Skip to main content

Advertisement

Log in

Inhibition of the Interleukin-6 Signaling Pathway: A Strategy to Induce Immune Tolerance

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Interleukin-6 (IL-6) is a proinflammatory cytokine that is multifunctional, with multifaceted effects. IL-6 signaling plays a vital role in the control of the differentiation and activation of T lymphocytes by inducing different pathways. In particular, IL-6 controls the balance between Th17 cells and regulatory T (Treg) cells. An imbalance between Treg and Th17 cells is thought to play a pathological role in various immune-mediated diseases. Deregulated IL-6 production and signaling are associated with immune tolerance. Therefore, methods of inhibiting IL-6 production, receptors, and signaling pathways are strategies that are currently being widely pursued to develop novel therapies that induce immune tolerance. This survey aims to provide an updated account of why IL-6 inhibitors are becoming a vital class of drugs that are potentially useful for inducing immune tolerance as a treatment for autoimmune diseases and transplant rejection. In addition, we discuss the effect of targeting IL-6 in recent experimental and clinical studies on autoimmune diseases and transplant rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hirano T, Yasukawa K, Harada H et al (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324(6092):73–76

    PubMed  CAS  Google Scholar 

  2. Neurath MF, Finotto S (2011) IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 22(2):83–89

    PubMed  CAS  Google Scholar 

  3. Heikkila K, Ebrahim S, Lawlor DA (2008) Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer 44(7):937–945

    PubMed  CAS  Google Scholar 

  4. Kimura A, Kishimoto T (2010) IL-6: regulator of Treg/Th17 balance. Eur J Immunol 40(7):1830–1835

    PubMed  CAS  Google Scholar 

  5. Toshio T, Atsushi O, Yoshihito S, Masashi N, Atsushi K, Tadamitsu K (2012) Therapeutic implications of tocilizumab, a humanized anti-interleukin-6 receptor antibody, for various immune-mediated diseases: an update review. Curr Rheumatol Rev 8(3):209–226

    Google Scholar 

  6. Naka T, Nishimoto N, Kishimoto T (2002) The paradigm of IL-6: from basic science to medicine. Arthritis Res 4(Suppl 3):S233–S242

    PubMed  PubMed Central  Google Scholar 

  7. Kishimoto T (2006) Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Res Ther 8(Suppl 2):S2

    PubMed  PubMed Central  Google Scholar 

  8. Hassan HT, Drexler HG (1995) Interleukins and colony stimulating factors in human myeloid leukemia cell lines. Leuk Lymphoma 20(1–2):1–15

    PubMed  CAS  Google Scholar 

  9. Heike T, Nakahata T (2002) Ex vivo expansion of hematopoietic stem cells by cytokines. Biochim Biophys Acta 1592(3):313–321

    PubMed  CAS  Google Scholar 

  10. Tartour E, Pere H, Maillere B et al (2011) Angiogenesis and immunity: a bidirectional link potentially relevant for the monitoring of antiangiogenic therapy and the development of novel therapeutic combination with immunotherapy. Cancer Metastasis Rev 30(1):83–95

    PubMed  CAS  Google Scholar 

  11. Smith AJ, Humphries SE (2009) Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine Growth Factor Rev 20(1):43–59

    PubMed  CAS  Google Scholar 

  12. Garbers C, Hermanns HM, Schaper F et al (2012) Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev 23(3):85–97

    PubMed  CAS  Google Scholar 

  13. Chalaris A, Garbers C, Rabe B, Rose-John S, Scheller J (2011) The soluble interleukin 6 receptor: generation and role in inflammation and cancer. Eur J Cell Biol 90(6):484–494

    PubMed  CAS  Google Scholar 

  14. Rose-John S, Scheller J, Elson G, Jones SA (2006) Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 80(2):227–236

    PubMed  CAS  Google Scholar 

  15. Ataie-Kachoie P, Pourgholami MH, Morris DL (2013) Inhibition of the IL-6 signaling pathway: a strategy to combat chronic inflammatory diseases and cancer. Cytokine Growth Factor Rev 24(2):163–173

    PubMed  CAS  Google Scholar 

  16. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt. 1):1–20

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Nakajima T, Kinoshita S, Sasagawa T et al (1993) Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci U S A 90(6):2207–2211

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004

    PubMed  CAS  Google Scholar 

  19. Chien CM, Lin KL, Su JC et al (2010) Naphtho[1,2-b] furan-4,5-dione induces apoptosis of oral squamous cell carcinoma: involvement of EGF receptor/PI3K/Akt signaling pathway. Eur J Pharmacol 636(1–3):52–58

    PubMed  CAS  Google Scholar 

  20. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    PubMed  CAS  Google Scholar 

  21. Mangan PR, Harrington LE, O’Quinn DB et al (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441(7090):231–234

    PubMed  CAS  Google Scholar 

  22. Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor 6. IL-6 and Tregs RORgt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133

    PubMed  CAS  Google Scholar 

  23. Yang XO, Pappu BP, Nurieva R et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORa and RORg. Immunity 28(1):29–39

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Diveu C, McGeachy MJ, Boniface K et al (2009) IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol 182(9):5748–5756

    PubMed  CAS  Google Scholar 

  25. Mathur AN, Chang HC, Zisoulis DG et al (2007) Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 178(8):4901–4907

    PubMed  CAS  Google Scholar 

  26. Kimura A, Naka T, Kishimoto T (2007) IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci U S A 104(29):12099–12104

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453(192):236–240

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27(1):485–517

    PubMed  CAS  Google Scholar 

  29. Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11(1):7–13

    PubMed  CAS  Google Scholar 

  30. Sakaguchi S, Ono M, Setoguchi R et al (2006) Foxp3+CD25+CD4+ natural regulatory T cells in dominant self tolerance and autoimmune disease. Immunol Rev 212:8–27

    PubMed  CAS  Google Scholar 

  31. Chadha R, Heidt S, Jones ND, Wood KJ (2011) Th17: contributors to allograft rejection and a barrier to the induction of transplantation tolerance. Transplantation 91(9):939–945

    PubMed  Google Scholar 

  32. Atalar K, Afzali B, Lord G, Lombardi G (2009) Relative roles of Th1 and Th17 effector cells in allograft rejection. Curr Opin Organ Transplant 14(1):23–29

    PubMed  Google Scholar 

  33. Hanidziar D, Koulmanda M (2010) Inflammation and the balance of Treg and Th17 cells in transplant rejection and tolerance. Curr Opin Organ Transplant 15(4):411–415

    PubMed  Google Scholar 

  34. Benghiat FS, Charbonnier LM, Vokaer B, De Wilde V, Le Moine A (2009) Interleukin 17-producing T helper cells in alloimmunity. Transplant Rev 23(1):11–18

    Google Scholar 

  35. Gorbacheva V, Fan R, Li X, Valujskikh A (2010) Interleukin-17 promotes early allograft inflammation. Am J Pathol 177(3):1265–1273

    PubMed  CAS  Google Scholar 

  36. Braun RK, Molitor-Dart M, Wigfield C et al (2009) Transfer of tolerance to collagen type V suppresses T-helper-cell-17 lymphocyte-mediated acute lung transplant rejection. Transplantation 88(12):1341–1348

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Faust SM, Lu G, Marini BL et al (2009) Role of T cell TGFbeta signaling and IL-17 in allograft acceptance and fibrosis associated with chronic rejection. J Immunol 183(11):7297–7306

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Hill GR, Olver SD, Kuns RD et al (2010) Stem cell mobilization with G-CSF induces type 17 differentiation and promotes scleroderma. Blood 116(5):819–828

    PubMed  CAS  Google Scholar 

  39. Iclozan C, Yu Y, Liu C et al (2010) T helper17 cells are sufficient but not necessary to induce acute graft-versus-host disease. Biol Blood Marrow Transplant 16(2):170–178

    PubMed  CAS  Google Scholar 

  40. Carlson MJ, West ML, Coghill JM, Panoskaltsis-Mortari A, Blazar BR, Serody JS (2009) In vitro-differentiated TH17 cells mediate lethal acute graft-versus-host disease with severe cutaneous and pulmonary pathologic manifestations. Blood 113(6):1365–1374

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Chen X, Vodanovic-Jankovic S, Johnson B, Keller M, Komorowski R, Drobyski WR (2007) Absence of regulatory T-cell control of TH1 and TH17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood 110(10):3804–3813

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Yi T, Zhao D, Lin CL et al (2008) Absence of donor Th17 leads to augmented Th1 differentiation and exacerbated acute graft-versus-host disease. Blood 112(5):2101–2110

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Murphy WJ, Welniak LA, Taub DD et al (1998) Differential effects of the absence of interferon-gamma and IL-4 in acute graft-versus-host disease after allogeneic bone marrow transplantation in mice. J Clin Invest 102(9):1742–1748

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Yang YG, Dey BR, Sergio JJ, Pearson DA, Sykes M (1998) Donor-derived interferon gamma is required for inhibition of acute graft-versus-host disease by interleukin 12. J Clin Invest 102(12):2126–2135

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Yi T, Chen Y, Wang L et al (2009) Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft-versus host disease. Blood 114(14):3101–3112

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Dander E, Balduzzi A, Zappa G et al (2009) Interleukin-17-producing T-helper cells as new potential player mediating graft-versus-host disease in patients undergoing allogeneic stem-cell transplantation. Transplantation 88(11):1261–1272

    PubMed  CAS  Google Scholar 

  47. Nishimori H, Maeda Y, Teshima T et al (2012) Synthetic retinoid Am80 ameliorates chronic graft-versus-host disease by down-regulating Th1 and Th17. Blood 119(1):285–295

    PubMed  CAS  Google Scholar 

  48. Fbrega E, Lopez-Hoyos M, San Segundo D, Casafont F, Benito MJ, Pons-Romero F (2009) Effect of immunosuppressant blood levels on serum concentration of interleukin-17 and-23 in stable liver transplant recipients. Transplant Proc 41(3):1025–1027

    Google Scholar 

  49. Hsieh HG, Loong CC, Lui WY, Chen A, Lin CY (2001) IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection. Transpl Int 14(5):287–298

    PubMed  CAS  Google Scholar 

  50. Loong CC, Hsieh HG, Lui WY, Chen A, Lin CY (2002) Evidence for the early involvement of interleukin 17 in human and experimental renal allograft rejection. J Pathol 197(3):322–332

    PubMed  CAS  Google Scholar 

  51. Vanaudenaerde BM, Dupont LJ, Wuyts WA et al (2006) The role of interleukin interleukin-17 during acute rejection after lung transplantation. Eur Respir J 27(4):779–787

    PubMed  CAS  Google Scholar 

  52. Zhao XY, Xu LL, Lu SY, Huang XJ (2011) IL-17-producing T cells contribute to acute graft-versus-host disease in patients undergoing unmanipulated blood and marrow transplantation. Eur J Immunol 41(2):514–526

    PubMed  CAS  Google Scholar 

  53. Zhao XY, Lv M, Xu LL, Qian X, Huang XJ (2013) Donor Th17 cells and IL-21 may contribute to the development of chronic graft-versus-host disease after allogeneic transplantation. Eur J Immunol 43(3):838–850

    PubMed  CAS  Google Scholar 

  54. Weisdorf D, Zhang MJ, Arora M, Horowitz MM, Rizzo JD, Eapen M (2012) Graft-versus-host disease induced graft-versus-leukemia effect: greater impact on relapse and disease-free survival after reduced intensity conditioning. Biol Blood Marrow Transplant 18(11):1727–1733

    PubMed  PubMed Central  Google Scholar 

  55. Baron F, Labopin M, Niederwieser D et al (2012) Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: a report from the acute leukemia working party of the European group for blood and marrow transplantation. Leukemia 26(12):2462–2468

    PubMed  CAS  Google Scholar 

  56. Coghill JM, Sarantopoulos S, Moran TP, Murphy WJ, Blazar BR, Serody JS (2011) Effector CD4+ T cells, the cytokines they generate, and GVHD: something old and something new. Blood 117(12):3268–3276

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Carvalho A, Cunha C, Di Ianni M et al (2010) Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplant 45(11):1645–1652

    PubMed  CAS  Google Scholar 

  58. Liseth K, Sjo M, Paulsen K, Bruserud O, Ersvaer E (2010) Early pre-engraftment, functional, in vitro responsiveness of T lymphocytes in allotransplanted, acute leukemia patients: proliferation and release of a broad profile of cytokines, possibly predictive of graft-versus-host disease. Eur Cytokine Netw 21(1):40–49

    PubMed  CAS  Google Scholar 

  59. Kappel LW, Goldberg GL, King CG et al (2009) IL-17 contributes to CD4-mediated graft-versus-host disease. Blood 113(4):945–952

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Yu Y, Wang D, Liu C et al (2011) Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORγt. Blood 118(18):5011–5020

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Teshima T, Maeda Y, Ozaki K (2011) Regulatory T-cells and IL-17-producing cells in graft-versus-host disease. Immunotherapy 3(7):833–852

    PubMed  CAS  Google Scholar 

  62. Broady R, Yu J, Chow V et al (2010) GVHD is associated with the expansion of tissue-localized Th1 and not Th17 cells. Blood 116(25):5748–5751

    PubMed  CAS  Google Scholar 

  63. Ratajczak P, Janin A, Peffault de Latour R et al (2010) Th17/Treg ratio in human graft-versus-host disease. Blood 116(7):1165–1171

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Zhang Y, Liu C, Yang XM, Lv Y (2007) Role and mechanisms of CD4+CD25+ regulatory T cells in the induction and maintenance of transplantation tolerance. Transplant Immunol 17(2):120–129

    CAS  Google Scholar 

  65. Zheng SG, Meng L, Wang JH et al (2006) Transfer of regulatory T cells generated ex vivo modifies graft rejection through induction of tolerogenic CD4+CD25+ cells in the recipient. Int Immunol 18(2):279–289

    PubMed  CAS  Google Scholar 

  66. Kingsley CI, Karim M, Bushell AR, Wood KJ (2002) CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J Immunol 168(3):1080–1086

    PubMed  CAS  Google Scholar 

  67. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 196(3):389–399

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22(4):531–562

    PubMed  CAS  Google Scholar 

  69. Dai Z, Li Q, Wang Y et al (2004) CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 113(2):310–317

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Trenado A, Charlotte F, Fisson S et al (2003) Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest 112(11):1688–1696

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Hall BM, Pearce NW, Gurley KE, Dorsch SE (1990) Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med 171(1):141–157

    PubMed  CAS  Google Scholar 

  72. Hara M, Kingsley CI, Niimi M et al (2001) IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166(6):3789–3796

    PubMed  CAS  Google Scholar 

  73. Taylor PA, Noelle RJ, Blazar BR (2001) CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med 193(11):1311–1318

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L (2001) Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 167(4):1945–1953

    PubMed  CAS  Google Scholar 

  75. Sanchez-Fueyo A, Weber M, Domenig C, Strom TB, Zheng XX (2002) Tracking the immunoregulatory mechanisms active during allograft tolerance. J Immunol 168(5):2274–2281

    PubMed  CAS  Google Scholar 

  76. Graca L, Cobbold SP, Waldmann H (2002) Identification of regulatory T cells in tolerated allografts. J Exp Med 195(12):1641–1646

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    PubMed  CAS  Google Scholar 

  78. Sakaguchi S, Sakaguchi N, Shimizu J et al (2001) Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182(1):18–32

    PubMed  CAS  Google Scholar 

  79. Zheng XX, Sanchez-Fueyo A, Sho M, Domenig C, Sayegh MH, Strom TB (2003) Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 19(4):503–514

    PubMed  CAS  Google Scholar 

  80. van Maurik A, Herber M, Wood KJ, Jones ND (2002) Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T cell mediated graft rejection: implications for anti-CD154 immunotherapy. J Immunol 169(10):5401–5404

    PubMed  Google Scholar 

  81. Trani J, Moore DJ, Jarrett BP et al (2003) CD25+ immunoregulatory CD4 T cells mediate acquired central transplantation tolerance. J Immunol 170(1):279–286

    PubMed  CAS  Google Scholar 

  82. Graca L, Thompson S, Lin CY, Adams E, Cobbold SP, Waldmann H (2002) Both CD4(+)CD25(+) and CD4(+)CD25(−) regulatory cells mediate dominant transplantation tolerance. J Immunol 168(11):5558–5565

    PubMed  CAS  Google Scholar 

  83. Demirkiran A, Kok A, Kwekkeboom J et al (2006) Low circulating regulatory T-cell levels after acute rejection in liver transplantation. Liver Transplant 12(2):277–284

    Google Scholar 

  84. Thornton AM (2006) Signal transduction in CD4+CD25+ regulatory T cells: CD25 and IL-2. Front Biosci 11:921–927

    PubMed  CAS  Google Scholar 

  85. Zorn E, Nelson EA, Mohseni M et al (2006) IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT dependent mechanism and induces the expansion of these cells in vivo. Blood 108(5):1571–1579

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Larsen CP, Elwood ET, Alexander DZ et al (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381(6581):434–438

    PubMed  CAS  Google Scholar 

  87. Takatsuki M, Uemoto S, Inomata Y et al (2001) Weaning of immunosuppression in living donor liver transplant recipients. Transplantation 72(3):449–454

    PubMed  CAS  Google Scholar 

  88. Shoji T, Muniappan A, Guenther DA et al (2005) Long-term acceptance of porcine pulmonary allografts without chronic rejection. Transplant Proc 37(1):72–74

    PubMed  CAS  Google Scholar 

  89. Han CH, Li HF, Wang YX et al (2005) The influence of mycophenolate mofetil upon the maturation and allostimulatory activity of cultured dendritic cell progenitors and the effects of tolerance induction in allograft recipients. Zhonghua YiXue ZaZhi 85(19):1327–1332

    PubMed  CAS  Google Scholar 

  90. Huang WH, Yan Y, Li J, De Boer B, House AK, Bishop GA (2003) A short course of mycophenolate immunosuppression inhibits rejection, but not tolerance, of rat liver allografts in association with inhibition of interleukin-4 and alloantibody responses. Transplantation 76(8):1159–1165

    PubMed  CAS  Google Scholar 

  91. Kish DD, Gorbachev AV, Fairchild RL (2005) CD8+ T cells produce IL-2, which is required for CD4+CD25+ T cell regulation of effector CD8+ T cell development for contact hypersensitivity responses. J Leukoc Biol 78(3):725–735

    PubMed  CAS  Google Scholar 

  92. Jones TR, Ha J, Williams MA et al (2002) The role of the IL-2 pathway in costimulation blockade-resistant rejection of allografts. J Immunol 168(3):1123–1130

    PubMed  CAS  Google Scholar 

  93. Blaha P, Bigenzahn S, Koporc Z et al (2003) The influence of immunosuppressive drugs on tolerance induction through bone marrow transplantation with costimulation blockade. Blood 101(7):2886–2893

    PubMed  CAS  Google Scholar 

  94. Malard F, Bossard C, Brissot E (2014) Increased Th17/Treg ratio in chronic liver GVHD. Bone Marrow Transplant. doi:10.1038/bmt.2013.215

    Google Scholar 

  95. Tanaka T, Narazaki M, Kishimoto T (2011) Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases. FEBS Lett 585(23):3699–3709

    PubMed  CAS  Google Scholar 

  96. Tanaka T, Narazaki M, Kishimoto T (2012) Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol 52:199–219

    PubMed  CAS  Google Scholar 

  97. Nishimoto N, Hashimoto J, Miyasaka N et al (2007) Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x-ray reader-blinded randomized controlled trial of tocilizumab. Ann Rheum Dis 66(9):1162–1167

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Genovese MC, McKay JD, Nasonov EL et al (2008) Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease modifying antirheumatic drug therapy study. Arthritis Rheum 58(10):2968–2980

    PubMed  CAS  Google Scholar 

  99. Emery P, Keystone E, Tony HP et al (2008) IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to antitumor necrosis factor biologicals: results from a 24-week multicentre randomized placebo controlled trial. Ann Rheum Dis 67(11):1516–1523

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Smolen JS, Beaulieu A, Rubbert-Roth A et al (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double blind, placebo-controlled, randomized trial. Lancet 371(9617):987–997

    PubMed  CAS  Google Scholar 

  101. Nishimoto N, Miyasaka N, Yamamoto K et al (2009) Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. Mod Rheumatol 19(1):12–19

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Jones G, Sebba A, Gu J et al (2010) Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann Rheum Dis 69(1):88–96

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Kremer JM, Blanco R, Brzosko M et al (2011) Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum 63(3):609–621

    PubMed  CAS  Google Scholar 

  104. Singh JA, Beg S, Lopez-Olivo MA (2010) Tocilizumab for rheumatoid arthritis. Cochrane Database Syst Rev 7(7):CD008331

    PubMed  Google Scholar 

  105. Nishimoto N, Ito K, Takagi N (2010) Safety and efficacy profiles of tocilizumabmonotherapy in Japanese patients with rheumatoid arthritis: meta-analysis of six initial trials and five long-term extensions. Mod Rheumatol 20(3):222–232

    PubMed  CAS  Google Scholar 

  106. Campbell L, Chen C, Bhagat SS, Parker RA, Ostor AJ (2011) Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systemic literature review and meta-analysis of randomized controlled trials. Rheumatology 50(3):552–562

    PubMed  CAS  Google Scholar 

  107. Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR (1991) Elevated levels of endogenous IL-6 in systemic lupus erythematosus: a putative role in pathogenesis. J Immunol 147(1):117–123

    PubMed  CAS  Google Scholar 

  108. Iwano M, Dohi K, Hirata E et al (1993) Urinary levels of IL-6 in patients with active lupus nephritis. Clin Nephrol 40(1):16–21

    PubMed  CAS  Google Scholar 

  109. Hirohata S, Miyamoto T (1990) Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum 33(5):644–649

    PubMed  CAS  Google Scholar 

  110. Mihara M, Takagi N, Takeda Y, Ohsugi Y (1998) IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/WF1 mice. Clin Exp Immunol 112(5):397–402

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Liang B, Gardner DB, Griswold DE, Bugelski PJ, Song XY (2008) Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 119(3):296–305

    Google Scholar 

  112. Illei GG, Shirota Y, Yarboro CH et al (2010) Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open label phase I dosage-escalation study. Arthritis Rheum 62(2):542–552

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Ball EM, Gibson DS, Bell AL, Rooney MR (2014) Plasma IL-6 levels correlate with clinical and ultrasound measures of arthritis in patients with systemic lupus erythematosus. Lupus 23(1):46–56

    PubMed  CAS  Google Scholar 

  114. Eilertsen GØ, Nikolaisen C, Becker-Merok A, Nossent JC (2011) Interleukin-6 promotes arthritis and joint deformation in patients with systemic lupus erythematosus. Lupus 20(6):607–613

    PubMed  CAS  Google Scholar 

  115. Maeshima K, Ishii K, Torigoe M et al (2012) Successful tocilizumab and tacrolimus treatment in a patient with rheumatoid arthritis complicated by systemic lupus erythematosus. Lupus 21(9):1003–1006

    PubMed  CAS  Google Scholar 

  116. Makol A, Gibson LE, Michet CJ (2012) Successful use of interleukin-6 antagonist tocilizumab in a patient with refractory cutaneous lupus and urticarial vasculitis. J Clin Rheumatol 18(2):92–95

    PubMed  Google Scholar 

  117. Kamata Y, Minota S (2012) Successful treatment of massive intractable pericardial effusion in a patient with systemic lupus erythematosus with tocilizumab. BMJ Case Rep 2012

  118. Hasegawa M, Sato S, Fujimoto M, Ihn H, Kikuchi K, Takehara K (1998) Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J Rheumatol 25(2):308–313

    PubMed  CAS  Google Scholar 

  119. Shima Y, Kuwahara Y, Murota H et al (2010) The skin of patients with systemic sclerosis softened during the treatment with anti-IL-6 receptor antibody tocilizumab. Rheumatology 49(12):2408–2412

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Lundberg I, Ulfgren AK, Nyberg P, Andersson U, Klareskog L (1997) Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum 40(5):865–874

    PubMed  CAS  Google Scholar 

  121. Lepidi H, Frances V, Figarella-Branger D, Bartoli C, Machado-Baeta A, Pellissier JF (1998) Local expression of cytokines in idiopathic inflammatory myopathies. Neuropathol Appl Neurobiol 24(1):73–79

    PubMed  CAS  Google Scholar 

  122. Scuderi F, Mannella F, Marino M, Provenzano C, Bartoccioni E (2006) IL-6-deficient mice show impaired inflammatory response in a model of myosin-induced experimental myositis. J Neuroimmunol 176(1–2):9–15

    PubMed  CAS  Google Scholar 

  123. Okiyama N, Sugihara T, Iwakura Y, Yokozeki H, Miyasaka N, Kohsaka H (2009) Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A. Arthritis Rheum 60(8):2505–2512

    PubMed  CAS  Google Scholar 

  124. Narazaki M, Hagihara K, Shima Y, Ogata A, Kishimoto T, Tanaka T (2011) Therapeutic effect of tocilizumab on two patients with polymyositis. Rheumatology 50(7):1344–1346

    PubMed  Google Scholar 

  125. Salvarani C, Cantini F, Hunder GG (2008) Polymyalgia rheumatica and giant-cell arteritis. Lancet 372(9634):234–245

    PubMed  Google Scholar 

  126. Noris M, Daina E, Gamba S, Bonazzola S, Remuzzi G (1999) Interleukin-6 and RANTES in Takayasu arteritis: a guide for therapeutic decisions? Circulation 100(1):55–60

    PubMed  CAS  Google Scholar 

  127. Nishimoto N, Nakahara H, Yoshio-Hoshino N, Mima T (2008) Successful treatment of a patient with Takayasu arteritis using a humanized anti-interleukin-6 receptor antibody. Arthritis Rheum 58(4):1197–1200

    PubMed  CAS  Google Scholar 

  128. Seitz M, Reichenbach S, Bonel HM, Adler S, Wermelinger F, Villiger PM (2011) Rapid induction of remission in large vessel vasculitis by IL-6 blockade. A case series. Swiss Med Wkly 141:w13156

    PubMed  Google Scholar 

  129. Ito H (2004) Novel therapy for Crohn’s disease targeting IL-6 signaling. Expert Opin Ther Targets 8(4):287–294

    PubMed  CAS  Google Scholar 

  130. Yamamoto M, Yoshizaki K, Kishimoto T, Ito H (2000) IL-6 is required for the development of Th1 cell-mediated murine colitis. J Immunol 164(9):4878–4882

    PubMed  CAS  Google Scholar 

  131. Ito H, Takazoe M, Fukuda Y et al (2004) A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126(4):989–996

    PubMed  CAS  Google Scholar 

  132. Kawai M, Hagihara K, Hirano T et al (2009) Sustained response to tocilizumab, anti-interleukin-6 receptor antibody, in two patients with refractory relapsing polychondritis. Rheumatology 48(3):318–319

    PubMed  CAS  Google Scholar 

  133. Nishida S, Kawasaki T, Kashiwagi H et al (2011) Successful treatment of acquired hemophilia A, complicated by chronic GVHD, with tocilizumab. Mod Rheumatol 21(4):420–422

    PubMed  Google Scholar 

  134. Serada S, Fujimoto M, Mihara M et al (2008) IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 105(26):9041–9046

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Yao Z, Painter SL, Fanslow WC et al (1995) Cutting edge: human IL-17: a novel cytokine derived from T-cells. J Immunol 155(12):5483–5486

    PubMed  CAS  Google Scholar 

  136. Normanton M, Marti LC (2013) Current data on IL-17 and Th17 cells and implications for graft versus host disease. Einstein (Sao Paulo) 11(2):237–246

    Google Scholar 

  137. Kishimoto T (2010) IL-6: from its discovery to clinical applications. Int Immunol 22(5):347–352

    PubMed  CAS  Google Scholar 

  138. Hohki S, Ohguro N, Haruta H et al (2010) Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses. Exp Eye Res 91(2):162–170

    PubMed  CAS  Google Scholar 

  139. Fujimoto M, Serada S, Mihara M et al (2008) Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses. Arthritis Rheum 58(12):3710–3719

    PubMed  CAS  Google Scholar 

  140. Tawara I, Koyama M, Liu C et al (2011) Interleukin-6 modulates graft-versus-host responses after experimental allogeneic bone marrow transplantation. Clin Cancer Res 17(1):77–88

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Huu DL, Matsushita T, Jin G et al (2012) IL-6 blockade attenuates the development of murine sclerodermatous chronic graft-versus-host disease. J Invest Dermatol 132(12):2752–2761

    PubMed  Google Scholar 

  142. Noguchi D, Wakita D, Ohkuri T et al (2011) Blockade of IL-6-signaling inhibits the pathogenesis of CD4+ T cell-mediated lethal graft-versus-host reaction against minor histocompatibility antigen. Immunol Lett 136(2):146–155

    PubMed  CAS  Google Scholar 

  143. Chen X, Das R, Komorowski R et al (2009) Blockade of interleukin-6 signaling augments regulatory T-cell reconstitution and attenuates the severity of graft-versus-host disease. Blood 114(4):891–900

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Chen L, Ahmed E, Wang T et al (2009) TLR signals promote IL-6/IL-17-dependent transplant rejection. J Immunol 182(10):6217–6225

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Riella LV, Yang J, Chock S et al (2013) Jagged2-signaling promotes IL-6-dependent transplant rejection. Eur J Immunol 43(6):1449–1458

    PubMed  CAS  Google Scholar 

  146. Gergis U, Arnason J, Yantiss R et al (2010) Effectiveness and safety of tocilizumab, an anti-interleukin-6 receptor monoclonal antibody, in a patient with refractory GI graft-versus-host disease. J Clin Oncol 28(30):602–604

    Google Scholar 

  147. Drobyski WR, Pasquini M, Kovatovic K et al (2011) Tocilizumab for the treatment of steroid refractory graft-versus-host disease. Biol Blood Marrow Transplant 17(12):1855–1877

    Google Scholar 

  148. Roddy JVF, Haverkos BM, McBride A, et al (2013) Tocilizumab in the treatment of steroid refractory graft versus host disease: a single institutional experience. 2013; ASH (abstract): 2067

  149. Tanaka T, Kishimoto T (2012) Targeting interleukin-6: all the way to treat autoimmune and inflammatory diseases. Int J Biol Sci 8(9):1227–1236

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Fonseca JE, Santos MJ, Canhao H, Choy E (2009) Interleukin-6 as a key player in systemic inflammation and joint destruction. Autoimmun Rev 8(7):538–542

    PubMed  CAS  Google Scholar 

  151. Lipsky PE (2006) Interleukin-6 and rheumatic diseases. Arthritis Res Ther 8(Suppl 2):S4

    PubMed  PubMed Central  Google Scholar 

  152. Muraguchi A, Hirano T, Tang B (1998) The essential role of B cell stimulatory factor 2 (BSF-2/IL-6) for the terminal differentiation of B cells. J Exp Med 167(2):332–344

    Google Scholar 

  153. Jones SA (2005) Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 175(6):3463–34638

    PubMed  CAS  Google Scholar 

  154. Wu Y, El Shikh ME, El Sayed RM, Best AM, Szakal AK, Tew JG (2009) IL-6 produced by immune complex-activated follicular dendritic cells promotes germinal center reactions, IgG responses and somatic hypermutation. Int Immunol 21(6):745–756

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Kopf M, Herren S, Wiles MV, Pepys MB, Kosco-Vilbois MH (1998) Interleukin 6 influences germinal center development and antibody production via a contribution of C3 complement component. J Exp Med 188(10):1895–1906

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Dienz O, Eaton SM, Bond JP et al (2009) The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 206(1):69–78

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Silverman GJ, Carson DA (2003) Roles of B cells in rheumatoid arthritis. Arthritis Res Ther 5(Suppl 4):S1–S6

    PubMed  PubMed Central  Google Scholar 

  158. Silverman GJ, Boyle DL (2008) Understanding the mechanistic basis in rheumatoid arthritis for clinical response to anti-CD20 therapy: the B-cell roadblock hypothesis. Immunol Rev 223(1):175–185

    PubMed  CAS  Google Scholar 

  159. Roll P, Muhammad K, Schumann M (2011) In vivo effects of the anti-interleukin-6 receptor inhibitor tocilizumab on the B cell compartment. Arthritis Rheum 63(5):1255–1264

    PubMed  CAS  Google Scholar 

  160. Snir A, Kessel A, Haj T, Rosner I, Slobodin G, Toubi E (2011) Anti-IL-6 receptor antibody (tocilizumab): a B cell targeting therapy. Clin Exp Rheumatol 29(4):697–700

    PubMed  CAS  Google Scholar 

  161. Muhammad K, Roll P, Seibold T (2011) Impact of IL-6 receptor inhibition on human memory B cells in vivo: impaired somatic hypermutation in preswitch memory B cells and modulation of mutational targeting in memory B cells. Ann Rheum Dis 70(8):1507–1510

    PubMed  CAS  Google Scholar 

  162. Nakagiri T, Inoue M, Minami M, Shintani Y, Okumura M (2012) Immunology mini-review: the basics of Th17 and interleukin-6 in transplantation. Transplant Proc 44(4):1035–1040

    PubMed  CAS  Google Scholar 

  163. Bishop DK, Shelby J, Eichwald EJ (1992) Mobilization of T lymphocytes following cardiac transplantation: evidence that CD4-positive cells are required for cytotoxic T lymphocyte activation, inflammatory endothelial development, graft infiltration, and acute allograft rejection. Transplantation 53(4):849–857

    PubMed  CAS  Google Scholar 

  164. Shizuru JA, Seydel KB, Flavin TF (1990) Induction of donor-specific unresponsiveness to cardiac allografts in rats by pretransplant anti-CD4 monoclonal antibody therapy. Transplantation 50(3):366–373

    PubMed  CAS  Google Scholar 

  165. Krieger NR, Yin DP, Fathman CG (1996) CD4+ but not CD8+ cells are essential for allorejection. J Exp Med 184(5):2013–2018

    PubMed  CAS  Google Scholar 

  166. Booth AJ, Grabauskiene S, Wood SC, Lu G, Burrell BE, Bishop DK (2011) IL-6 promotes cardiac graft rejection mediated by CD4+ Cells. J Immunol 187(11):5764–5771

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Zhang C, Chen XH, Zhang X et al (2011) Human umbilical cord blood-derived stromal cells, a new resource in the suppression of acute graft-versus-host disease in haploidentical stem cell transplantation in sublethally irradiated mice. J Biol Chem 286(15):13723–13732

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Black SM, Schott ME, Batdorf BH (2010) IL-4 induces protection of vascular endothelial cells against killing by complement and mellitin through lipid biosynthesis. Eur J Immunol 40(3):803–812

    PubMed  CAS  Google Scholar 

  169. Bishop DK, Chan Wood S, Eichwald EJ, Orosz CG (2001) Immunobiology of allograft rejection in the absence of IFN-γ: CD8+ effector cells develop independently of CD4+ cells and CD40-CD40 ligand interactions. J Immunol 166(5):3248–3255

    PubMed  CAS  Google Scholar 

  170. Dodge IL, Carr MW, Cernadas M, Brenner MB (2003) IL-6 production by pulmonary dendritic cells impedes Th1 immune responses. J Immunol 170(9):4457–4464

    PubMed  CAS  Google Scholar 

  171. Diehl S, Anguita J, Hoffmeyer A et al (2000) Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13(6):805–815

    PubMed  CAS  Google Scholar 

  172. Rinco'n M, Anguita J, Nakamura T, Fikrig E, Flavell RA (1997) Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 185(3):461–469

    Google Scholar 

  173. Joseph SB, Miner KT, Croft M (1998) Augmentation of naive, Th1 and Th2 effector CD4 responses by IL-6, IL-1 and TNF. Eur J Immunol 28(1):277–289

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by grants from the National Natural Science Foundation (no. 81170529) and the special foundation for the “1130 project” of Xinqiao Hospital of Third Military Medical University.

Conflict of Interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Zhang, X. & Chen, XH. Inhibition of the Interleukin-6 Signaling Pathway: A Strategy to Induce Immune Tolerance. Clinic Rev Allerg Immunol 47, 163–173 (2014). https://doi.org/10.1007/s12016-014-8413-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-014-8413-3

Keywords

Navigation