Skip to main content

Advertisement

Log in

NK Cell Trafficking in Health and Autoimmunity:A Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells represent an important subpopulation of lymphocytes that are distributed throughout the body. The development of NK cells primarily occurs in the bone marrow during adult life, involving several putative intermediate stages that finally result in functional maturation. At steady state, NK cell egress from the bone marrow to various peripheral areas is controlled by a network of adhesion molecules, including integrins, selectins, and chemokine receptors and their corresponding ligands. NK cells at different developmental stages express distinct repertoire of adhesion molecules and can therefore be recruited to different sites of the body, including lymphoid and non-lymphoid tissues, and NK cells undergo further differentiation dirven by local microenvironmental signals, resulting in unique tissue-specific NK cells. Through their abilities of cytotoxicity and cytokine production, NK cells not only play key roles in the innate immune system, but also participate in shaping adaptive immune responses. On the basis of their heterogeneity in phenotype, function, and tissue distribution, NK cells can be further subdivided into distinct subsets. Under pathological conditions, such as in autoimmune, inflammatory, and infectious diseases, as local microenvironment changes, NK cell subsets would redistribute between tissues and organs and rapidly accumulate at the local pathological sites to exert their effector functions. Here, we describe the development and tissue distribution of NK cell subsets in mice and humans. We focus on the trafficking of NK cell subsets within the bone marrow and emigration into periphery at steady state, and molecular mechanisms involved in their trafficking in autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329–339

    PubMed  CAS  Google Scholar 

  2. French AR, Yokoyama WM (2003) Natural killer cells and viral infections. Curr Opin Immunol 15:45–51

    PubMed  CAS  Google Scholar 

  3. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510

    PubMed  CAS  Google Scholar 

  4. Vivier E, Raulet DH, Moretta A et al (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6:520–531

    PubMed  CAS  Google Scholar 

  6. Raulet DH (2006) Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol 18:145–150

    PubMed  CAS  Google Scholar 

  7. Flodstrom-Tullberg M, Bryceson YT, Shi FD, Hoglund P, Ljunggren HG (2009) Natural killer cells in human autoimmunity. Curr Opin Immunol 21:634–640

    PubMed  Google Scholar 

  8. Jost S, Altfeld M (2013) Control of human viral infections by natural killer cells. Annu Rev Immunol 31:163–194

    PubMed  CAS  Google Scholar 

  9. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1:41–49

    PubMed  CAS  Google Scholar 

  10. Cheng M, Chen Y, Xiao W, Sun R, Tian Z (2013) NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 10:230–252

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Tian Z, Gershwin ME, Zhang C (2012) Regulatory NK cells in autoimmune disease. J Autoimmun 39:206–215

    PubMed  CAS  Google Scholar 

  12. Johansson S, Berg L, Hall H, Hoglund P (2005) NK cells: elusive players in autoimmunity. Trends Immunol 26:613–618

    PubMed  CAS  Google Scholar 

  13. Flodstrom M, Shi FD, Sarvetnick N, Ljunggren HG (2002) The natural killer cell—friend or foe in autoimmune disease? Scand J Immunol 55:432–441

    PubMed  CAS  Google Scholar 

  14. Perricone R, Perricone C, De Carolis C, Shoenfeld Y (2008) NK cells in autoimmunity: a two-edged weapon of the immune system. Autoimmun Rev 7:384–390

    PubMed  Google Scholar 

  15. Shi FD, Ljunggren HG, La Cava A, Van Kaer L (2011) Organ-specific features of natural killer cells. Nat Rev Immunol 11:658–671

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Gregoire C, Chasson L, Luci C et al (2007) The trafficking of natural killer cells. Immunol Rev 220:169–182

    PubMed  CAS  Google Scholar 

  17. Peng H, Jiang X, Chen Y et al (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123:1444–1456

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI et al (2006) A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7:1217–1224

    PubMed  CAS  Google Scholar 

  19. Takeda K, Cretney E, Hayakawa Y et al (2005) TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105:2082–2089

    PubMed  CAS  Google Scholar 

  20. Yadi H, Burke S, Madeja Z, Hemberger M, Moffett A, Colucci F (2008) Unique receptor repertoire in mouse uterine NK cells. J Immunol 181:6140–6147

    PubMed  CAS  Google Scholar 

  21. Croy BA, van den Heuvel MJ, Borzychowski AM, Tayade C (2006) Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev 214:161–185

    PubMed  CAS  Google Scholar 

  22. Sun H, Sun C, Tian Z, Xiao W (2013) NK cells in immunotolerant organs. Cell Mol Immunol 10:202–212

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Huntington ND, Vosshenrich CA, Di Santo JP (2007) Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703–714

    PubMed  CAS  Google Scholar 

  24. Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58

    PubMed  CAS  Google Scholar 

  25. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    PubMed  CAS  Google Scholar 

  26. Butcher EC, Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272:60–66

    PubMed  CAS  Google Scholar 

  27. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159

    PubMed  CAS  Google Scholar 

  28. Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287

    PubMed  CAS  Google Scholar 

  29. Marelli-Berg FM, Cannella L, Dazzi F, Mirenda V (2008) The highway code of T cell trafficking. J Pathol 214:179–189

    PubMed  CAS  Google Scholar 

  30. Kumar V, Ben-Ezra J, Bennett M, Sonnenfeld G (1979) Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J Immunol 123:1832–1838

    PubMed  CAS  Google Scholar 

  31. Seaman WE, Blackman MA, Gindhart TD, Roubinian JR, Loeb JM, Talal N (1978) beta-Estradiol reduces natural killer cells in mice. J Immunol 121:2193–2198

    PubMed  CAS  Google Scholar 

  32. Kim S, Iizuka K, Kang HS et al (2002) In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3:523–528

    PubMed  Google Scholar 

  33. Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T (2009) Maturation of mouse NK cells is a 4-stage developmental program. Blood 113:5488–5496

    PubMed  CAS  Google Scholar 

  34. Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A, Di Santo JP (2001) Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 31:1900–1909

    PubMed  CAS  Google Scholar 

  35. Huntington ND, Tabarias H, Fairfax K et al (2007) NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J Immunol 178:4764–4770

    PubMed  CAS  Google Scholar 

  36. Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176:1517–1524

    PubMed  CAS  Google Scholar 

  37. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640

    PubMed  CAS  Google Scholar 

  38. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Hayakawa Y, Huntington ND, Nutt SL, Smyth MJ (2006) Functional subsets of mouse natural killer cells. Immunol Rev 214:47–55

    PubMed  CAS  Google Scholar 

  40. Hayakawa Y, Andrews DM, Smyth MJ (2010) Subset analysis of human and mouse mature NK cells. Methods Mol Biol 612:27–38

    PubMed  CAS  Google Scholar 

  41. Wu X, Chen Y, Wei H, Sun R, Tian Z (2012) Development of murine hepatic NK cells during ontogeny: comparison with spleen NK cells. Clin Dev Immunol 2012:759765

    PubMed  PubMed Central  Google Scholar 

  42. Fehniger TA, Cooper MA, Nuovo GJ et al (2003) CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101:3052–3057

    PubMed  CAS  Google Scholar 

  43. Ferlazzo G, Thomas D, Lin SL et al (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172:1455–1462

    PubMed  CAS  Google Scholar 

  44. Moffett-King A (2002) Natural killer cells and pregnancy. Nat Rev Immunol 2:656–663

    PubMed  CAS  Google Scholar 

  45. Robertson MJ (2002) Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71:173–183

    PubMed  CAS  Google Scholar 

  46. Jiang D, Liang J, Hodge J et al (2004) Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J Clin Invest 114:291–299

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Wendel M, Galani IE, Suri-Payer E, Cerwenka A (2008) Natural killer cell accumulation in tumors is dependent on IFN-gamma and CXCR3 ligands. Cancer Res 68:8437–8445

    PubMed  CAS  Google Scholar 

  48. Campbell JJ, Qin S, Unutmaz D et al (2001) Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166:6477–6482

    PubMed  CAS  Google Scholar 

  49. Hamann I, Unterwalder N, Cardona AE et al (2011) Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology 133:62–73

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Sciume G, De Angelis G, Benigni G et al (2011) CX3CR1 expression defines 2 KLRG1+ mouse NK-cell subsets with distinct functional properties and positioning in the bone marrow. Blood 117:4467–4475

    PubMed  CAS  Google Scholar 

  51. Garcia GE, Xia Y, Chen S et al (2000) NF-kappaB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1beta, TNF-alpha, and LPS. J Leukoc Biol 67:577–584

    PubMed  CAS  Google Scholar 

  52. Huang D, Shi FD, Jung S et al (2006) The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 20:896–905

    PubMed  CAS  Google Scholar 

  53. Chen Q, Wei H, Sun R, Zhang J, Tian Z (2008) Therapeutic RNA silencing of Cys-X3-Cys chemokine ligand 1 gene prevents mice from adenovirus vector-induced acute liver injury. Hepatology 47:648–658

    PubMed  CAS  Google Scholar 

  54. Pereira JP, An J, Xu Y, Huang Y, Cyster JG (2009) Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol 10:403–411

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Jenne CN, Enders A, Rivera R et al (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Mayol K, Biajoux V, Marvel J, Balabanian K, Walzer T (2011) Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood 118:4863–4871

    PubMed  CAS  Google Scholar 

  57. Ponzetta A, Sciume G, Benigni G et al (2013) CX3CR1 regulates the maintenance of KLRG1+ NK cells into the bone marrow by promoting their entry into circulation. J Immunol 191:5684–5694

    PubMed  CAS  Google Scholar 

  58. Bernardini G, Sciume G, Bosisio D, Morrone S, Sozzani S, Santoni A (2008) CCL3 and CXCL12 regulate trafficking of mouse bone marrow NK cell subsets. Blood 111:3626–3634

    PubMed  CAS  Google Scholar 

  59. Inngjerdingen M, Damaj B, Maghazachi AA (2001) Expression and regulation of chemokine receptors in human natural killer cells. Blood 97:367–375

    PubMed  CAS  Google Scholar 

  60. Broxmeyer HE, Orschell CM, Clapp DW et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Beider K, Nagler A, Wald O et al (2003) Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood 102:1951–1958

    PubMed  CAS  Google Scholar 

  62. Walzer T, Chiossone L, Chaix J et al (2007) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    PubMed  CAS  Google Scholar 

  63. Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    PubMed  CAS  PubMed Central  Google Scholar 

  64. Cyster JG, Schwab SR (2012) Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 30:69–94

    PubMed  CAS  Google Scholar 

  65. Chen S, Kawashima H, Lowe JB, Lanier LL, Fukuda M (2005) Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J Exp Med 202:1679–1689

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Bajenoff M, Breart B, Huang AY et al (2006) Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med 203:619–631

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Frey M, Packianathan NB, Fehniger TA et al (1998) Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J Immunol 161:400–408

    PubMed  CAS  Google Scholar 

  68. Juelke K, Killig M, Luetke-Eversloh M et al (2010) CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 116:1299–1307

    PubMed  CAS  Google Scholar 

  69. Peng H, Sun R, Tang L, Wei H, Tian Z (2013) CD62L is critical for maturation and accumulation of murine hepatic NK cells in response to viral infection. J Immunol 190:4255–4262

    PubMed  CAS  Google Scholar 

  70. Baekkevold ES, Yamanaka T, Palframan RT et al (2001) The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 193:1105–1112

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Berahovich RD, Lai NL, Wei Z, Lanier LL, Schall TJ (2006) Evidence for NK cell subsets based on chemokine receptor expression. J Immunol 177:7833–7840

    PubMed  CAS  Google Scholar 

  72. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH (2006) T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 7:507–516

    PubMed  Google Scholar 

  73. Paust S, Gill HS, Wang BZ et al (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 11:1127–1135

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Geissmann F, Cameron TO, Sidobre S et al (2005) Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3:e113

    PubMed  PubMed Central  Google Scholar 

  75. Jiang X, Chen Y, Peng H, Tian Z (2013) Memory NK cells: why do they reside in the liver? Cell Mol Immunol 10:196–201

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Hao J, Liu R, Piao W et al (2010) Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J Exp Med 207:1907–1921

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Bielekova B, Catalfamo M, Reichert-Scrivner S et al (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 103:5941–5946

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Infante-Duarte C, Weber A, Kratzschmar J et al (2005) Frequency of blood CX3CR1-positive natural killer cells correlates with disease activity in multiple sclerosis patients. FASEB J 19:1902–1904

    PubMed  CAS  Google Scholar 

  79. von Andrian UH, Engelhardt B (2003) Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 348:68–72

    Google Scholar 

  80. Gan Y, Liu R, Wu W, Bomprezzi R, Shi FD (2012) Antibody to alpha4 integrin suppresses natural killer cells infiltration in central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol 247:9–15

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Conigliaro P, Scrivo R, Valesini G, Perricone R (2011) Emerging role for NK cells in the pathogenesis of inflammatory arthropathies. Autoimmun Rev 10:577–581

    PubMed  CAS  Google Scholar 

  82. Pridgeon C, Lennon GP, Pazmany L, Thompson RN, Christmas SE, Moots RJ (2003) Natural killer cells in the synovial fluid of rheumatoid arthritis patients exhibit a CD56bright, CD94bright, CD158negative phenotype. Rheumatology (Oxford) 42:870–878

    CAS  Google Scholar 

  83. Dalbeth N, Gundle R, Davies RJ, Lee YC, McMichael AJ, Callan MF (2004) CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol 173:6418–6426

    PubMed  CAS  Google Scholar 

  84. Mack M, Bruhl H, Gruber R et al (1999) Predominance of mononuclear cells expressing the chemokine receptor CCR5 in synovial effusions of patients with different forms of arthritis. Arthritis Rheum 42:981–988

    PubMed  CAS  Google Scholar 

  85. Iwamoto T, Okamoto H, Toyama Y, Momohara S (2008) Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J 275:4448–4455

    PubMed  CAS  Google Scholar 

  86. Joosten LA, Netea MG, Kim SH et al (2006) IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc Natl Acad Sci U S A 103:3298–3303

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Park YE, Kim GT, Lee SG et al (2013) IL-32 aggravates synovial inflammation and bone destruction and increases synovial natural killer cells in experimental arthritis models. Rheumatol Int 33:671–679

    PubMed  CAS  Google Scholar 

  88. Parolini S, Santoro A, Marcenaro E et al (2007) The role of chemerin in the colocalization of NK and dendritic cell subsets into inflamed tissues. Blood 109:3625–3632

    PubMed  CAS  Google Scholar 

  89. Wittamer V, Franssen JD, Vulcano M et al (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 198:977–985

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Krawitt EL (2006) Autoimmune hepatitis. N Engl J Med 354:54–66

    PubMed  CAS  Google Scholar 

  91. Wang HX, Liu M, Weng SY et al (2012) Immune mechanisms of concanavalin A model of autoimmune hepatitis. World J Gastroenterol 18:119–125

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Chen Y, Wei H, Gao B, Hu Z, Zheng S, Tian Z (2005) Activation and function of hepatic NK cells in hepatitis B infection: an underinvestigated innate immune response. J Viral Hepat 12:38–45

    PubMed  CAS  Google Scholar 

  93. Wald O, Weiss ID, Wald H et al (2006) IFN-gamma acts on T cells to induce NK cell mobilization and accumulation in target organs. J Immunol 176:4716–4729

    PubMed  CAS  Google Scholar 

  94. Wang J, Xu J, Zhang W, Wei H, Tian Z (2005) TLR3 ligand-induced accumulation of activated splenic natural killer cells into liver. Cell Mol Immunol 2:449–453

    PubMed  CAS  Google Scholar 

  95. Hudspeth K, Pontarini E, Tentorio P et al. (2013) The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun 46:55-65

    Google Scholar 

  96. Chuang YH, Lian ZX, Tsuneyama K et al (2006) Increased killing activity and decreased cytokine production in NK cells in patients with primary biliary cirrhosis. J Autoimmun 26:232–240

    PubMed  CAS  Google Scholar 

  97. Chuang YH, Lian ZX, Cheng CM et al (2005) Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. J Autoimmun 25:126–132

    PubMed  CAS  Google Scholar 

  98. Isse K, Harada K, Zen Y et al (2005) Fractalkine and CX3CR1 are involved in the recruitment of intraepithelial lymphocytes of intrahepatic bile ducts. Hepatology 41:506–516

    PubMed  CAS  Google Scholar 

  99. van Helden MJ, Zaiss DM, Sijts AJ (2012) CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS One 7:e52027

    PubMed  PubMed Central  Google Scholar 

  100. Martin-Fontecha A, Thomsen LL, Brett S et al (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    PubMed  CAS  Google Scholar 

  101. Watt SV, Andrews DM, Takeda K, Smyth MJ, Hayakawa Y (2008) IFN-gamma-dependent recruitment of mature CD27(high) NK cells to lymph nodes primed by dendritic cells. J Immunol 181:5323–5330

    PubMed  CAS  Google Scholar 

  102. Liu Q, Smith CW, Zhang W, Burns AR, Li Z (2012) NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am J Pathol 181:452–462

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Okamura A, Harada K, Nio M, Nakanuma Y (2013) Participation of natural killer cells in the pathogenesis of bile duct lesions in biliary atresia. J Clin Pathol 66:99–108

    PubMed  CAS  Google Scholar 

  104. El-Shazly AE, Doloriert HC, Bisig B, Lefebvre PP, Delvenne P, Jacobs N (2013) Novel cooperation between CX3CL1 and CCL26 inducing NK cell chemotaxis via CX3CR1: a possible mechanism for NK cell infiltration of the allergic nasal tissue. Clin Exp Allergy 43:322–331

    PubMed  CAS  Google Scholar 

  105. Hong HS, Ahmad F, Eberhard JM et al (2012) Loss of CCR7 expression on CD56(bright) NK cells is associated with a CD56(dim)CD16(+) NK cell-like phenotype and correlates with HIV viral load. PLoS One 7:e44820

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Cooley S, Xiao F, Pitt M et al (2007) A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature. Blood 110:578–586

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Yu J, Mao HC, Wei M et al (2010) CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 115:274–281

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Castriconi R, Dondero A, Bellora F et al (2013) Neuroblastoma-derived TGF-beta1 modulates the chemokine receptor repertoire of human resting NK cells. J Immunol 190:5321–5328

    PubMed  CAS  Google Scholar 

  109. Eisenhardt M, Glassner A, Kramer B et al (2012) The CXCR3(+)CD56Bright phenotype characterizes a distinct NK cell subset with anti-fibrotic potential that shows dys-regulated activity in hepatitis C. PLoS One 7:e38846

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H., Tian, Z. NK Cell Trafficking in Health and Autoimmunity:A Comprehensive Review. Clinic Rev Allerg Immunol 47, 119–127 (2014). https://doi.org/10.1007/s12016-013-8400-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8400-0

Keywords

Navigation