Skip to main content

Advertisement

Log in

Immunoglobulin-Mediated Neuro-Cognitive Impairment: New Data and a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Excessive influx of immunoglobulin (IgG) into the brain has been reported to induce central nervous system (CNS) dysfunction. Depressed patients may exhibit immune activation manifested by elevated inflammatory markers and pro-inflammatory cytokines. The brain and especially the limbic system contain high concentrations of high affinity Fc receptors. We reviewed the literature on this phenomena and present data on the behavioral effects of pooled normal IgG on the brain. Many disease states are associated with depression and we examined whether this may be linked to high IgG influx. Female Balb/C mice were injected intra-cerbroventricularly with human immunoglobulin whole molecule, or human IgG F(ab′)2 or Fc fragments. Control mice were injected with saline. The four groups were subjected to behavioral (staircase, forced swimming test, and elevated plus maze) and cognitive tests (passive avoidance test). IgG-injected mice exhibited depression-like behavior as reflected by significantly higher immobility time in the forced swimming test (p < 0.05) and hyperactive behavior as reflected by higher number of stairs climbed in the staircase test compared to controls (p < 0.01). Fc-fragments-injected mice showed hyperactive behavior as reflected by both higher number of stairs climbed and rearing events in the staircase test compared to controls. The results indicate that high levels of normal IgG in the cerebrospinal fluid can cause hyperactivity and depression-like behavior. The mechanism involved in these CNS manifestations include possibly Fc receptor binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bien CG, Vincent A, Barnett MH et al (2012) Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135:1622–1638

    Article  PubMed  Google Scholar 

  2. Kaida K, Kusunoki S (2010) Antibodies to gangliosides and ganglioside complexes in Guillain-Barre syndrome and Fisher syndrome: mini-review. J Neuroimmunol 223:5–12

    Article  PubMed  CAS  Google Scholar 

  3. Zandman-Goddard G, Chapman J, Shoenfeld Y (2007) Autoantibodies involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin Arthritis Rheum 36:297–315

    Article  PubMed  CAS  Google Scholar 

  4. Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P (2001) Diagnostic value of anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol 96:730–734

    Article  PubMed  CAS  Google Scholar 

  5. Luborsky JL, Barua A, Shatavi SV, Kebede T, Abramowicz J, Rotmensch J (2005) Anti-tumor antibodies in ovarian cancer. Am J Reprod Immunol 54:55–62

    Article  PubMed  CAS  Google Scholar 

  6. Zhong L, Peng X, Hidalgo GE, Doherty DE, Stromberg AJ, Hirschowitz EA (2004) Identification of circulating antibodies to tumor-associated proteins for combined use as markers of non-small cell lung cancer. Proteomics 4:1216–1225

    Article  PubMed  CAS  Google Scholar 

  7. Melendez AJ, Bruetschy L, Floto RA, Harnett MM, Allen JM (2001) Functional coupling of FcgammaRI to nicotinamide adenine dinucleotide phosphate (reduced form) oxidative burst and immune complex trafficking requires the activation of phospholipase D1. Blood 98:3421–3428

    Article  PubMed  CAS  Google Scholar 

  8. Stangel M, Compston A (2001) Polyclonal immunoglobulins (IVIg) modulate nitric oxide production and microglial functions in vitro via Fc receptors. J Neuroimmunol 112:63–71

    Article  PubMed  CAS  Google Scholar 

  9. Sanchez-Mejorada G, Rosales C (1998) Signal transduction by immunoglobulin Fc receptors. J Leukoc Biol 63:521–533

    PubMed  CAS  Google Scholar 

  10. Ravetch JV, Kinet JP (1991) Fc receptors. Annu Rev Immunol 9:457–492

    Article  PubMed  CAS  Google Scholar 

  11. van de Winkel JG, Capel PJ (1993) Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 14:215–221

    Article  PubMed  Google Scholar 

  12. Nakamura K, Hirai H, Torashima T et al (2007) CD3 and immunoglobulin G Fc receptor regulate cerebellar functions. Mol Cell Biol 27:5128–5134

    Article  PubMed  CAS  Google Scholar 

  13. Suemitsu S, Watanabe M, Yokobayashi E et al (2010) Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience 166:819–831

    Article  PubMed  CAS  Google Scholar 

  14. Namer IJ, Steibel J, Poulet P, Mauss Y, Mohr M, Chambron J (1994) The role of Mycobacterium tuberculosis in experimental allergic encephalomyelitis. Eur Neurol 34:224–227

    Article  PubMed  CAS  Google Scholar 

  15. Walls AF, Suckling AJ, Rumsby MG (1988) Autoantibody responses in the cerebrospinal fluid of guinea pigs with chronic relapsing experimental allergic encephalomyelitis. Acta Neurol Scand 78:422–428

    Article  PubMed  CAS  Google Scholar 

  16. Kamm C, Zettl UK (2012) Autoimmune disorders affecting both the central and peripheral nervous system. Autoimmun Rev 11:196–202

    Article  PubMed  CAS  Google Scholar 

  17. Chavarria A, Alcocer-Varela J (2004) Is damage in central nervous system due to inflammation? Autoimmun Rev 3:251–260

    Article  PubMed  CAS  Google Scholar 

  18. Rabchevsky AG, Degos JD, Dreyfus PA (1999) Peripheral injections of Freund’s adjuvant in mice provoke leakage of serum proteins through the blood–brain barrier without inducing reactive gliosis. Brain Res 832:84–96

    Article  PubMed  CAS  Google Scholar 

  19. Shrot S, Katzav A, Korczyn AD et al (2002) Behavioral and cognitive deficits occur only after prolonged exposure of mice to antiphospholipid antibodies. Lupus 11:736–743

    Article  PubMed  CAS  Google Scholar 

  20. Holmes GP, Kaplan JE, Gantz NM et al (1988) Chronic fatigue syndrome: a working case definition. Ann Intern Med 108:387–389

    Article  PubMed  CAS  Google Scholar 

  21. Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, Ricevuti G (2009) Immunological aspects of chronic fatigue syndrome. Autoimmun Rev 8:287–291

    Article  PubMed  CAS  Google Scholar 

  22. Hokama Y, Empey-Campora C, Hara C et al (2008) Acute phase phospholipids related to the cardiolipin of mitochondria in the sera of patients with chronic fatigue syndrome (CFS), chronic Ciguatera fish poisoning (CCFP), and other diseases attributed to chemicals, Gulf War, and marine toxins. J Clin Lab Anal 22:99–105

    Article  PubMed  CAS  Google Scholar 

  23. Konstantinov K, von Mikecz A, Buchwald D, Jones J, Gerace L, Tan EM (1996) Autoantibodies to nuclear envelope antigens in chronic fatigue syndrome. J Clin Invest 98:1888–1896

    Article  PubMed  CAS  Google Scholar 

  24. Wheatland R (2005) Chronic ACTH autoantibodies are a significant pathological factor in the disruption of the hypothalamic–pituitary–adrenal axis in chronic fatigue syndrome, anorexia nervosa and major depression. Med Hypotheses 65:287–295

    Article  PubMed  CAS  Google Scholar 

  25. Vernon SD, Reeves WC (2005) Evaluation of autoantibodies to common and neuronal cell antigens in Chronic Fatigue Syndrome. J Autoimmune Dis 2:5

    Article  PubMed  Google Scholar 

  26. Klein R, Berg PA (1995) High incidence of antibodies to 5-hydroxytryptamine, gangliosides and phospholipids in patients with chronic fatigue and fibromyalgia syndrome and their relatives: evidence for a clinical entity of both disorders. Eur J Med Res 1:21–26

    PubMed  CAS  Google Scholar 

  27. Heller U, Becker EW, Zenner HP, Berg PA (1998) Incidence and clinical relevance of antibodies to phospholipids, serotonin and ganglioside in patients with sudden deafness and progressive inner ear hearing loss. HNO 46:583–586

    Article  PubMed  CAS  Google Scholar 

  28. Feinstein A (2011) Multiple sclerosis and depression. Mult Scler 17:1276–1281

    Article  PubMed  Google Scholar 

  29. Luque FA, Jaffe SL (2007) Cerebrospinal fluid analysis in multiple sclerosis. Int Rev Neurobiol 79:341–356

    Article  PubMed  CAS  Google Scholar 

  30. Chapman J, Abu-Katash M, Inzelberg R et al (2002) Prevalence and clinical features of dementia associated with the antiphospholipid syndrome and circulating anticoagulants. J Neurol Sci 203–204:81–84

    Article  PubMed  Google Scholar 

  31. Bluestein HG, Williams GW, Steinberg AD (1981) Cerebrospinal fluid antibodies to neuronal cells: association with neuropsychiatric manifestations of systemic lupus erythematosus. Am J Med 70:240–246

    Article  PubMed  CAS  Google Scholar 

  32. Danon YL, Garty BZ (1986) Autoantibodies to neuroblastoma cell surface antigens in neuropsychiatric lupus. Neuropediatrics 17:23–27

    Article  PubMed  CAS  Google Scholar 

  33. Katzav A, Shoenfeld Y, Chapman J (2010) The pathogenesis of neural injury in animal models of the antiphospholipid syndrome. Clin Rev Allergy Immunol 38:196–200

    Article  PubMed  CAS  Google Scholar 

  34. Liberato B, Levy RA (2007) Antiphospholipid syndrome and cognition. Clin Rev Allergy Immunol 32:188–191

    Article  PubMed  CAS  Google Scholar 

  35. Katzav A, Pick CG, Korczyn AD et al (2001) Hyperactivity in a mouse model of the antiphospholipid syndrome. Lupus 10:496–499

    Article  PubMed  CAS  Google Scholar 

  36. Omdal R, Brokstad K, Waterloo K, Koldingsnes W, Jonsson R, Mellgren SI (2005) Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur J Neurol 12:392–398

    Article  PubMed  CAS  Google Scholar 

  37. Peery HE, Day GS, Dunn S, et al (2012) Anti-NMDA receptor encephalitis. The disorder, the diagnosis and the immunobiology. Autoimmun Rev 11:863–872

    Google Scholar 

  38. D’Andrea MR (2005) Add Alzheimer’s disease to the list of autoimmune diseases. Med Hypotheses 64:458–463

    Article  PubMed  Google Scholar 

  39. Sardi F, Fassina L, Venturini L et al (2011) Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun Rev 11:149–153

    Article  PubMed  CAS  Google Scholar 

  40. D’Andrea MR (2005) Evidence that immunoglobulin-positive neurons in Alzheimer’s disease are dying via the classical antibody-dependent complement pathway. Am J Alzheimers Dis Other Demen 20:144–150

    Article  PubMed  Google Scholar 

  41. Ryu JK, McLarnon JG (2009) A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med 13:2911–2925

    Article  PubMed  CAS  Google Scholar 

  42. Colasanti T, Barbati C, Rosano G, Malorni W, Ortona E (2010) Autoantibodies in patients with Alzheimer’s disease: pathogenetic role and potential use as biomarkers of disease progression. Autoimmun Rev 9:807–811

    Article  PubMed  CAS  Google Scholar 

  43. Chapman J, Alroy G, Weiss Z, Faigon M, Feldon J, Michaelson DM (1991) Anti-neuronal antibodies similar to those found in Alzheimer’s disease induce memory dysfunction in rats. Neuroscience 40:297–305

    Article  PubMed  CAS  Google Scholar 

  44. Chapman J, Feldon J, Alroy G, Michaelson DM (1989) Immunization of rats with cholinergic neurons induces behavioral deficits. J Neural Transplant 1:63–76

    Article  PubMed  CAS  Google Scholar 

  45. Benkler M, Agmon-Levin N, Hassin-Baer S et al (2012) Immunology, autoimmunity, and autoantibodies in Parkinson’s disease. Clin Rev Allergy Immunol 42:164–171

    Article  PubMed  CAS  Google Scholar 

  46. Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    Article  PubMed  CAS  Google Scholar 

  47. Hasin DS, Goodwin RD, Stinson FS, Grant BF (2005) Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch Gen Psychiatry 62:1097–1106

    Article  PubMed  Google Scholar 

  48. Dowlati Y, Herrmann N, Swardfager W et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    Article  PubMed  CAS  Google Scholar 

  49. Gohier B, Goeb JL, Rannou-Dubas K, Fouchard I, Cales P, Garre JB (2003) Hepatitis C, alpha interferon, anxiety and depression disorders: a prospective study of 71 patients. World J Biol Psychiatry 4:115–118

    Article  PubMed  Google Scholar 

  50. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    Article  PubMed  CAS  Google Scholar 

  51. Kronfol Z (2002) Immune dysregulation in major depression: a critical review of existing evidence. Int J Neuropsychopharmacol 5:333–343

    Article  PubMed  CAS  Google Scholar 

  52. Kronfol Z, House JD (1989) Lymphocyte mitogenesis, immunoglobulin and complement levels in depressed patients and normal controls. Acta Psychiatr Scand 80:142–147

    Article  PubMed  CAS  Google Scholar 

  53. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 19:11–38

    Article  PubMed  CAS  Google Scholar 

  54. Maes M, Scharpe S, Meltzer HY et al (1993) Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic–pituitary–adrenal axis in severe depression. Psychiatry Res 49:11–27

    Article  PubMed  CAS  Google Scholar 

  55. Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P (1998) Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol 25:39–47

    PubMed  CAS  Google Scholar 

  56. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  PubMed  CAS  Google Scholar 

  57. Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    Article  PubMed  CAS  Google Scholar 

  58. Fantuzzi G, Dinarello CA (1996) The inflammatory response in interleukin-1 beta-deficient mice: comparison with other cytokine-related knock-out mice. J Leukoc Biol 59:489–493

    PubMed  CAS  Google Scholar 

  59. Krueger JM, Majde JA, Obal F (2003) Sleep in host defense. Brain Behav Immun 17(Suppl 1):S41–S47

    Article  PubMed  CAS  Google Scholar 

  60. Swiergiel AH, Smagin GN, Johnson LJ, Dunn AJ (1997) The role of cytokines in the behavioral responses to endotoxin and influenza virus infection in mice: effects of acute and chronic administration of the interleukin-1-receptor antagonist (IL-1ra). Brain Res 776:96–104

    Article  PubMed  CAS  Google Scholar 

  61. Adler G, Gattaz WF (1993) Pain perception threshold in major depression. Biol Psychiatry 34:687–689

    Article  PubMed  CAS  Google Scholar 

  62. Watkins LR, Wiertelak EP, Goehler LE, Smith KP, Martin D, Maier SF (1994) Characterization of cytokine-induced hyperalgesia. Brain Res 654:15–26

    Article  PubMed  CAS  Google Scholar 

  63. Song X, Shapiro S, Goldman DL, Casadevall A, Scharff M, Lee SC (2002) Fcgamma receptor I- and III-mediated macrophage inflammatory protein 1alpha induction in primary human and murine microglia. Infect Immun 70:5177–5184

    Article  PubMed  CAS  Google Scholar 

  64. Song X, Tanaka S, Cox D, Lee SC (2004) Fcgamma receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol 75:1147–1155

    Article  PubMed  CAS  Google Scholar 

  65. Lunnon K, Teeling JL, Tutt AL, Cragg MS, Glennie MJ, Perry VH (2011) Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol 186:7215–7224

    Article  PubMed  CAS  Google Scholar 

  66. Hastings RS, Parsey RV, Oquendo MA, Arango V, Mann JJ (2004) Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacol 29:952–959

    Article  Google Scholar 

  67. Mayberg HS, Lozano AM, Voon V et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    Article  PubMed  CAS  Google Scholar 

  68. Heo Y, Zhang Y, Gao D, Miller VM, Lawrence DA (2011) Aberrant immune responses in a mouse with behavioral disorders. PLoS One 6:e20912

    Article  PubMed  CAS  Google Scholar 

  69. Katzav A, Solodeev I, Brodsky O et al (2007) Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum 56:938–948

    Article  PubMed  CAS  Google Scholar 

  70. Kivity S, Katz U, Daniel N, Nussinovitch U, Papageorgiou N, Shoenfeld Y (2010) Evidence for the use of intravenous immunoglobulins—a review of the literature. Clin Rev Allergy Immunol 38:201–269

    Article  PubMed  CAS  Google Scholar 

  71. Sapir T, Shoenfeld Y (2005) Facing the enigma of immunomodulatory effects of intravenous immunoglobulin. Clin Rev Allergy Immunol 29:185–199

    Article  PubMed  CAS  Google Scholar 

  72. Kaveri SV (2012) Intravenous immunoglobulin: exploiting the potential of natural antibodies. Autoimmun Rev 11:792–794

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviva Katzav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menachem, A., Chapman, J., Deri, Y. et al. Immunoglobulin-Mediated Neuro-Cognitive Impairment: New Data and a Comprehensive Review. Clinic Rev Allerg Immunol 45, 248–255 (2013). https://doi.org/10.1007/s12016-013-8357-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8357-z

Keywords

Navigation