/AnnalsATS.201404-179FR CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grasedieck S, Schöler N, Bommer M et al (2012) Impact of serum storage conditions on microRNA stability. Leukemia 26:2414–2416. doi: 10.1038/leu.2012.106 CrossRefPubMedGoogle Scholar
  18. 18.
    Allegra A, Alonci A, Campo S et al (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol 41:1897–1912. doi: 10.3892/ijo.2012.1647 CrossRefPubMedGoogle Scholar
  19. 19.
    Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132:4645–4652. doi: 10.1242/dev.02070 CrossRefPubMedGoogle Scholar
  20. 20.
    Denli AM, Tops BBJ, Plasterk RH et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235. doi: 10.1038/nature03049 CrossRefPubMedGoogle Scholar
  21. 21.
    Han J, Lee Y, Yeom KH et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027. doi: 10.1101/gad.1262504 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Murchison EP, Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16:223–229. doi: 10.1016/j.ceb.2004.04.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Chendrimada TP, Gregory RI, Kumaraswamy E et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744. doi: 10.1038/nature03868 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638. doi: 10.1038/nrd4359 CrossRefPubMedGoogle Scholar
  26. 26.
    Ludwig N, Leidinger P, Becker K et al (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 1:1–13. doi: 10.1093/nar/gkw116 Google Scholar
  27. 27.
    Foshay KM, Gallicano GI (2007) Small RNAs, big potential: the role of microRNAs in stem cell function. Curr Stem Cell Res Ther 2:264–271CrossRefPubMedGoogle Scholar
  28. 28.
    Bueno MJ, De Castro IP, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7:3143–3148. doi: 10.4161/cc.7.20.6833 CrossRefPubMedGoogle Scholar
  29. 29.
    Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263. doi: 10.1038/nrm2868 CrossRefPubMedGoogle Scholar
  30. 30.
    Sessa R, Hata A (2013) Role of microRNAs in lung development and pulmonary diseases. Pulm Circ 3:315–328. doi: 10.4103/2045-8932.114758 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang K, Zhang S, Weber J et al (2010) Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 38:7248–7259. doi: 10.1093/nar/gkq601 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433. doi: 10.1038/ncb2210 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li L, Zhu D, Huang L et al (2012) Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles. PLoS One 7:e46957. doi: 10.1371/journal.pone.0046957 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40:10937–10949. doi: 10.1093/nar/gks832 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Turchinovich A, Weiz L, Burwinkel B (2012) Extracellular miRNAs: the mystery of their origin and function. Trends Biochem Sci 37:460–465. doi: 10.1016/j.tibs.2012.08.003 CrossRefPubMedGoogle Scholar
  36. 36.
    Turchinovich A, Samatov TR, Tonevitsky AG, Burwinkel B (2013) Circulating miRNAs: cell-cell communication function? Front Genet 4:119. doi: 10.3389/fgene.2013.00119 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Moldovan L, Batte KE, Trgovcich J et al (2014) Methodological challenges in utilizing miRNAs as circulating biomarkers. J Cell Mol Med 18:371–390. doi: 10.1111/jcmm.12236 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Manicone AM (2009) Role of the pulmonary epithelium and inflammatory signals in acute lung injury. Expert Rev Clin Immunol 5:63–75. doi: 10.1586/177666X.5.1.63 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23:243–252. doi: 10.1089/jamp.2009.0775 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Matthay MA, Zemans RL (2011) The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 6:147–163. doi: 10.1146/annurev-pathol-011110-130158 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Guo Z, Gu Y, Wang C et al (2014) Enforced expression of miR-125b attenuates LPS-induced acute lung injury. Immunol Lett 162:18–26. doi: 10.1016/j.imlet.2014.06.008 CrossRefPubMedGoogle Scholar
  42. 42.
    Yang K, Gao B, Wei W et al (2015) Changed profile of microRNAs in acute lung injury induced by cardio-pulmonary bypass and its mechanism involved with SIRT1. Int J Clin Exp Pathol 8:1104–1115PubMedPubMedCentralGoogle Scholar
  43. 43.
    Hauber H-P, Blaukovitsch M (2010) Current and future treatment options in idiopathic pulmonary fibrosis. Inflamm Allergy Drug Targets 9:158–172. doi: 10.2174/187152810792231878 CrossRefPubMedGoogle Scholar
  44. 44.
    Li P, Zhao G-Q, Chen T-F et al (2013) Serum miR-21 and miR-155 expression in idiopathic pulmonary fibrosis. J Asthma 50:960–964. doi: 10.3109/02770903.2013.822080 CrossRefPubMedGoogle Scholar
  45. 45.
    Li P, Li J, Chen T et al (2014) Expression analysis of serum microRNAs in idiopathic pulmonary fibrosis. Int J Mol Med 33:1554–1562. doi: 10.3892/ijmm.2014.1712 CrossRefPubMedGoogle Scholar
  46. 46.
    Ji X, Wu B, Fan J et al (2015) The anti-fibrotic effects and mechanisms of microRNA-486-5p in pulmonary fibrosis. Sci Rep 5:14131. doi: 10.1038/srep14131 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yang G, Yang L, Wang W et al (2015) Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene 562:138–144. doi: 10.1016/j.gene.2015.02.065 CrossRefPubMedGoogle Scholar
  48. 48.
    Murray CJL, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349:1498–1504. doi: 10.1016/S0140-6736(96)07492-2 CrossRefPubMedGoogle Scholar
  49. 49.
    De Smet EG, Mestdagh P, Vandesompele J et al (2015) Non-coding RNAs in the pathogenesis of COPD. Thorax 70:782–791. doi: 10.1136/thoraxjnl-2014-206560 CrossRefPubMedGoogle Scholar
  50. 50.
    Van Pottelberge GR, Mestdagh P, Bracke KR et al (2011) MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 183:898–906. doi: 10.1164/rccm.201002-0304OC CrossRefPubMedGoogle Scholar
  51. 51.
    Akbas F, Coskunpinar E, Aynaci E et al (2012) Analysis of serum micro-RNAs as potential biomarker in chronic obstructive pulmonary disease. Exp Lung Res 38:286–294. doi: 10.3109/01902148.2012.689088 CrossRefPubMedGoogle Scholar
  52. 52.
    Ellis KL, Cameron VA, Troughton RW et al (2013) Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 15:1138–1147. doi: 10.1093/eurjhf/hft078 CrossRefPubMedGoogle Scholar
  53. 53.
    Donaldson A, Natanek SA, Lewis A et al (2013) Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax 68:1140–1149. doi: 10.1136/thoraxjnl-2012-203129 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Xie L, Wu M, Lin H et al (2014) An increased ratio of serum miR-21 to miR-181a levels is associated with the early pathogenic process of chronic obstructive pulmonary disease in asymptomatic heavy smokers. Mol Biosyst 10:1072–1081. doi: 10.1039/c3mb70564a CrossRefPubMedGoogle Scholar
  55. 55.
    Wang M, Huang Y, Liang Z et al (2016) Plasma miRNAs might be promising biomarkers of chronic obstructive pulmonary disease. Clin Respir J 10:104–111. doi: 10.1111/crj.12194 CrossRefPubMedGoogle Scholar
  56. 56.
    Leidinger P, Keller A, Borries A et al (2011) Specific peripheral miRNA profiles for distinguishing lung cancer from COPD. Lung Cancer 74:41–47. doi: 10.1016/j.lungcan.2011.02.003 CrossRefPubMedGoogle Scholar
  57. 57.
    Sanfiorenzo C, Ilie MI, Belaid A et al (2013) Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC. PLoS One 8:e54596. doi: 10.1371/journal.pone.0054596 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Molina-Pinelo S, Pastor MD, Suarez R et al (2014) MicroRNA clusters: dysregulation in lung adenocarcinoma and COPD. Eur Respir J 43:1740–1749. doi: 10.1183/09031936.00091513 CrossRefPubMedGoogle Scholar
  59. 59.
    Ishmael FT (2011) The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc 111:S11–S17PubMedGoogle Scholar
  60. 60.
    Wang J-W, Li K, Hellermann G et al (2011) Regulating the regulators: microRNA and asthma. World Allergy Organ J 4:94–103. doi: 10.1097/WOX.0b013e31821d1186 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu F, Qin HB, Xu B et al (2012) Profiling of miRNAs in pediatric asthma: upregulation of miRNA-221 and miRNA-485-3p. Mol Med Rep 6:1178–1182. doi: 10.3892/mmr.2012.1030 CrossRefPubMedGoogle Scholar
  62. 62.
    Panganiban RPL, Pinkerton MH, Maru SY et al (2012) Differential microRNA expression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol 1:154–165PubMedPubMedCentralGoogle Scholar
  63. 63.
    Levänen B, Bhakta NR, Torregrosa Paredes P et al (2013) Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 131:894–903. doi: 10.1016/j.jaci.2012.11.039 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Roff AN, Craig TJ, August A et al (2014) MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am J Clin Exp Immunol 3:68–83PubMedPubMedCentralGoogle Scholar
  65. 65.
    Sawant DV, Yao W, Wright Z et al (2015) Serum microRNA-21 as a biomarker for allergic inflammatory disease in children. MicroRNA (Shariqah, United Arab Emirates) 4:36–40. doi: 10.2174/2211536604666150220232507 Google Scholar
  66. 66.
    Panganiban RP, Wang Y, Howrylak J et al (2016) Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol 137:1423–1432. doi: 10.1016/j.jaci.2016.01.029 CrossRefPubMedGoogle Scholar
  67. 67.
    Elbehidy RM, Youssef DM, El-Shal AS et al (2016) MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol 71:107–114. doi: 10.1016/j.molimm.2015.12.015 CrossRefPubMedGoogle Scholar
  68. 68.
    Maes T, Cobos FA, Schleich F et al (2016) Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol 137:1433–1446. doi: 10.1016/j.jaci.2016.02.018 CrossRefPubMedGoogle Scholar
  69. 69.
    Huo X, Zhang K, Yi L et al (2016) Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clin Exp Allergy. doi: 10.1111/cea.12754 [Epub ahead of print] PubMedGoogle Scholar
  70. 70.
    Theodore SC, Rhim JS, Turner T, Yates C (2010) MiRNA 26a expression in a novel panel of African American prostate cancer cell lines. Ethn Dis 20(1 Suppl 1):S1-96-100PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dhamotharan Pattarayan
    • 1
  • Rajesh K. Thimmulappa
    • 2
  • Vilwanathan Ravikumar
    • 3
  • Subbiah Rajasekaran
    • 1
  1. 1.Department of Biotechnology, BIT-CampusAnna UniversityTiruchirappalliIndia
  2. 2.Department of BiochemistryJagadguru Sri Shivarathreeshwara UniversityMysuruIndia
  3. 3.Department of Biochemistry, School of Life ScienceBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations