Clinical Reviews in Allergy & Immunology

, Volume 49, Issue 2, pp 163–176 | Cite as

Gene Therapy for Autoimmune Disease

  • Shang-An Shu
  • Jinjun Wang
  • Mi-Hua Tao
  • Patrick S. C. LeungEmail author


Advances in understanding the immunological and molecular basis of autoimmune diseases have made gene therapy a promising approach to treat the affected patients. Gene therapy for autoimmune diseases aims to regulate the levels of proinflammatory cytokines or molecules and the infiltration of lymphocytes to the effected sites through successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain the immune tolerance to the relevant autoantigens and improve clinical outcomes for patients. Here, we summarize the recent progress in identifying genes responsible for autoimmune diseases and present examples where gene therapy has been applied as treatments or prevention in autoimmune diseases both in animal models and the clinical trials. Discussion on the advantages and pitfalls of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of autoimmune diseases.


Gene therapy Autoimmune disease Animal model Clinical trial Delivery vectors 



Adenoassociated virus


Altered peptide ligand




B cell-activating factor belonging to the TNF family


Brain-derived neurotrophic factor


Bone marrow stem cells


Collagen induced arthritis


Cytosolic phospholipase A2


Central nervous system


DNase-resistant particles


Experimental autoimmune encephalomyelitis




Glatiramer acetate


Myelin oligodendrocyte glycoprotein


Myelin basic protein


Multiple sclerosis


Peripheral blood monocyte


Poly(lactic-co-glycolic acid)


Proteolipid protein


Rheumatoid arthritis


Small hairpin RNA


Small interfering RNA


Toll-like receptor


Regulatory T cells


Vascular endothelial growth factor


  1. 1.
    Romo-Tena J, Gomez-Martin D, Alcocer-Varela J (2013) CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev 12:1171–1176PubMedCrossRefGoogle Scholar
  2. 2.
    Gianchecchi E, Delfino DV, Fierabracci A (2013) Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev 12:1091–1100PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta S, Louis AG (2013) Tolerance and autoimmunity in primary immunodeficiency disease: a comprehensive review. Clin Rev Allergy Immunol 45:162–169PubMedCrossRefGoogle Scholar
  4. 4.
    Singh RP, Waldron RT, Hahn BH (2012) Genes, tolerance and systemic autoimmunity. Autoimmun Rev 11:664–669PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Mayer CT, Tian L, Hesse C, Kuhl AA, Swallow M, Kruse F et al (2014) Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals. J Autoimmun 50:23–32PubMedCrossRefGoogle Scholar
  6. 6.
    Mayer CT, Huntenburg J, Nandan A, Schmitt E, Czeloth N, Sparwasser T (2013) CD4 blockade directly inhibits mouse and human CD4(+) T cell functions independent of Foxp3(+) Tregs. J Autoimmun 47:73–82PubMedCrossRefGoogle Scholar
  7. 7.
    Muratori L, Longhi MS (2013) The interplay between regulatory and effector T cells in autoimmune hepatitis: implications for innovative treatment strategies. J Autoimmun 46:74–80PubMedCrossRefGoogle Scholar
  8. 8.
    Gravano DM, Hoyer KK (2013) Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun 45:68–79PubMedCrossRefGoogle Scholar
  9. 9.
    Satake A, Schmidt AM, Archambault A, Leichner TM, Wu GF, Kambayashi T (2013) Differential targeting of IL-2 and T cell receptor signaling pathways selectively expands regulatory T cells while inhibiting conventional T cells. J Autoimmun 44:13–20PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Robinson AP, Caldis MW, Harp CT, Goings GE, Miller SD (2013) High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis. J Autoimmun 43:32–43PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Thurner L, Preuss KD, Fadle N, Regitz E, Klemm P, Zaks M et al (2013) Progranulin antibodies in autoimmune diseases. J Autoimmun 42:29–38PubMedCrossRefGoogle Scholar
  12. 12.
    Artemiadis AK, Anagnostouli MC, Alexopoulos EC (2011) Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review. Neuroepidemiology 36:109–120PubMedCrossRefGoogle Scholar
  13. 13.
    Luu VP, Vazquez MI, Zlotnik A (2014) B cells participate in tolerance and autoimmunity through cytokine production. Autoimmunity 47:1–12PubMedCrossRefGoogle Scholar
  14. 14.
    Ben-Ami E, Miller A, Berrih-Aknin S (2014) T cells from autoimmune patients display reduced sensitivity to immunoregulation by mesenchymal stem cells: role of IL-2. Autoimmun Rev 13:187–196PubMedCrossRefGoogle Scholar
  15. 15.
    Osnes LT, Nakken B, Bodolay E, Szodoray P (2013) Assessment of intracellular cytokines and regulatory cells in patients with autoimmune diseases and primary immunodeficiencies - novel tool for diagnostics and patient follow-up. Autoimmun Rev 12:967–971PubMedCrossRefGoogle Scholar
  16. 16.
    Bao Y, Cao X (2014) The immune potential and immunopathology of cytokine-producing B cell subsets: a comprehensive review. J Autoimmun. doi: 10.1016/j.jaut.2014.04.001.
  17. 17.
    Dooms H (2013) Interleukin-7: fuel for the autoimmune attack. J Autoimmun 45:40–48PubMedCrossRefGoogle Scholar
  18. 18.
    Doyle HA, Yang ML, Raycroft MT, Gee RJ, Mamula MJ (2014) Autoantigens: novel forms and presentation to the immune system. Autoimmunity 47:220–233PubMedCrossRefGoogle Scholar
  19. 19.
    Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A (2014) Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 13:3–10PubMedCrossRefGoogle Scholar
  20. 20.
    Goulabchand R, Vincent T, Batteux F, Eliaou JF, Guilpain P (2014) Impact of autoantibody glycosylation in autoimmune diseases. Autoimmun Rev 13:742–750PubMedCrossRefGoogle Scholar
  21. 21.
    Ando Y, Yang GX, Tsuda M, Kawata K, Zhang W, Nakajima T et al (2012) The immunobiology of colitis and cholangitis in interleukin-23p19 and interleukin-17A deleted dominant negative form of transforming growth factor beta receptor type II mice. Hepatology 56:1418–1426PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Dhirapong A, Yang GX, Nadler S, Zhang W, Tsuneyama K, Leung P et al (2013) Therapeutic effect of cytotoxic T lymphocyte antigen 4/immunoglobulin on a murine model of primary biliary cirrhosis. Hepatology 57:708–715PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Kawata K, Tsuda M, Yang GX, Zhang W, Tanaka H, Tsuneyama K et al (2013) Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis. PLoS One 8:e74225PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Kawata K, Yang GX, Ando Y, Tanaka H, Zhang W, Kobayashi Y et al (2013) Clonality, activated antigen-specific CD8(+) T cells, and development of autoimmune cholangitis in dnTGFbetaRII mice. Hepatology 58:1094–1104PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Tanaka H, Yang GX, Iwakoshi N, Knechtle SJ, Kawata K, Tsuneyama K et al (2013) Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis. Clin Exp Immunol 174:364–371PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Tsuda M, Zhang W, Yang GX, Tsuneyama K, Ando Y, Kawata K et al (2013) Deletion of interleukin (IL)-12p35 induces liver fibrosis in dominant-negative TGFbeta receptor type II mice. Hepatology 57:806–816PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP et al (2014) IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 59:1944–1953PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wang J, Yang GX, Tsuneyama K, Gershwin ME, Ridgway WM, Leung PSC (2014) Animal Models of primary bilairy cirrhosis. Semin Liver Dis 34(03):285–296. doi: 10.1055/s-0034-1383728
  29. 29.
    Youinou P, Jamin C (2009) The weight of interleukin-6 in B cell-related autoimmune disorders. J Autoimmun 32:206–210PubMedCrossRefGoogle Scholar
  30. 30.
    Guzman MR (2009) B-cell depletion in autoimmune diseases. Advances in autoimmunity. Autoimmun Rev 8:585–590CrossRefGoogle Scholar
  31. 31.
    Cambridge G, Perry HC, Nogueira L, Serre G, Parsons HM, De La Torre I et al (2014) The effect of B-cell depletion therapy on serological evidence of B-cell and plasmablast activation in patients with rheumatoid arthritis over multiple cycles of rituximab treatment. J Autoimmun 50:67–76PubMedCrossRefGoogle Scholar
  32. 32.
    Gardner PJ, Joshi L, Lee RW, Dick AD, Adamson P, Calder VL (2013) SIRT1 activation protects against autoimmune T cell-driven retinal disease in mice via inhibition of IL-2/Stat5 signaling. J Autoimmun 42:117–129PubMedCrossRefGoogle Scholar
  33. 33.
    Liubchenko GA, Appleberry HC, Striebich CC, Franklin KE, Derber LA, Holers VM et al (2013) Rheumatoid arthritis is associated with signaling alterations in naturally occurring autoreactive B-lymphocytes. J Autoimmun 40:111–121PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Noack M, Miossec P (2014) Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 13:668–677PubMedCrossRefGoogle Scholar
  35. 35.
    Sloane E, Ledeboer A, Seibert W, Coats B, van Strien M, Maier SF et al (2009) Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav Immun 23:92–100PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Walker LS (2013) Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun 45:49–57PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Van Brussel I, Lee WP, Rombouts M, Nuyts AH, Heylen M, De Winter BY et al (2014) Tolerogenic dendritic cell vaccines to treat autoimmune diseases: can the unattainable dream turn into reality? Autoimmun Rev 13:138–150PubMedCrossRefGoogle Scholar
  38. 38.
    Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459:70–83PubMedCrossRefGoogle Scholar
  39. 39.
    Ratko TA, Cummings JP, Blebea J, Matuszewski KA (2003) Clinical gene therapy for nonmalignant disease. Am J Med 115:560–569PubMedCrossRefGoogle Scholar
  40. 40.
    Coughlan L (2014) Genetically engineering adenoviral vectors for gene therapy. Methods Mol Biol 1108:23–40PubMedCrossRefGoogle Scholar
  41. 41.
    Ojala DS, Amara DP, Schaffer DV (2014) Adeno-associated virus vectors and neurological gene therapy. NeuroscientistGoogle Scholar
  42. 42.
    Wang W, Li W, Ma N, Steinhoff G (2013) Non-viral gene delivery methods. Curr Pharm Biotechnol 14:46–60PubMedGoogle Scholar
  43. 43.
    Villemejane J, Mir LM (2009) Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157:207–219PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Edinger D, Wagner E (2011) Bioresponsive polymers for the delivery of therapeutic nucleic acids. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:33–46PubMedCrossRefGoogle Scholar
  45. 45.
    Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657PubMedCrossRefGoogle Scholar
  46. 46.
    Xu X, Costa A, Burgess DJ (2012) Protein encapsulation in unilamellar liposomes: high encapsulation efficiency and a novel technique to assess lipid-protein interaction. Pharm Res 29:1919–1931PubMedCrossRefGoogle Scholar
  47. 47.
    Martin-Molina A, Luque-Caballero G, Faraudo J, Quesada-Perez M, Maldonado-Valderrama J (2014) Adsorption of DNA onto anionic lipid surfaces. Adv Colloid Interface Sci 206:172–185PubMedCrossRefGoogle Scholar
  48. 48.
    Fox E, Wynn D, Cohan S, Rill D, McGuire D, Markowitz C (2012) A randomized clinical trial of autologous T-cell therapy in multiple sclerosis: subset analysis and implications for trial design. Mult Scler 18:843–852PubMedCrossRefGoogle Scholar
  49. 49.
    Karussis D, Shor H, Yachnin J, Lanxner N, Amiel M, Baruch K et al (2012) T cell vaccination benefits relapsing progressive multiple sclerosis patients: a randomized, double-blind clinical trial. PLoS One 7:e50478PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GP, Libonati MA et al (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348:15–23PubMedCrossRefGoogle Scholar
  51. 51.
    Mahurkar S, Suppiah V, O’Doherty C (2014) Pharmacogenomics of interferon beta and glatiramer acetate response: a review of the literature. Autoimmun Rev 13:178–186PubMedCrossRefGoogle Scholar
  52. 52.
    Aharoni R (2013) The mechanism of action of glatiramer acetate in multiple sclerosis and beyond. Autoimmun Rev 12:543–553PubMedCrossRefGoogle Scholar
  53. 53.
    Chen LZ, Hochwald GM, Huang C, Dakin G, Tao H, Cheng C et al (1998) Gene therapy in allergic encephalomyelitis using myelin basic protein-specific T cells engineered to express latent transforming growth factor-beta1. Proc Natl Acad Sci U S A 95:12516–12521PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Flugel A, Matsumuro K, Neumann H, Klinkert WE, Birnbacher R, Lassmann H et al (2001) Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol 31:11–22PubMedCrossRefGoogle Scholar
  55. 55.
    Eixarch H, Espejo C, Gomez A, Mansilla MJ, Castillo M, Mildner A et al (2009) Tolerance induction in experimental autoimmune encephalomyelitis using non-myeloablative hematopoietic gene therapy with autoantigen. Mol Ther 17:897–905PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT (2008) Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 270:70–76PubMedCrossRefGoogle Scholar
  57. 57.
    Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S et al (2008) IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther 15:504–515PubMedCrossRefGoogle Scholar
  58. 58.
    Park IK, Hiraki K, Kohyama K, Matsumoto Y (2008) Differential effects of decoy chemokine (7ND) gene therapy on acute, biphasic and chronic autoimmune encephalomyelitis: implication for pathomechanisms of lesion formation. J Neuroimmunol 194:34–43PubMedCrossRefGoogle Scholar
  59. 59.
    Zhu CS, Hu XQ, Xiong ZJ, Lu ZQ, Zhou GY, Wang DJ (2008) Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) inhibits experimental autoimmune encephalomyelitis in dark Agouti (DA) rats. Life Sci 83:404–412PubMedCrossRefGoogle Scholar
  60. 60.
    Doi Y, Oki S, Ozawa T, Hohjoh H, Miyake S, Yamamura T (2008) Orphan nuclear receptor NR4A2 expressed in T cells from multiple sclerosis mediates production of inflammatory cytokines. Proc Natl Acad Sci U S A 105:8381–8386PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17:1044–1052PubMedCrossRefGoogle Scholar
  62. 62.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347PubMedCrossRefGoogle Scholar
  63. 63.
    Hunter Z, McCarthy DP, Yap WT, Harp CT, Getts DR, Shea LD et al (2014) A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 8:2148–2160PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT et al (2012) Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 30:1217–1224PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Tedesco A, D’Agostino D, Soriente I, Amato P, Piccoli R, Sabatini P (2009) A new strategy for the early diagnosis of rheumatoid arthritis: a combined approach. Autoimmun Rev 8:233–237PubMedCrossRefGoogle Scholar
  66. 66.
    Jaen O, Rulle S, Bessis N, Zago A, Boissier MC, Falgarone G (2009) Dendritic cells modulated by innate immunity improve collagen-induced arthritis and induce regulatory T cells in vivo. Immunology 126:35–44PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Eneljung T, Tengvall S, Jirholt P, Henningsson L, Holmdahl R, Gustafsson K et al (2013) Antigen-specific gene therapy after immunisation reduces the severity of collagen-induced arthritis. Clin Dev Immunol 2013:345092PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Chen X, Lu J, Bao J, Guo J, Shi J, Wang Y (2013) Adiponectin: a biomarker for rheumatoid arthritis? Cytokine Growth Factor Rev 24:83–89PubMedCrossRefGoogle Scholar
  69. 69.
    Ebina K, Oshima K, Matsuda M, Fukuhara A, Maeda K, Kihara S et al (2009) Adenovirus-mediated gene transfer of adiponectin reduces the severity of collagen-induced arthritis in mice. Biochem Biophys Res Commun 378:186–191PubMedCrossRefGoogle Scholar
  70. 70.
    Afuwape AO, Feldmann M, Paleolog EM (2003) Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) abrogates disease activity in murine collagen-induced arthritis. Gene Ther 10:1950–1960PubMedCrossRefGoogle Scholar
  71. 71.
    Lee SJ, Lee A, Hwang SR, Park JS, Jang J, Huh MS et al (2014) TNF-alpha gene silencing using polymerized siRNA/thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol Ther 22:397–408PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Wang H, Zhao J, Zhang H, Huang Y, Wang S, Tu Q et al (2014) CARD11 blockade suppresses murine collagen-induced arthritis via inhibiting CARD11/Bcl10 assembly and T helper type 17 response. Clin Exp Immunol 176:238–245PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Khoury M, Escriou V, Courties G, Galy A, Yao R, Largeau C et al (2008) Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum 58:2356–2367PubMedCrossRefGoogle Scholar
  74. 74.
    Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J (2009) Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther 17:162–168PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G et al (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005–1010PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Courties G, Baron M, Presumey J, Escriou V, van Lent P, Scherman D et al (2011) Cytosolic phospholipase A2alpha gene silencing in the myeloid lineage alters development of Th1 responses and reduces disease severity in collagen-induced arthritis. Arthritis Rheum 63:681–690PubMedCrossRefGoogle Scholar
  77. 77.
    Moisini I, Davidson A (2009) BAFF: a local and systemic target in autoimmune diseases. Clin Exp Immunol 158:155–163PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Berrih-Aknin S, Ragheb S, Le Panse R, Lisak RP (2013) Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 12:885–893PubMedCrossRefGoogle Scholar
  79. 79.
    Lai Kwan Lam Q, King Hung Ko O, Zheng BJ, Lu L (2008) Local BAFF gene silencing suppresses Th17-cell generation and ameliorates autoimmune arthritis. Proc Natl Acad Sci U S A 105:14993–14998PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Chen SY, Shiau AL, Li YT, Lin YS, Lee CH, Wu CL et al (2012) Suppression of collagen-induced arthritis by intra-articular lentiviral vector-mediated delivery of Toll-like receptor 7 short hairpin RNA gene. Gene Ther 19:752–760PubMedCrossRefGoogle Scholar
  81. 81.
    Song X, Liang F, Liu N, Luo Y, Xue H, Yuan F et al (2009) Construction and characterization of a novel DNA vaccine that is potent antigen-specific tolerizing therapy for experimental arthritis by increasing CD4+CD25+Treg cells and inducing Th1 to Th2 shift in both cells and cytokines. Vaccine 27:690–700PubMedCrossRefGoogle Scholar
  82. 82.
    Clement N, Knop DR, Byrne BJ (2009) Large-scale adeno-associated viral vector production using a herpesvirus-based system enables manufacturing for clinical studies. Hum Gene Ther 20(8):796–806. doi: 10.1089/hum.2009.094
  83. 83.
    Silva CL, Bonato VL, dos Santos-Junior RR, Zarate-Blades CR, Sartori A (2009) Recent advances in DNA vaccines for autoimmune diseases. Expert Rev Vaccines 8:239–252PubMedCrossRefGoogle Scholar
  84. 84.
    Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D et al (2007) Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 64:1407–1415PubMedCrossRefGoogle Scholar
  85. 85.
    Garren H, Robinson WH, Krasulova E, Havrdova E, Nadj C, Selmaj K et al (2008) Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann Neurol 63:611–620PubMedCrossRefGoogle Scholar
  86. 86.
    Aharoni R, Herschkovitz A, Eilam R, Blumberg-Hazan M, Sela M, Bruck W et al (2008) Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105:11358–11363PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Smith CE, Miller SD (2006) Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities. J Autoimmun 27:218–231PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Lutterotti A, Yousef S, Sputtek A, Sturner KH, Stellmann JP, Breiden P et al (2013) Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci Transl Med 5:188ra75PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P et al (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 6:1176–1182PubMedCrossRefGoogle Scholar
  90. 90.
    Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G et al (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175PubMedCrossRefGoogle Scholar
  91. 91.
    Bazzani C, Filippini M, Caporali R, Bobbio-Pallavicini F, Favalli EG, Marchesoni A et al (2009) Anti-TNFalpha therapy in a cohort of rheumatoid arthritis patients: clinical outcomes. Autoimmun Rev 8:260–265PubMedCrossRefGoogle Scholar
  92. 92.
    Schatteman L, Gyselbrecht L, De Clercq L, Mielants H (2006) Treatment of refractory inflammatory monoarthritis in ankylosing spondylitis by intraarticular injection of infliximab. J Rheumatol 33:82–85PubMedGoogle Scholar
  93. 93.
    Desai SB, Furst DE (2006) Problems encountered during anti-tumour necrosis factor therapy. Best Pract Res Clin Rheumatol 20:757–790PubMedCrossRefGoogle Scholar
  94. 94.
    Chan JM, Villarreal G, Jin WW, Stepan T, Burstein H, Wahl SM (2002) Intraarticular gene transfer of TNFR:Fc suppresses experimental arthritis with reduced systemic distribution of the gene product. Mol Ther 6:727–736PubMedCrossRefGoogle Scholar
  95. 95.
    Mease PJ, Wei N, Fudman E, Kivitz A, Anklesaria P, Heald AE (2007) Local treatment for inflammatory arthritis: a phase 1/2 clinical study of intra-articular administration of a recombinant adeno associated vector containing a TNFalpha antagonist gene. Arthritis Rheum 56:S793Google Scholar
  96. 96.
    Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A, Keystone E et al (2009) Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis 68:1247–1254PubMedCrossRefGoogle Scholar
  97. 97.
    Frank KM, Hogarth DK, Miller JL, Mandal S, Mease PJ, Samulski RJ et al (2009) Investigation of the cause of death in a gene-therapy trial. N Engl J Med 361:161–169PubMedCrossRefGoogle Scholar
  98. 98.
    Dayer JM (2003) The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford) 42(Suppl 2):ii3–ii10Google Scholar
  99. 99.
    Evans CH, Robbins PD, Ghivizzani SC, Wasko MC, Tomaino MM, Kang R et al (2005) Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc Natl Acad Sci U S A 102:8698–8703PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Wehling P, Reinecke J, Baltzer AW, Granrath M, Schulitz KP, Schultz C et al (2009) Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis. Hum Gene Ther 20:97–101PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Diogo D, Okada Y, Plenge RM (2014) Genome-wide association studies to advance our understanding of critical cell types and pathways in rheumatoid arthritis: recent findings and challenges. Curr Opin Rheumatol 26:85–92PubMedCrossRefGoogle Scholar
  102. 102.
    International Multiple Sclerosis Genetics C, Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A et al (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45:1353–1360CrossRefGoogle Scholar
  103. 103.
    Scott NM, Ng RL, Gorman S, Norval M, Waithman J, Hart PH (2014) Prostaglandin E2 imprints a long-lasting effect on dendritic cell progenitors in the bone marrow. J Leukoc Biol 95:225–232PubMedCrossRefGoogle Scholar
  104. 104.
    Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G et al (2009) Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 8:244–253PubMedCrossRefGoogle Scholar
  105. 105.
    Burger D, Molnarfi N, Weber MS, Brandt KJ, Benkhoucha M, Gruaz L et al (2009) Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. Proc Natl Acad Sci U S A 106:4355–4359PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Li YT, Chen SY, Wang CR, Liu MF, Lin CC, Jou IM et al (2012) Brief report: amelioration of collagen-induced arthritis in mice by lentivirus-mediated silencing of microRNA-223. Arthritis Rheum 64:3240–3245PubMedCrossRefGoogle Scholar
  107. 107.
    Ko HJ, Cho ML, Lee SY, Oh HJ, Heo YJ, Moon YM et al. (2009) CTLA4-Ig modifies dendritic cells from mice with collagen-induced arthritis to increase the CD4+CD25+Foxp3+ regulatory T cell population. J Autoimmun 34(2):111–20. doi: 10.1016/j.jaut.2009.07.006
  108. 108.
    Yadav V, Bourdette DN, Bowen JD, Lynch SG, Mattson D, Preiningerova J et al (2012) Recombinant T-cell receptor ligand (RTL) for treatment of multiple sclerosis: a double-blind, placebo-controlled, phase 1 dose-escalation study. Autoimmune Dis 2012:954739PubMedCentralPubMedGoogle Scholar
  109. 109.
    Viglietta V, Bourcier K, Buckle GJ, Healy B, Weiner HL, Hafler DA et al (2008) CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology 71:917–924PubMedCrossRefGoogle Scholar
  110. 110.
    Heald AE, Fudman EJ, Anklesaria P, Mease PJ, Team GS (2010) Single-joint outcome measures: preliminary validation of patient-reported outcomes and physical examination. J Rheumatol 37:1042–1048PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shang-An Shu
    • 1
  • Jinjun Wang
    • 1
  • Mi-Hua Tao
    • 2
  • Patrick S. C. Leung
    • 1
    Email author
  1. 1.Division of Rheumatology/Allergy and Clinical Immunology, School of MedicineUniversity of CaliforniaDavisUSA
  2. 2.Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan

Personalised recommendations