Skip to main content

Advertisement

Log in

Alteration of Regulatory T Cells in Type 1 Diabetes Mellitus: A Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Type 1 diabetes mellitus (T1DM) is a T cell-mediated autoimmune disease characterized by the destruction of pancreatic β cells. Numerous studies have demonstrated the key role of CD4+CD25+FoxP3+ regulatory T cells (Tregs) in the development of T1DM. However, the changes in Treg expression and function as well as the regulation of these activities are not clearly elucidated. Most studies on the role of Tregs in T1DM were performed on peripheral blood rather than pancreas or pancreatic lymph nodes. Tissue-based studies are more difficult to perform, and there is a lack of histological data to support the role of Tregs in T1DM. In spite of this, strategies to increase Treg cell number and/or function have been viewed as potential therapeutic approaches in treating T1DM, and several clinical trials using these strategies have already emerged. Notably, many trials fail to demonstrate clinical response even when Treg treatment successfully boosts Tregs. In view of this, whether a failure of Tregs does exist and contribute to the development of T1DM and whether more Tregs would be clinically beneficial to patients should be carefully taken into consideration before applying Tregs as treatments in T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. van Belle TL, Coppieters KT, von Herrath MG (2011) Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 91:79–118

    Article  PubMed  CAS  Google Scholar 

  2. Eisenbarth GS (1986) Type I, diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368

    Article  PubMed  CAS  Google Scholar 

  3. Chen W, Xie A, Chan L (2013) Mechanistic basis of immunotherapies for type 1 diabetes mellitus. Transl Res : J Lab Clin Med 161:217–229

    Article  CAS  Google Scholar 

  4. Askenasy EM, Askenasy N (2013) Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity? Autoimmun Rev 12:633–637

    Article  PubMed  CAS  Google Scholar 

  5. Gagnerault MC, Luan JJ, Lotton C, Lepault F (2002) Pancreatic lymph nodes are required for priming of beta cell reactive T cells in NOD mice. J Exp Med 196:369–377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Xiao J, Liu C, Li G, Peng S, Hu J, Qu L et al (2013) PDCD5 negatively regulates autoimmunity by upregulating FOXP3(+) regulatory T cells and suppressing Th17 and Th1 responses. J Autoimmun 47:34–44

    Article  PubMed  CAS  Google Scholar 

  7. Selmi C (2013) Autoimmunity in 2012. Clin Rev Allergy Immunol 45:290–301

    Article  PubMed  CAS  Google Scholar 

  8. Walker LS (2013) Treg and CTLA-4: two intertwining pathways to immune tolerance. J Autoimmun 45:49–57

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Longhi MS, Ma Y, Grant CR, Samyn M, Gordon P, Mieli-Vergani G et al (2013) T-regs in autoimmune hepatitis-systemic lupus erythematosus/mixed connective tissue disease overlap syndrome are functionally defective and display a Th1 cytokine profile. J Autoimmun 41:146–151

    Article  PubMed  CAS  Google Scholar 

  10. Peterson RA (2012) Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 40:186–204

    Article  PubMed  CAS  Google Scholar 

  11. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  PubMed  CAS  Google Scholar 

  12. Battaglia M, Roncarolo MG (2011) Immune intervention with T regulatory cells: past lessons and future perspectives for type 1 diabetes. Semin Immunol 23:182–194

    Article  PubMed  CAS  Google Scholar 

  13. Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9:239–244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Venigalla RK, Guttikonda PJ, Eckstein V, Ho AD, Sertel S, Lorenz HM et al (2012) Identification of a human Th1-like IFNgamma-secreting Treg subtype deriving from effector T cells. J Autoimmun 39:377–387

    Article  PubMed  CAS  Google Scholar 

  15. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  16. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science (New York, NY) 299:1057–1061

    Article  CAS  Google Scholar 

  17. You S, Thieblemont N, Alyanakian MA, Bach JF, Chatenoud L (2006) Transforming growth factor-beta and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol Rev 212:185–202

    Article  PubMed  CAS  Google Scholar 

  18. Gershon RK, Kondo K (1970) Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18:723–737

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Benacerraf B, Kapp JA, Debre P, Pierce CW, de la Croix F (1975) The stimulation of specific suppressor T cells in genetic non-responder mice by linear random copolymers of L-amino acids. Transplant Rev 26:21–38

    PubMed  CAS  Google Scholar 

  20. Bach JF, Boitard C, Yasunami R, Dardenne M (1990) Control of diabetes in NOD mice by suppressor cells. J Autoimmun 3(Suppl 1):97–100

    Article  PubMed  Google Scholar 

  21. Boitard C, Yasunami R, Dardenne M, Bach JF (1989) T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J Exp Med 169:1669–1680

    Article  PubMed  CAS  Google Scholar 

  22. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (2011) Pillars article: immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. J Immunol (Baltimore, Md: 1950), 186:3808–3821

  23. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Thornton AM, Shevach EM (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol (Baltimore, Md: 1950) 164:183–190

    Article  CAS  Google Scholar 

  26. Piccirillo CA, Tritt M, Sgouroudis E, Albanese A, Pyzik M, Hay V (2005) Control of type 1 autoimmune diabetes by naturally occurring CD4+CD25+ regulatory T lymphocytes in neonatal NOD mice. Ann N Y Acad Sci 1051:72–87

    Article  PubMed  CAS  Google Scholar 

  27. Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4:337–342

    Article  PubMed  CAS  Google Scholar 

  28. Katoh H, Zheng P, Liu Y (2013) FOXP3: genetic and epigenetic implications for autoimmunity. J Autoimmun 41:72–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J et al (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 199:1455–1465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Sarween N, Chodos A, Raykundalia C, Khan M, Abbas AK, Walker LS (2004) CD4+CD25+ cells controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. J Immunol (Baltimore, Md: 1950) 173:2942–2951

    Article  CAS  Google Scholar 

  31. Jaeckel E, von Boehmer H, Manns MP (2005) Antigen-specific FoxP3-transduced T-cells can control established type 1 diabetes. Diabetes 54:306–310

    Article  PubMed  CAS  Google Scholar 

  32. Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H et al (2002) CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Weber SE, Harbertson J, Godebu E, Mros GA, Padrick RC, Carson BD et al (2006) Adaptive islet-specific regulatory CD4 T cells control autoimmune diabetes and mediate the disappearance of pathogenic Th1 cells in vivo. J Immunol (Baltimore, Md: 1950) 176:4730–4739

    Article  CAS  Google Scholar 

  34. Van YH, Lee WH, Ortiz S, Lee MH, Qin HJ, Liu CP (2009) All-trans retinoic acid inhibits type 1 diabetes by T regulatory (Treg)-dependent suppression of interferon-gamma-producing T-cells without affecting Th17 cells. Diabetes 58:146–155

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Bluestone JA (2005) Regulatory T-cell therapy: is it ready for the clinic? Nat Rev Immunol 5:343–349

    Article  PubMed  CAS  Google Scholar 

  36. Tritt M, Sgouroudis E (2008) d’Hennezel E, Albanese A, Piccirillo CA. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 57:113–123

    Article  PubMed  CAS  Google Scholar 

  37. Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P et al (2006) Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 7:83–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Feuerer M, Shen Y, Littman DR, Benoist C, Mathis D (2009) How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31:654–664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Zheng SG, Wang JH, Gray JD, Soucier H, Horwitz DA (2004) Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol (Baltimore, Md: 1950) 172:5213–5221

    Article  CAS  Google Scholar 

  40. Tonkin DR, Haskins K (2009) Regulatory T cells enter the pancreas during suppression of type 1 diabetes and inhibit effector T cells and macrophages in a TGF-beta-dependent manner. Eur J Immunol 39:1313–1322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Bluestone JA, Tang Q (2005) How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol 17:638–642

    Article  PubMed  CAS  Google Scholar 

  42. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science (New York, NY) 322:271–275

    Article  CAS  Google Scholar 

  43. Romo-Tena J, Gomez-Martin D, Alcocer-Varela J (2013) CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev 12:1171–1176

    Article  PubMed  CAS  Google Scholar 

  44. Lee MH, Lee WH, Todorov I, Liu CP (2010) CD4+ CD25+ regulatory T cells prevent type 1 diabetes preceded by dendritic cell-dominant invasive insulitis by affecting chemotaxis and local invasiveness of dendritic cells. J Immunol (Baltimore, Md: 1950) 185:2493–2501

    Article  CAS  Google Scholar 

  45. Cottrez F, Groux H (2001) Regulation of TGF-beta response during T cell activation is modulated by IL-10. J Immunol (Baltimore, Md: 1950) 167:773–778

    Article  CAS  Google Scholar 

  46. Moore KW, de Waal MR, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Huang Z, Sun R, Tian Z, Wei H (2012) IFN-gamma induced by IL-12 administration prevents diabetes by inhibiting pathogenic IL-17 production in NOD mice. J Autoimmun 38:20–28

    Article  PubMed  CAS  Google Scholar 

  48. Scheffold A, Huhn J, Hofer T (2005) Regulation of CD4+CD25+ regulatory T cell activity: it takes (IL-)two to tango. Eur J Immunol 35:1336–1341

    Article  PubMed  CAS  Google Scholar 

  49. Edwards LJ, Evavold BD (2013) Destabilization of peptide:MHC interaction induces IL-2 resistant anergy in diabetogenic T cells. J Autoimmun 44:82–90

    Article  PubMed  CAS  Google Scholar 

  50. Peng H, Tian Z. NK (2013) Cell trafficking in health and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol

  51. Kachapati K, Bednar KJ, Adams DE, Wu Y, Mittler RS, Jordan MB et al (2013) Recombinant soluble CD137 prevents type one diabetes in nonobese diabetic mice. J Autoimmun 47:94–103

    Article  PubMed  CAS  Google Scholar 

  52. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K et al (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109:131–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Ryba M, Rybarczyk-Kapturska K, Zorena K, Mysliwiec M, Mysliwska J (2011) Lower frequency of CD62L(high) and higher frequency of TNFR2(+) Tregs are associated with inflammatory conditions in type 1 diabetic patients. Mediat Inflamm 2011:645643

    Article  CAS  Google Scholar 

  54. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes 54:92–99

    Article  PubMed  CAS  Google Scholar 

  55. Putnam AL, Vendrame F, Dotta F, Gottlieb PA (2005) CD4+CD25high regulatory T cells in human autoimmune diabetes. J Autoimmun 24:55–62

    Article  PubMed  CAS  Google Scholar 

  56. Luczynski W, Wawrusiewicz-Kurylonek N, Stasiak-Barmuta A, Urban R, Ilendo E, Urban M et al (2009) Diminished expression of ICOS, GITR and CTLA-4 at the mRNA level in T regulatory cells of children with newly diagnosed type 1 diabetes. Acta Biochim Pol 56:361–370

    PubMed  CAS  Google Scholar 

  57. Lawson JM, Tremble J, Dayan C, Beyan H, Leslie RD, Peakman M et al (2008) Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clin Exp Immunol 154:353–359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Brusko TM, Wasserfall CH, Clare-Salzler MJ, Schatz DA, Atkinson MA (2005) Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes 54:1407–1414

    Article  PubMed  CAS  Google Scholar 

  59. Schneider A, Rieck M, Sanda S, Pihoker C, Greenbaum C, Buckner JH (2008) The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. J Immunol (Baltimore, Md: 1950) 181:7350–7355

    Article  CAS  Google Scholar 

  60. Monti P, Scirpoli M, Maffi P, Piemonti L, Secchi A, Bonifacio E et al (2008) Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+FOXP3+ regulatory T-cells. Diabetes 57:2341–2347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Glisic-Milosavljevic S, Waukau J, Jailwala P, Jana S, Khoo HJ, Albertz H et al (2007) At-risk and recent-onset type 1 diabetic subjects have increased apoptosis in the CD4+CD25+ T-cell fraction. PLoS One 2:e146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hughson A, Bromberg I, Johnson B, Quataert S, Jospe N, Fowell DJ (2011) Uncoupling of proliferation and cytokines from suppression within the CD4+CD25+Foxp3+ T-cell compartment in the 1st year of human type 1 diabetes. Diabetes 60:2125–2133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Glisic S, Ehlenbach S, Jailwala P, Waukau J, Jana S, Ghosh S (2010) Inducible regulatory T cells (iTregs) from recent-onset type 1 diabetes subjects show increased in vitro suppression and higher ITCH levels compared with controls. Cell Tissue Res 339:585–595

    Article  PubMed  CAS  Google Scholar 

  64. Ryba-Stanislawowska M, Skrzypkowska M, Mysliwska J, Mysliwiec M (2013) The serum IL-6 profile and Treg/Th17 peripheral cell populations in patients with type 1 diabetes. Mediat Inflamm 2013:205284

    Article  CAS  Google Scholar 

  65. McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA et al (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol (Baltimore, Md: 1950) 186:3918–3926

    Article  CAS  Google Scholar 

  66. Du W, Shen YW, Lee WH, Wang D, Paz S, Kandeel F et al (2013) Foxp3+ Treg expanded from patients with established diabetes reduce Helios expression while retaining normal function compared to healthy individuals. PLoS One 8:e56209

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Brusko T, Wasserfall C, McGrail K, Schatz R, Viener HL, Schatz D et al (2007) No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes 56:604–612

    Article  PubMed  CAS  Google Scholar 

  68. Marwaha AK, Crome SQ, Panagiotopoulos C, Berg KB, Qin H, Ouyang Q et al (2010) Cutting edge: increased IL-17-secreting T cells in children with new-onset type 1 diabetes. J Immunol (Baltimore, Md: 1950) 185:3814–3818

    Article  CAS  Google Scholar 

  69. Alonso N, Martinez-Arconada MJ, Granada ML, Soldevila B, Canton A, Mate JL et al (2009) Regulatory T cells in type 1 diabetic patients with autoimmune chronic atrophic gastritis. Endocrine 35:420–428

    Article  PubMed  CAS  Google Scholar 

  70. Haseda F, Imagawa A, Murase-Mishiba Y, Terasaki J, Hanafusa T (2013) CD4(+) CD45RA(-) FoxP3high activated regulatory T cells are functionally impaired and related to residual insulin-secreting capacity in patients with type 1 diabetes. Clin Exp Immunol 173:207–216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Badami E, Sorini C, Coccia M, Usuelli V, Molteni L, Bolla AM et al (2011) Defective differentiation of regulatory FoxP3+ T cells by small-intestinal dendritic cells in patients with type 1 diabetes. Diabetes 60:2120–2124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Ferraro A, Socci C, Stabilini A, Valle A, Monti P, Piemonti L et al (2011) Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes 60:2903–2913

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S (2009) Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci U S A 106:1903–1908

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP et al (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Long SA, Cerosaletti K, Bollyky PL, Tatum M, Shilling H, Zhang S et al (2010) Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes 59:407–415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Nti BK, Markman JL, Bertera S, Styche AJ, Lakomy RJ, Subbotin VM et al (2012) Treg cells in pancreatic lymph nodes: the possible role in diabetogenesis and beta cell regeneration in a T1D model. Cell Mol Immunol 9:455–463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Green EA, Choi Y, Flavell RA (2002) Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16:183–191

    Article  PubMed  CAS  Google Scholar 

  80. Montane J, Bischoff L, Soukhatcheva G, Dai DL, Hardenberg G, Levings MK et al (2011) Prevention of murine autoimmune diabetes by CCL22-mediated Treg recruitment to the pancreatic islets. J Clin Invest 121:3024–3028

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Beaudoin L, Diana J, Ghazarian L, Simoni Y, Boitard C, Lehuen A. (2014) Plasmacytoid dendritic cells license regulatory T cells, upon iNKT-cell stimulation, to prevent autoimmune diabetes. European journal of immunology

  82. Luo X, Tarbell KV, Yang H, Pothoven K, Bailey SL, Ding R et al (2007) Dendritic cells with TGF-beta1 differentiate naive CD4+CD25− T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 104:2821–2826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204:191–201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Van Belle TL, Ling E, Haase C, Bresson D, Urso B, von Herrath MG (2013) NKG2D blockade facilitates diabetes prevention by antigen-specific Tregs in a virus-induced model of diabetes. J Autoimmun 40:66–73

    Article  PubMed  CAS  Google Scholar 

  85. Orban T, Farkas K, Jalahej H, Kis J, Treszl A, Falk B et al (2010) Autoantigen-specific regulatory T cells induced in patients with type 1 diabetes mellitus by insulin B-chain immunotherapy. J Autoimmun 34:408–415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Hjorth M, Axelsson S, Ryden A, Faresjo M, Ludvigsson J, Casas R (2011) GAD-alum treatment induces GAD65-specific CD4+CD25highFOXP3+ cells in type 1 diabetic patients. Clin Immunol (Orlando, Fla) 138:117–126

    Article  CAS  Google Scholar 

  87. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D et al (2005) A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54:1763–1769

    Article  PubMed  CAS  Google Scholar 

  88. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608

    Article  PubMed  CAS  Google Scholar 

  89. Ludvigsson J, Faresjo M, Hjorth M, Axelsson S, Cheramy M, Pihl M et al (2008) GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 359:1909–1920

    Article  PubMed  CAS  Google Scholar 

  90. Axelsson S, Cheramy M, Hjorth M, Pihl M, Akerman L, Martinuzzi E et al (2011) Long-lasting immune responses 4 years after GAD-alum treatment in children with type 1 diabetes. PLoS One 6:e29008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Couri CE, Oliveira MC, Stracieri AB, Moraes DA, Pieroni F, Barros GM et al (2009) C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA : J Am Med Assoc 301:1573–1579

    Article  CAS  Google Scholar 

  92. Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F et al (2007) Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA : J Am Med Assoc 297:1568–1576

    Article  CAS  Google Scholar 

  93. Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM et al (2011) Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C-peptide. Diabetes Care 34:2567–2569

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Haller MJ, Wasserfall CH, Hulme MA, Cintron M, Brusko TM, McGrail KM et al (2013) Autologous umbilical cord blood infusion followed by oral docosahexaenoic acid and vitamin D supplementation for C-peptide preservation in children with Type 1 diabetes. Biol Blood Marrow Transplant : J Am Soc Blood Marrow Transplant 19:1126–1129

    Article  CAS  Google Scholar 

  95. Giannopoulou EZ, Puff R, Beyerlein A, von Luettichau I, Boerschmann H, Schatz D et al (2014) Effect of a single autologous cord blood infusion on beta-cell and immune function in children with new onset type 1 diabetes: a non-randomized, controlled trial. Pediatr Diabetes 15:100–109

    Article  PubMed  CAS  Google Scholar 

  96. Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z et al (2012) Reversal of type 1 diabetes via islet beta cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med 10:3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Ishikawa H, Ochi H, Chen ML, Frenkel D, Maron R, Weiner HL (2007) Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes 56:2103–2109

    Article  PubMed  CAS  Google Scholar 

  98. Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol (Baltimore, Md: 1950) 158:2947–2954

    CAS  Google Scholar 

  99. Daifotis AG, Koenig S, Chatenoud L, Herold KC (2013) Anti-CD3 clinical trials in type 1 diabetes mellitus. Clin Immunol (Orlando, Fla) 149:268–278

    Article  CAS  Google Scholar 

  100. Herold KC, Gitelman SE, Ehlers MR, Gottlieb PA, Greenbaum CJ, Hagopian W et al (2013) Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62:3766–3774

    Article  PubMed  CAS  Google Scholar 

  101. Keymeulen B, Walter M, Mathieu C, Kaufman L, Gorus F, Hilbrands R et al (2010) Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia 53:614–623

    Article  PubMed  CAS  Google Scholar 

  102. Ludvigsson J, Krisky D, Casas R, Battelino T, Castano L, Greening J et al (2012) GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N Engl J Med 366:433–442

    Article  PubMed  CAS  Google Scholar 

  103. Wherrett DK, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R et al (2011) Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet 378:319–327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Chaillous L, Lefevre H, Thivolet C, Boitard C, Lahlou N, Atlan-Gepner C et al (2000) Oral insulin administration and residual beta-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Diabete Insuline Orale group. Lancet 356:545–549

    Article  PubMed  CAS  Google Scholar 

  105. Ergun-Longmire B, Marker J, Zeidler A, Rapaport R, Raskin P, Bode B et al (2004) Oral insulin therapy to prevent progression of immune-mediated (type 1) diabetes. Ann N Y Acad Sci 1029:260–277

    Article  PubMed  CAS  Google Scholar 

  106. Huurman VA, van der Meide PE, Duinkerken G, Willemen S, Cohen IR, Elias D et al (2008) Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin Exp Immunol 152:488–497

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Dahan R, Gebe JA, Preisinger A, James EA, Tendler M, Nepom GT et al (2013) Antigen-specific immunomodulation for type 1 diabetes by novel recombinant antibodies directed against diabetes-associates auto-reactive T cell epitope. J Autoimmun 47:83–93

    Article  PubMed  CAS  Google Scholar 

  108. Zhao Y, Lin B, Darflinger R, Zhang Y, Holterman MJ, Skidgel RA (2009) Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS One 4:e4226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Mesples A, Majeed N, Zhang Y, Hu X (2013) Early immunotherapy using autologous adult stem cells reversed the effect of anti-pancreatic islets in recently diagnosed type 1 diabetes mellitus: preliminary results. Med Sci Monit:Int Med J Exp Clin Res 19:852–857

    Article  Google Scholar 

  110. Ambery P, Donner TW, Biswas N, Donaldson J, Parkin J, Dayan CM (2014) Efficacy and safety of low-dose otelixizumab anti-CD3 monoclonal antibody in preserving C-peptide secretion in adolescent type 1 diabetes: DEFEND-2, a randomized, placebo-controlled, double-blind, multi-centre study. DiabetMed:J Br Diabet Assoc 31:399–402

    CAS  Google Scholar 

  111. Lazar L, Ofan R, Weintrob N, Avron A, Tamir M, Elias D et al (2007) Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed type 1 diabetes: a randomised, double-blind phase II study. Diabetes Metab Res Rev 23:286–291

    Article  PubMed  CAS  Google Scholar 

  112. Buzzetti R, Cernea S, Petrone A, Capizzi M, Spoletini M, Zampetti S et al (2011) C-peptide response and HLA genotypes in subjects with recent-onset type 1 diabetes after immunotherapy with DiaPep277: an exploratory study. Diabetes 60:3067–3072

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. Gu W, Hu J, Wang W, Li L, Tang W, Sun S et al (2012) Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care 35:1413–1419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.81170725, 81070672), Program for Changjiang Scholars and Innovative Research Team in University (IRT1195), the National key technology R&D program (2012BAI02B04), Research Fund for the Doctoral Program of Higher Education of China 20120162110044; Yufei Xiang is supposed by a European Foundation for the Study of Diabetes-China Diabetes Society (EFSD-CDS) fellowship (2013).

Conflict of Interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, T., Xiang, Y., Chang, C. et al. Alteration of Regulatory T Cells in Type 1 Diabetes Mellitus: A Comprehensive Review. Clinic Rev Allerg Immunol 47, 234–243 (2014). https://doi.org/10.1007/s12016-014-8440-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-014-8440-0

Keywords

Navigation