Skip to main content
Log in

Regaining Tolerance to a Self-antigen by the Modified Vaccination Technique

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Autoimmune diseases are initiated and maintained by complex immunopathological processes in environmental and genetic factor predisposed patients. In certain autoimmune diseases, the etiologies and pathogenesis of the conditions are quite well understood; yet in others, controversy surrounds as to why and how auto-injurious processes start. Clinical and laboratory examinations reasonably well define the state of progression/remission of an autoimmune disease and allow treatment according to observed findings. However, none of the presently employed treatment options are specific. In fact, they are all nonspecific in their actions and have undesirable side effects. Over the years, experiments carried out in animals have shed light on the complex immunopathological processes which contribute to disease development and progression. At least one experimental autoimmune kidney disease—which we shall describe—helps to understand how pathogenic autoimmune responses can be terminated specifically, without side effects. Since the new vaccination method—that we call modified vaccination technique—was successfully implemented in an experimental autoimmune disease model called slowly progressive Heymann nephritis for the termination of pathogenic immune responses by a target antigen-specific treatment modality, we shall highlight its use in providing insight to physicians and autoimmunologists for its future implementation in human autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

aab:

Autoantibody

aag:

Autoantigen

ab:

Antibody

ag:

Antigen

BB:

Brush border

GBM:

Glomerular basement membrane

GN:

Glomerulonephritis

IC:

Immune complex

ICGN:

Immune complex glomerulonephritis

MGN:

Membranous glomerulonephritis

MVT:

Modified vaccination technique

MW:

Molecular weight

rKF3:

Rat kidney fraction 3

rarKF3:

Rat anti-rat kidney fraction 3

SPHN:

Slowly progressive Heymann nephritis

IgG:

Immunoglobulin G

IgM:

Immunoglobulin M

References

  1. Feldmann M, Steinman L (2005) Design of effective immunotherapy for human autoimmunity. Nature 435:612–619

    Article  PubMed  CAS  Google Scholar 

  2. Arnson Y, Shoenfeld Y, Amital H (2009) Intravenous immunoglobulin therapy for autoimmune diseases. Autoimmunity 42:553–560

    Article  PubMed  CAS  Google Scholar 

  3. Dorner T, Radbruch A, Burmester GR (2009) B-cell-directed therapies for autoimmune disease. Nat Rev Rheumatol 5:433–441

    Article  PubMed  Google Scholar 

  4. Hogan SL, Muller KE, Jennette JC, Falk RJ (1995) A review of therapeutic studies of idiopathic membranous glomerulopathy. Am J Kidney Dis 25:862–875

    Article  PubMed  CAS  Google Scholar 

  5. Perna A, Schieppati A, Zamora J, Giuliano GA, Braun N, Remuzzi G (2004) Immunosuppressive treatment for idiopathic membranous nephropathy: a systematic review. Am J Kidney Dis 44:385–401

    PubMed  Google Scholar 

  6. Perosa F, Favoino E, Caragnano MA, Prete M, Dammacco F (2005) CD20: a target antigen for immunotherapy of autoimmune diseases. Autoimmun Rev 4:526–531

    Article  PubMed  CAS  Google Scholar 

  7. Townsend MJ, Monroe JG, Chan AC (2010) B-cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol Rev 237:264–283

    Article  PubMed  CAS  Google Scholar 

  8. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2004) Production of Heymann nephritis by a chemically modified renal antigen. Int J Exp Pathol 85:277–285

    Article  PubMed  CAS  Google Scholar 

  9. Weir DM, Pinckard RN (1967) Failure to induce tolerance to rat tissue antigens. Immunology 13:373–380

    PubMed  CAS  Google Scholar 

  10. Weir DM, Elson CJ (1969) Antitissue antibodies and immunological tolerance to self. Arthritis Rheum 12:254–260

    Article  PubMed  CAS  Google Scholar 

  11. Agmon-Levin N, Paz Z, Israeli E, Shoenfeld Y (2009) Vaccines and autoimmunity. Nat Rev Rheumatol 5:648–652

    Article  PubMed  Google Scholar 

  12. Biesecker G, Noble B, Andres GA, Koffler D (1984) Immunopathogenesis of Heymann’s nephritis. Clin Immunol Immunopathol 33:333–338

    Article  PubMed  CAS  Google Scholar 

  13. Bilsborough J, Viney JL (2002) Getting to the guts of immune regulation. Immunology 106:139–143

    Article  PubMed  CAS  Google Scholar 

  14. Heymann W, Hackel DB, Harwood S, Wilson SG, Hunter JLP (1959) Production of nephritic syndrome in rats by Freund’s adjuvant and rat kidney suspensions. Proc Soc Exp Biol Med 100:660–664

    Article  PubMed  CAS  Google Scholar 

  15. Israeli E, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Adjuvants and autoimmunity. Lupus 18:1217–1225

    Article  PubMed  CAS  Google Scholar 

  16. Kivity S, Agmon-Levin N, Blank M, Shoenfeld Y (2009) Infections and autoimmunity—friends or foes? Trends Immunol 30:409–414

    Article  PubMed  CAS  Google Scholar 

  17. Molina V, Shoenfeld Y (2005) Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 38:235–245

    Article  PubMed  CAS  Google Scholar 

  18. Naito T, Kawamura T, Bannai M et al (2002) Simultaneous activation of natural killer T cells and autoantibody production in mice injected with denatured syngeneic liver tissue. Clin Exp Immunol 129:397–404

    Article  PubMed  CAS  Google Scholar 

  19. Blank M, Shoenfeld Y (2007) B cell targeted therapy in autoimmunity. J Autoimmun 28:62–68

    Article  PubMed  CAS  Google Scholar 

  20. Edgington TS, Glassock RJ, Dixon FJ (1967) Autologous immune-complex pathogenesis of experimental allergic glomerulonephritis. Science 155:1432–1434

    Article  PubMed  CAS  Google Scholar 

  21. Edgington TS, Glassock RJ, Dixon FJ (1968) Autologous immune complex nephritis induced with renal tubular antigen. I. Identification and isolation of the pathogenetic antigen. J Exp Med 127:555–572

    Article  PubMed  CAS  Google Scholar 

  22. Kerjaschki D, Farquhar MG (1982) The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci U S A 79:5557–5581

    Article  PubMed  CAS  Google Scholar 

  23. Kerjaschki D, Farquhar MG (1983) Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med 157:667–686

    Article  PubMed  CAS  Google Scholar 

  24. Makker SP, Moorthy B (1981) In situ immune complex formation in isolated perfused kidney using homologous antibody. Lab Invest 44:1–5

    PubMed  CAS  Google Scholar 

  25. Makker SP (1993) Analysis of glomeruli-eluted Gp330 autoantibodies and of Gp330 antigen of Heymann nephritis. J Immunol 151:6500–6508

    PubMed  CAS  Google Scholar 

  26. Mendrick DL, Noble B, Brentjens JR, Andres GA (1980) Antibody-mediated injury to proximal tubules in Heymann nephritis. Kidney Int 18:328–343

    Article  PubMed  CAS  Google Scholar 

  27. Neale TJ, Couser WG, Salant DJ, Lowenstein LM, Wilson CB (1982) Specific uptake of Heymann’s nephritic kidney eluate by rat kidney: studies in vivo and in isolated perfused kidneys. Lab Invest 46:450–453

    PubMed  CAS  Google Scholar 

  28. Neale TJ, Wilson CB (1982) Glomerular antigens in Heymann’s nephritis: reactivity of eluted and circulating antibody. J Immunol 128:323–330

    PubMed  CAS  Google Scholar 

  29. Tsukada Y, Ono K, Maezawa A, Yano S, Naruse T (1994) A major pathogenic antigen of Heymann nephritis is present exclusively in the renal proximal tubule brush border—studies with a monoclonal antibody against pronase-digested tubular antigen. Clin Exp Immunol 96:303–310

    Article  PubMed  CAS  Google Scholar 

  30. Barabas AZ, Weir DM, Cole CD et al (2009) Preventing and treating chronic disorders using the modified vaccination technique. Front Biosci 14:3892–3898

    Article  CAS  Google Scholar 

  31. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2004) Down-regulation of pathogenic autoantibody response in a slowly progressive Heymann nephritis kidney disease model. Int J Exp Pathol 85:321–334

    Article  PubMed  CAS  Google Scholar 

  32. Barabas AZ, Cole CD, Barabas AD, Barabas AN, Lafreniere R (2006) Reduced incidence of slowly progressive Heymann nephritis in rats immunized with a modified vaccination technique. Clin Dev Immunol 13:17–24

    Article  PubMed  CAS  Google Scholar 

  33. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2007) Preventative and therapeutic vaccination to combat an experimental autoimmune kidney disease. Biologics Targets Ther 1:59–68

    CAS  Google Scholar 

  34. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2007) A modified vaccination technique for the prevention and treatment of an experimental autoimmune kidney disease. Ann N Y Acad Sci 1110:619–629

    Article  PubMed  CAS  Google Scholar 

  35. Barabas AZ, Cole CD, Barabas AD, Bahlis NJ, Lafreniere R (2007) A vaccination technique to combat presently untreatable chronic ailments. Bioprocess J 6:12–18

    Google Scholar 

  36. Barabas AZ, Cole CD, Graeff RM, Lafreniere R, Weir DM (2011) The role of autoimmunologists in investigating and treating autoimmune disorders. Autoimmun Rev 10:166–170

    Article  PubMed  Google Scholar 

  37. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2008) Pathogenic and nonpathogenic autoimmune events—the good and/or the bad? In: Dubois Q (ed) Autoantibodies research progress. Nova Science, Hauppauge, pp 9–18

    Google Scholar 

  38. Weir DM, Pinckard RN, Elson CJ, Suckling DE (1966) Naturally occurring anti-tissue antibodies in rat sera. Clin Exp Immunol 1:433–442

    PubMed  CAS  Google Scholar 

  39. Batsford SR, Weghaupt R, Takamiya H, Vogt A (1985) Studies on the mesangial handling of protein antigens: influence of size, charge and biologic activity. Nephron 41:146–151

    Article  PubMed  CAS  Google Scholar 

  40. Manson JJ, Mauri C, Ehrenstein MR (2005) Natural serum IgM maintains immunological homeostasis and prevents autoimmunity. Springer Semin Immunopathol 26:425–432

    Article  PubMed  CAS  Google Scholar 

  41. Ogden CA, Kowalewski R, Peng Y, Montenegro V, Elkon KB (2005) IgM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38:259–264

    Article  PubMed  CAS  Google Scholar 

  42. Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M (2005) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35:252–260

    Article  PubMed  CAS  Google Scholar 

  43. Wermeling F, Karlsson MC, McGaha TL (2009) An anatomical view on macrophages in tolerance. Autoimmun Rev 9:49–52

    Article  PubMed  CAS  Google Scholar 

  44. Zwart B, Ciurana C, Rensink I, Manoe R, Hack CE, Aarden LA (2004) Complement activation by apoptotic cells occurs predominantly via IgM and is limited to late apoptotic (secondary necrotic) cells. Autoimmunity 37:95–102

    Article  PubMed  CAS  Google Scholar 

  45. Orbach H, Shoenfeld Y (2007) Vaccination infection and autoimmunity: myth and reality VIAMR 2005-10-26-28, Beau-Rivage Palace Hotel, Lausanne, Switzerland. Autoimmun Rev 6:261–266

    Article  PubMed  CAS  Google Scholar 

  46. Schoen RT, Trentham DE (1981) Drug-induced lupus: an adjuvant disease? Am J Med 71:5–8

    Article  PubMed  CAS  Google Scholar 

  47. Schoonen WM, Thomas SL, Somers EC et al (2010) Do selected drugs increase the risk of lupus? A matched case–control study. Br J Clin Pharmacol 70:588–596

    Article  PubMed  Google Scholar 

  48. Barabas AZ, Cole CD, Barabas AD, Bahlis NJ, Lafreniere R (2008) New vaccination technology for endogenous antigen-derived ailments. IDrugs 11:111–115

    PubMed  CAS  Google Scholar 

  49. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2003) Production of a new model of slowly progressive Heymann nephritis. Int J Exp Pathol 84:245–258

    Article  PubMed  Google Scholar 

  50. Challice J, Barabas AZ, Cornish J, Bruce JW, Lannigan R (1986) Passive Heymann nephritis in pre-and post-natal rats. Br J Exp Pathol 67:915–924

    PubMed  CAS  Google Scholar 

  51. Salant DJ, Cybulsky AV (1988) Experimental glomerulonephritis. Methods Enzymol 162:421–461

    Article  PubMed  CAS  Google Scholar 

  52. Barabas AZ, Lafreniere R (2005) Antigen-specific down-regulation of immunopathological events in an experimental autoimmune kidney disease. Autoimmun Rev 4:565–570

    Article  PubMed  CAS  Google Scholar 

  53. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2006) Downregulation of a pathogenic autoantibody response by IgM autoantibodies directed against the nephritogenic antigen in slowly progressive Heymann nephritis. Pathol Int 56:181–190

    Article  PubMed  CAS  Google Scholar 

  54. Barabas AZ, Cole CD, Weir DM, Lafreniere R (2011) Immunopathological events in an experimental autoimmune kidney disease and how those events can be terminated to regain tolerance to self. In: Petrov M (ed) Autoimmune disorders: symptoms, diagnosis and treatment. Nova Science, Hauppauge, pp 35–66

    Google Scholar 

  55. Barabas AZ, Cole CD, Barabas AD, Lafreniere R (2008) An experimental autoimmune kidney disease caused by pathogenic autoantibodies. In: Petrelli C (ed) New research on autoantibodies. Nova Science, Hauppauge, pp 151–172

    Google Scholar 

  56. Barabas AZ, Cole CD, Barabas AD, Barabas AN, Lafreniere R (2006) Effect of rat kidney fraction 3 (rKF3) antigen and specific IgM antibody against rKF3 on the progression of slowly progressive Heymann nephritis. Pathol Int 56:516–529

    Article  PubMed  CAS  Google Scholar 

  57. Rich MW (1996) Drug-induced lupus. The list of culprits grows. Postgrad Med 100:299–8

    Article  PubMed  CAS  Google Scholar 

  58. Greenwald P, Clifford CK, Milner JA (2001) Diet and cancer prevention. Eur J Cancer 37:948–965

    Article  PubMed  CAS  Google Scholar 

  59. Barabas AZ, Lannigan R (1969) Auto-immune nephritis in rats. J Pathol 97:537–543

    Article  PubMed  CAS  Google Scholar 

  60. Barabas AZ, Cole CD, Barabas AD, Lafreniere R, Weir DM (2011) Four aspects of autoimmunity and how to regain tolerance to self from an autoimmune disease utilizing the modified vaccination technique. In: Huang FP (ed) Autoimmune disorders—current concepts and advances from bedside to mechanistic insights. InTech, Rijeka, pp 569–590

    Google Scholar 

  61. Kerjaschki D (1993) Molecular development of immune deposits and proteinuria in Heymann nephritis. Clin Investig 71:817–821

    Article  PubMed  CAS  Google Scholar 

  62. Barabas AZ, Cole CD, Barabas AD et al (2004) Presence of immunoglobulin M antibodies around the glomerular capillaries and in the mesangium of normal and passive Heymann nephritis rats. Int J Exp Pathol 85:201–212

    Article  PubMed  CAS  Google Scholar 

  63. Andres G, Brentjens JR, Caldwell PR, Camussi G, Matsuo S (1986) Formation of immune deposits and disease. Lab Invest 55:510–520

    PubMed  CAS  Google Scholar 

  64. Barabas AZ, Cole CD, Lafreniere R, Weir DM (2011) Prophylactic and therapeutic application of a new vaccination technique for combating autoimmune disorders. In: Conrad K, Chan EKL, Fritzler MJ, Humbel RL, Meroni PL, Shoenfeld Y (eds) From prediction to prevention of autoimmune diseases—report on the 10th Dresden symposium on autoantibodies held in Dresden on September 22–25, 2011. PABST Science, Berlin, pp 519–539

    Google Scholar 

  65. Kerjaschki D, Neale TJ (1996) Molecular mechanisms of glomerular injury in rat experimental membranous nephropathy (Heymann nephritis). J Am Soc Nephrol 7:2518–2526

    PubMed  CAS  Google Scholar 

  66. Ronco P, Debiec H (2006) Molecular dissection of target antigens and nephritogenic antibodies in membranous nephropathy: towards epitope-driven therapies. J Am Soc Nephrol 17:1772–1774

    Article  PubMed  CAS  Google Scholar 

  67. Ronco P, Debiec H (2006) New insights into the pathogenesis of membranous glomerulonephritis. Curr Opin Nephrol Hypertens 15:258–263

    Article  PubMed  CAS  Google Scholar 

  68. Boes M, Schmidt T, Linkemann K, Beaudette BC, Marshak-Rothstein A, Chen J (2000) Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci U S A 97:1184–1189

    Article  PubMed  CAS  Google Scholar 

  69. Gullstrand B, Martensson U, Sturfelt G, Bengtsson AA, Truedsson L (2009) Complement classical pathway components are all important in clearance of apoptotic and secondary necrotic cells. Clin Exp Immunol 156:303–311

    Article  PubMed  CAS  Google Scholar 

  70. Mevorach D, Mascarenhas JO, Gershov D, Elkon KB (1998) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188:2313–2320

    Article  PubMed  CAS  Google Scholar 

  71. Pereira WO, Amarante-Mendes GP (2011) Apoptosis: a programme of cell death or cell disposal? Scand J Immunol 73:401–407

    Article  PubMed  CAS  Google Scholar 

  72. Pinckard RN, Weir DM (1966) Antibodies against the mitochondrial fraction of liver after toxic liver damage in rats. Clin Exp Immunol 1:33–43

    PubMed  CAS  Google Scholar 

  73. Noble B, Van Liew JB, Brentjens JR, Andres GA (1982) Effect of reimmunization with Fx1A late in the course of Heymann nephritis. Lab Invest 47:427–436

    PubMed  CAS  Google Scholar 

  74. Pramatarov KD (1998) Drug-induced lupus erythematosus. Clin Dermatol 16:367–377

    Article  PubMed  CAS  Google Scholar 

  75. Rao T, Richardson B (1999) Environmentally induced autoimmune diseases: potential mechanisms. Environ Health Perspect 107(Suppl 5):737–742

    Article  PubMed  Google Scholar 

  76. Zandman-Goddard G, Shoenfeld Y (2005) Infections and SLE. Autoimmunity 38:473–485

    Article  PubMed  CAS  Google Scholar 

  77. Ebringer A, Thorpe C, Pirt J, Wilson C, Cunningham P, Ettelaie C (1997) Bovine spongiform encephalopathy: is it an autoimmune disease due to bacteria showing molecular mimicry with brain antigens? Environ Health Perspect 105:1172–1174

    Article  PubMed  CAS  Google Scholar 

  78. Ebringer A (2003) Molecular mimicry as the basis of a new theory of autoimmunity. In: Zouali M (ed) Frontiers in autoimmunity: fundamental aspects and clinical perspectives. Ios, Amsterdam, pp 79–99

    Google Scholar 

  79. Ebringer A, Hughes L, Rashid T, Wilson C (2005) Acinetobacter immune responses in multiple sclerosis: etiopathogenetic role and its possible use as a diagnostic marker. Arch Neurol 62:33–36

    Article  PubMed  Google Scholar 

  80. Ebringer A, Rashid T (2009) Rheumatoid arthritis is caused by proteus: the molecular mimicry theory and Karl Popper. Front Biosci (Elite Ed) 1:577–586

    Google Scholar 

  81. Barabas AZ, Cole CD, Lafreniere R, Weir DM (2012) Immunopathological events initiated and maintained by pathogenic IgG autoantibodies in an experimental autoimmune kidney disease. Autoimmunity 45:495–509

    Article  PubMed  CAS  Google Scholar 

  82. Barabas AZ, Cole CD, Barabas AD, Graeff RM, Lafreniere R, Weir DM (2010) Modified vaccination technique for prophylactic and therapeutic applications to combat endogenous antigen-induced disorders. Scand J Immunol 71:125–133

    Article  PubMed  CAS  Google Scholar 

  83. Barabas AZ, Cole CD, Kovacs ZB, Lafreniere R (2007) Elevated antibody response by antigen presentation in immune complexes. Med Sci Monit 13:BR119–BR124

    PubMed  CAS  Google Scholar 

  84. Barabas AZ, Cole CD, Sensen M, Lafreniere R (2012) Production of heterologous IgG antibody against Heymann nephritis antigen by injections of immune complexes. Int J Exp Pathol 93:11–17

    Article  PubMed  CAS  Google Scholar 

  85. Avrameas S (1991) Natural autoantibodies: from ‘horror autotoxicus’ to ‘gnothi seauton’. Immunol Today 12:154–159

    PubMed  CAS  Google Scholar 

  86. Radbruch A, Muehlinghaus G, Luger EO et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6:741–750

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of our research associate, Zoltan B. Kovacs, in computer- and laboratory-related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpad Zsigmond Barabas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabas, A.Z., Cole, C.D., Lafreniere, R. et al. Regaining Tolerance to a Self-antigen by the Modified Vaccination Technique. Clinic Rev Allerg Immunol 45, 193–201 (2013). https://doi.org/10.1007/s12016-012-8350-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-012-8350-y

Keywords

Navigation