Advertisement

Clinical Reviews in Allergy & Immunology

, Volume 44, Issue 2, pp 121–140 | Cite as

Biologic Therapies in the Treatment of Psoriasis: A Comprehensive Evidence-Based Basic Science and Clinical Review and a Practical Guide to Tuberculosis Monitoring

  • Raja K. Sivamani
  • Heidi Goodarzi
  • Miki Shirakawa Garcia
  • Siba P. Raychaudhuri
  • Lisa N. Wehrli
  • Yoko Ono
  • Emanual MaverakisEmail author
Article

Abstract

The treatment of psoriasis has undergone a revolution with the advent of biologic therapies including infliximab, etanercept, adalimumab, efalizumab, golimumab, certolizumab, alefacept, secukinumab, abatacept, and ustekinumab. These medications are designed to target specific components of the immune system and are a major technological advancement over traditional immunosuppressive medications. Herein, we present a comprehensive, unbiased comparison of these medications focusing on their differences. For example, TNF antagonists can differ in the way they are dissolved and administered, the effector molecules they can bind, serum peak and trough levels, the types of intracellular signals they can induce, the in vivo complexes that they can form, their protein structure, and their incidence and timing of rare adverse events, among other things. A critical review of the clinical studies that have tested the efficacy of these molecules is also presented including head-to-head comparison trials. The safety of biologics in terms of their long-term adverse events is discussed, as is their use in different types of psoriasis and in different patient populations. Finally, all anti-TNF agents have been associated with a variety of serious and “routine” opportunistic infections, particularly tuberculosis. For this reason, anti-tuberculosis testing both prior to the initiation of a biologic therapy and annually during treatment is pertinent. The uses and limitations of both the tuberculin skin test (TST) and QuantiFeron®-TB Gold (QFT) are discussed, as is the care of patients who present with latent tuberculosis infection prior to the initiation of biologic therapy. Recommendations for tuberculosis monitoring are provided.

Keywords

Psoriasis Biologics Quantiferon Tuberculosis TNF Ustekinumab Adalimumab Etanercept Infliximab Golimumab Certolizumab Abatacept Briakinumab Alfecept Efalizumab Secukinumab 

Notes

Acknowledgments

EM holds career awards from the Burroughs Wellcome Fund and the Howard Hughes Medical Institute. The authors would like to thank Stephanie Chu for help with design and creation of figures and Ern Loh for providing the clinical photo.

References

  1. 1.
    Christophers E (2001) Psoriasis—epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320PubMedCrossRefGoogle Scholar
  2. 2.
    Ashcroft DM, Wan Po AL, Williams HC, Griffiths CE (1999) Clinical measures of disease severity and outcome in psoriasis: a critical appraisal of their quality. Br J Dermatol 141:185–191PubMedCrossRefGoogle Scholar
  3. 3.
    Zachariae H (2003) Prevalence of joint disease in patients with psoriasis: implications for therapy. Am J Clin Dermatol 4:441–447PubMedCrossRefGoogle Scholar
  4. 4.
    Strange A et al (2010) A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet 42:985–U106PubMedCrossRefGoogle Scholar
  5. 5.
    Lew W, Bowcock AM, Krueger JG (2004) Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and “Type 1” inflammatory gene expression. Trends Immunol 25:295–305PubMedCrossRefGoogle Scholar
  6. 6.
    Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509PubMedCrossRefGoogle Scholar
  7. 7.
    Schlaak JF et al (1994) T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol 102:145–149PubMedCrossRefGoogle Scholar
  8. 8.
    Zaba LC et al (2007) Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 204:3183–3194PubMedCrossRefGoogle Scholar
  9. 9.
    Res PC et al (2010) Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One 5:e14108PubMedCrossRefGoogle Scholar
  10. 10.
    Schirmer C, Klein C, von Bergen M, Simon JC, Saalbach A (2010) Human fibroblasts support the expansion of IL-17-producing T cells via up-regulation of IL-23 production by dendritic cells. Blood 116:1715–1725PubMedCrossRefGoogle Scholar
  11. 11.
    Ghoreschi K et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467:967–U144PubMedCrossRefGoogle Scholar
  12. 12.
    Wolk K et al (2009) The Th17 cytokine IL-22 induces IL-20 production in keratinocytes: a novel immunological cascade with potential relevance in psoriasis. Eur J Immunol 39:3570–3581Google Scholar
  13. 13.
    Nograles KE et al (2008) Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 159:1092–1102PubMedGoogle Scholar
  14. 14.
    Ma HL et al (2008) IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest 118:597–607PubMedGoogle Scholar
  15. 15.
    Winterfield L, Menter A (2004) Psoriasis and its treatment with infliximab-mediated tumor necrosis factor alpha blockade. Dermatol Clin 22:437–447, ixPubMedCrossRefGoogle Scholar
  16. 16.
    Wolk K et al (2006) IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 36:1309–1323PubMedCrossRefGoogle Scholar
  17. 17.
    Zheng Y et al (2007) Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651PubMedCrossRefGoogle Scholar
  18. 18.
    Caruso R et al (2009) Involvement of interleukin-21 in the epidermal hyperplasia of psoriasis. Nat Med 15:1013–1015PubMedCrossRefGoogle Scholar
  19. 19.
    Wahba A, Cohen H, Bareli M, Callily R (1979) Neutrophil chemotaxis in psoriasis. Acta Derm Venereol 59:441–445PubMedGoogle Scholar
  20. 20.
    Theoharides TC et al (2010) IL-33 augments substance P-induced VEGF secretion from human mast cells and is increased in psoriatic skin. Proc Natl Acad Sci USA 107:4448–4453PubMedCrossRefGoogle Scholar
  21. 21.
    Dubertret L et al (2006) European patient perspectives on the impact of psoriasis: the EUROPSO patient membership survey. Br J Dermatol 155:729–736PubMedCrossRefGoogle Scholar
  22. 22.
    Nijsten T, Margolis DJ, Feldman SR, Rolstad T, Stern RS (2005) Traditional systemic treatments have not fully met the needs of psoriasis patients: results from a national survey. J Am Acad Dermatol 52:434–444PubMedCrossRefGoogle Scholar
  23. 23.
    Caporali R et al (2010) Switching TNF-alpha antagonists in rheumatoid arthritis: the experience of the LORHEN registry. Autoimmun Rev 9:465–469PubMedCrossRefGoogle Scholar
  24. 24.
    Fautrel B et al (2007) Recommendations of the French Society for Rheumatology regarding TNF alpha antagonist therapy in patients with rheumatoid arthritis. Joint Bone Spine 74:627–637PubMedCrossRefGoogle Scholar
  25. 25.
    Spadaro A et al (2010) Switching from infliximab or etanercept to adalimumab in resistant or intolerant patients with spondyloarthritis: a 4-year study. Rheumatology 49:1107–1111PubMedCrossRefGoogle Scholar
  26. 26.
    Pitarch G, Sanchez-Carazo JL, Mahiques L, Oliver V (2008) Efficacy of etanercept in psoriatic patients previously treated with infliximab. Dermatology 216:312–316PubMedCrossRefGoogle Scholar
  27. 27.
    Jamnitski A et al (2011) The presence or absence of antibodies to infliximab or adalimumab determines the outcome of switching to etanercept. Ann Rheum Dis 70:284–288PubMedCrossRefGoogle Scholar
  28. 28.
    Conti F et al (2007) Switching tumour necrosis factor alpha antagonists in patients with ankylosing spondylitis and psoriatic arthritis: an observational study over a 5-year period. Ann Rheum Dis 66:1393–1397PubMedCrossRefGoogle Scholar
  29. 29.
    Scallon B et al (2002) Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther 301:418–426PubMedCrossRefGoogle Scholar
  30. 30.
    Barrera P et al (2001) Effects of treatment with a fully human anti-tumour necrosis factor alpha monoclonal antibody on the local and systemic homeostasis of interleukin 1 and TNFalpha in patients with rheumatoid arthritis. Ann Rheum Dis 60:660–669PubMedCrossRefGoogle Scholar
  31. 31.
    Charles P et al (1999) Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol 163:1521–1528PubMedGoogle Scholar
  32. 32.
    Suffredini AF et al (1995) Effects of recombinant dimeric TNF receptor on human inflammatory responses following intravenous endotoxin administration. J Immunol 155:5038–5045PubMedGoogle Scholar
  33. 33.
    Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668PubMedCrossRefGoogle Scholar
  34. 34.
    Ware CF, Crowe PD, Grayson MH, Androlewicz MJ, Browning JL (1992) Expression of surface lymphotoxin and tumor necrosis factor on activated T, B, and natural killer cells. J Immunol 149:3881–3888PubMedGoogle Scholar
  35. 35.
    Santora LC, Kaymakcalan Z, Sakorafas P, Krull IS, Grant K (2001) Characterization of noncovalent complexes of recombinant human monoclonal antibody and antigen using cation exchange, size exclusion chromatography, and BIAcore. Anal Biochem 299:119–129PubMedCrossRefGoogle Scholar
  36. 36.
    Eissner G et al (2000) Reverse signaling through transmembrane TNF confers resistance to lipopolysaccharide in human monocytes and macrophages. J Immunol 164:6193–6198PubMedGoogle Scholar
  37. 37.
    Kirchner S, Holler E, Haffner S, Andreesen R, Eissner G (2004) Effect of different tumor necrosis factor (TNF) reactive agents on reverse signaling of membrane integrated TNF in monocytes. Cytokine 28:67–74PubMedCrossRefGoogle Scholar
  38. 38.
    Shen C et al (2005) Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment Pharmacol Ther 21:251–258PubMedCrossRefGoogle Scholar
  39. 39.
    Mitoma H, Horiuchi T, Tsukamoto H (2004) Binding activities of infliximab and etanercept to transmembrane tumor necrosis factor-alpha. Gastroenterology 126:934–935, author reply 935–936PubMedCrossRefGoogle Scholar
  40. 40.
    Arora T et al (2009) Differences in binding and effector functions between classes of TNF antagonists. Cytokine 45:124–131PubMedCrossRefGoogle Scholar
  41. 41.
    Kaymakcalan Z et al (2009) Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol 131:308–316PubMedCrossRefGoogle Scholar
  42. 42.
    Van den Brande JM et al (2003) Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 124:1774–1785PubMedCrossRefGoogle Scholar
  43. 43.
    ten Hove T, van Montfrans C, Peppelenbosch MP, van Deventer SJ (2002) Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn’s disease. Gut 50:206–211PubMedCrossRefGoogle Scholar
  44. 44.
    Lugering A et al (2001) Infliximab induces apoptosis in monocytes from patients with chronic active Crohn’s disease by using a caspase-dependent pathway. Gastroenterology 121:1145–1157PubMedCrossRefGoogle Scholar
  45. 45.
    Nestorov I (2005) Clinical pharmacokinetics of TNF antagonists: how do they differ? Semin Arthritis Rheum 34:12–18PubMedCrossRefGoogle Scholar
  46. 46.
    Nestorov I (2005) Clinical pharmacokinetics of tumor necrosis factor antagonists. J Rheumatol Suppl 74:13–18PubMedGoogle Scholar
  47. 47.
    St Clair EW et al (2002) The relationship of serum infliximab concentrations to clinical improvement in rheumatoid arthritis: results from ATTRACT, a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 46:1451–1459PubMedCrossRefGoogle Scholar
  48. 48.
    Caproni M et al (2009) Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis: a randomized-controlled trial. J Clin Immunol 29:210–214PubMedCrossRefGoogle Scholar
  49. 49.
    Zaba LC et al (2009) Effective treatment of psoriasis with etanercept is linked to suppression of IL-17 signaling, not immediate response TNF genes. J Allergy Clin Immunol 124(1022–1010):e1021–e1395Google Scholar
  50. 50.
    Shen H, Xia L, Lu J, Xiao W (2010) Infliximab reduces the frequency of interleukin 17-producing cells and the amounts of interleukin 17 in patients with rheumatoid arthritis. J Investig Med 58:905–908PubMedGoogle Scholar
  51. 51.
    Kageyama Y et al (2007) Treatment with anti-TNF-alpha antibody infliximab reduces serum IL-15 levels in patients with rheumatoid arthritis. Clin Rheumatol 26:505–509PubMedCrossRefGoogle Scholar
  52. 52.
    Gudbrandsdottir S et al (2004) TNF and LT binding capacities in the plasma of arthritis patients: effect of etanercept treatment in juvenile idiopathic arthritis. Clin Exp Rheumatol 22:118–124PubMedGoogle Scholar
  53. 53.
    Crowe PD et al (1994) A lymphotoxin-beta-specific receptor. Science 264:707–710PubMedCrossRefGoogle Scholar
  54. 54.
    Ware CF (2005) Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 23:787–819PubMedCrossRefGoogle Scholar
  55. 55.
    Browning JL et al (1995) Characterization of surface lymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J Immunol 154:33–46PubMedGoogle Scholar
  56. 56.
    Pujol-Borrell R et al (1987) HLA class II induction in human islet cells by interferon-gamma plus tumour necrosis factor or lymphotoxin. Nature 326:304–306PubMedCrossRefGoogle Scholar
  57. 57.
    Chan JR et al (2006) IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 203:2577–2587PubMedCrossRefGoogle Scholar
  58. 58.
    Ye P et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194:519–527PubMedCrossRefGoogle Scholar
  59. 59.
    Ellis CN, Krueger GG (2001) Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N Engl J Med 345:248–255PubMedCrossRefGoogle Scholar
  60. 60.
    Krueger GG et al (2002) A randomized, double-blind, placebo-controlled phase III study evaluating efficacy and tolerability of 2 courses of alefacept in patients with chronic plaque psoriasis. J Am Acad Dermatol 47:821–833PubMedCrossRefGoogle Scholar
  61. 61.
    Lebwohl M et al (2003) An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis. Arch Dermatol 139:719–727PubMedCrossRefGoogle Scholar
  62. 62.
    Brimhall AK, King LN, Licciardone JC, Jacobe H, Menter A (2008) Safety and efficacy of alefacept, efalizumab, etanercept and infliximab in treating moderate to severe plaque psoriasis: a meta-analysis of randomized controlled trials. Br J Dermatol 159:274–285PubMedCrossRefGoogle Scholar
  63. 63.
    Menter A et al (2007) A randomized comparison of continuous vs. intermittent infliximab maintenance regimens over 1 year in the treatment of moderate-to-severe plaque psoriasis. J Am Acad Dermatol 56(31):e31–e15Google Scholar
  64. 64.
    Gottlieb AB et al (2004) Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomized, double-blind, placebo-controlled trial. J Am Acad Dermatol 51:534–542PubMedCrossRefGoogle Scholar
  65. 65.
    Reich K et al (2005) Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366:1367–1374PubMedCrossRefGoogle Scholar
  66. 66.
    Hwang WYK, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10PubMedCrossRefGoogle Scholar
  67. 67.
    Maini RN et al (1998) Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum 41:1552–1563PubMedCrossRefGoogle Scholar
  68. 68.
    Anderson PJ (2005) Tumor necrosis factor inhibitors: clinical implications of their different immunogenicity profiles. Semin Arthritis Rheum 34:19–22PubMedCrossRefGoogle Scholar
  69. 69.
    Bendtzen K et al (2006) Individualized monitoring of drug bioavailability and immunogenicity in rheumatoid arthritis patients treated with the tumor necrosis factor alpha inhibitor infliximab. Arthritis Rheum 54:3782–3789PubMedCrossRefGoogle Scholar
  70. 70.
    Baert F et al (2003) Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 348:601–608PubMedCrossRefGoogle Scholar
  71. 71.
    Tyring S et al (2007) Long-term safety and efficacy of 50 mg of etanercept twice weekly in patients with psoriasis. Arch Dermatol 143:719–726PubMedCrossRefGoogle Scholar
  72. 72.
    Papp KA et al (2005) A global phase III randomized controlled trial of etanercept in psoriasis: safety, efficacy, and effect of dose reduction. Br J Dermatol 152:1304–1312PubMedCrossRefGoogle Scholar
  73. 73.
    Paller AS et al (2008) Etanercept treatment for children and adolescents with plaque psoriasis. N Engl J Med 358:241–251PubMedCrossRefGoogle Scholar
  74. 74.
    Leonardi CL et al (2003) Etanercept as monotherapy in patients with psoriasis. N Engl J Med 349:2014–2022PubMedCrossRefGoogle Scholar
  75. 75.
    Gottlieb AB et al (2003) A randomized trial of etanercept as monotherapy for psoriasis. Arch Dermatol 139:1627–1632, discussion 1632PubMedCrossRefGoogle Scholar
  76. 76.
    Zachariae C et al (2008) The combination of etanercept and methotrexate increases the effectiveness of treatment in active psoriasis despite inadequate effect of methotrexate therapy. Acta Derm Venereol 88:495–501PubMedCrossRefGoogle Scholar
  77. 77.
    Gordon KB et al (2006) Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: double-blind, randomized controlled trial and open-label extension study. J Am Acad Dermatol 55:598–606PubMedCrossRefGoogle Scholar
  78. 78.
    Saurat JH et al (2008) Efficacy and safety results from the randomized controlled comparative study of adalimumab vs. methotrexate vs. placebo in patients with psoriasis (CHAMPION). Br J Dermatol 158:558–566PubMedCrossRefGoogle Scholar
  79. 79.
    Menter A et al (2008) Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J Am Acad Dermatol 58:106–115PubMedCrossRefGoogle Scholar
  80. 80.
    Kavanaugh A et al (2009) Golimumab, a new human tumor necrosis factor alpha antibody, administered every four weeks as a subcutaneous injection in psoriatic arthritis: twenty-four-week efficacy and safety results of a randomized, placebo-controlled study. Arthritis Rheum 60:976–986PubMedCrossRefGoogle Scholar
  81. 81.
    Papp KA et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 371:1675–1684PubMedCrossRefGoogle Scholar
  82. 82.
    Leonardi CL et al (2008) Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371:1665–1674PubMedCrossRefGoogle Scholar
  83. 83.
    Kimball AB et al (2008) Safety and efficacy of ABT-874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis: results of a randomized, placebo-controlled, phase 2 trial. Arch Dermatol 144:200–207PubMedCrossRefGoogle Scholar
  84. 84.
    Kimball AB et al (2011) Efficacy and safety of ABT-874, a monoclonal anti-interleukin 12/23 antibody, for the treatment of chronic plaque psoriasis: 36-week observation/retreatment and 60-week open-label extension phases of a randomized phase II trial. J Am Acad Dermatol 64:263–274PubMedCrossRefGoogle Scholar
  85. 85.
    Anonymous (Released on October 11, 2010) http://www.abbott.com/global/url/pressRelease/en_US/Press_Release_0909.htm, Abbot Reports Psoriasis Phase III Results of its Investigational IL-12/23 Inhibitor Briakinumab (ABT-874). Last accessed on January 23, 2011
  86. 86.
    Mease P et al (2011) Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum 63:939–948PubMedCrossRefGoogle Scholar
  87. 87.
    www.clinicaltrials.gov. Accessed 25 Nov 2011
  88. 88.
    Silverman D, Oliver A (2011) Abatacept-induced psoriasis. Cutis 88:117–118PubMedGoogle Scholar
  89. 89.
    Kato K, Satoh T, Nishizawa A, Yokozeki H (2011) Psoriasiform drug eruption due to abatacept. Acta Derm Venereol 91:362–363PubMedCrossRefGoogle Scholar
  90. 90.
    Hueber W et al (2010) Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2:52ra72PubMedCrossRefGoogle Scholar
  91. 91.
    Benoit S, Toksoy A, Brocker EB, Gillitzer R, Goebeler M (2004) Treatment of recalcitrant pustular psoriasis with infliximab: effective reduction of chemokine expression. Br J Dermatol 150:1009–1012PubMedCrossRefGoogle Scholar
  92. 92.
    Vieira Serrao V, Martins A, Lopes MJ (2008) Infliximab in recalcitrant generalized pustular arthropatic psoriasis. Eur J Dermatol 18:71–73PubMedGoogle Scholar
  93. 93.
    Puig L, Barco D, Vilarrasa E, Alomar A (2010) Treatment of acrodermatitis continua of Hallopeau with TNF-blocking agents: case report and review. Dermatology 220:154–158PubMedCrossRefGoogle Scholar
  94. 94.
    Esposito M, Mazzotta A, de Felice C, Papoutsaki M, Chimenti S (2006) Treatment of erythrodermic psoriasis with etanercept. Br J Dermatol 155:156–159PubMedCrossRefGoogle Scholar
  95. 95.
    Fiehn C, Andrassy K (2004) Case number 29: hitting three with one strike: rapid improvement of psoriatic arthritis, psoriatic erythroderma, and secondary renal amyloidosis by treatment with infliximab (Remicade). Ann Rheum Dis 63:232PubMedCrossRefGoogle Scholar
  96. 96.
    Lisby S, Gniadecki R (2004) Infliximab (Remicade) for acute, severe pustular and erythrodermic psoriasis. Acta Derm Venereol 84:247–248PubMedGoogle Scholar
  97. 97.
    Takahashi MD, Castro LG, Romiti R (2007) Infliximab, as sole or combined therapy, induces rapid clearing of erythrodermic psoriasis. Br J Dermatol 157:828–831PubMedCrossRefGoogle Scholar
  98. 98.
    Bissonnette R et al (2008) Etanercept in the treatment of palmoplantar pustulosis. J Drugs Dermatol 7:940–946PubMedGoogle Scholar
  99. 99.
    Harty L, Veale DJ (2010) How early should psoriatic arthritis be treated with a TNF-blocker? Curr Opin Rheumatol 22:393–396PubMedCrossRefGoogle Scholar
  100. 100.
    Chandran V, Raychaudhuri SP (2010) Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. J Autoimmun 34:J314–J321PubMedCrossRefGoogle Scholar
  101. 101.
    Strober BE, Crowley JJ, Yamauchi PS, Olds M, Williams DA (2011) Efficacy and safety results from a phase III, randomised controlled trial comparing the safety and efficacy of briakinumab to etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br J Dermatol 165:661–668Google Scholar
  102. 102.
    Gottlieb AB et al (2011) Efficacy and safety of briakinumab versus etanercept and placebo in patients with moderate to severe chronic plaque psoriasis. Br J Dermatol 165:652–660Google Scholar
  103. 103.
    Griffiths CE et al (2010) Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med 362:118–128PubMedCrossRefGoogle Scholar
  104. 104.
    Atteno M et al (2010) Comparison of effectiveness and safety of infliximab, etanercept, and adalimumab in psoriatic arthritis patients who experienced an inadequate response to previous disease-modifying antirheumatic drugs. Clin Rheumatol 29:399–403PubMedCrossRefGoogle Scholar
  105. 105.
    Saurat JH et al (2011) Relationship between methotrexate dosing and clinical response in patients with moderate to severe psoriasis: subanalysis of the CHAMPION study. Br J Dermatol 165:399–406PubMedCrossRefGoogle Scholar
  106. 106.
    Hendel L, Hendel J, Johnsen A, Gudmand-Hoyer E (1982) Intestinal function and methotrexate absorption in psoriatic patients. Clin Exp Dermatol 7:491–497PubMedCrossRefGoogle Scholar
  107. 107.
    Reich K et al (2010) Benefit-risk analysis of adalimumab versus methotrexate and placebo in the treatment of moderate to severe psoriasis: comparison of adverse event-free response days in the CHAMPION trial. J Am Acad Dermatol 63:1011–1018PubMedCrossRefGoogle Scholar
  108. 108.
    Yazici Y, Adler NM, Yazici H (2008) Most tumour necrosis factor inhibitor trials in rheumatology are undeservedly called ‘efficacy and safety’ trials: a survey of power considerations. Rheumatology (Oxford) 47:1054–1057CrossRefGoogle Scholar
  109. 109.
    Kwon HJ, Cote TR, Cuffe MS, Kramer JM, Braun MM (2003) Case reports of heart failure after therapy with a tumor necrosis factor antagonist. Ann Intern Med 138:807–811PubMedGoogle Scholar
  110. 110.
    Mann DL et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109:1594–1602PubMedCrossRefGoogle Scholar
  111. 111.
    Sicotte NL, Voskuhl RR (2001) Onset of multiple sclerosis associated with anti-TNF therapy. Neurology 57:1885–1888PubMedCrossRefGoogle Scholar
  112. 112.
    Gottlieb A et al (2008) Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 2. Psoriatic arthritis: overview and guidelines of care for treatment with an emphasis on the biologics. J Am Acad Dermatol 58:851–864PubMedCrossRefGoogle Scholar
  113. 113.
    Menter A et al (2008) Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol 58:826–850PubMedCrossRefGoogle Scholar
  114. 114.
    Wollina U et al (2008) Tumor necrosis factor-alpha inhibitor-induced psoriasis or psoriasiform exanthemata: first 120 cases from the literature including a series of six new patients. Am J Clin Dermatol 9:1–14PubMedCrossRefGoogle Scholar
  115. 115.
    Collamer AN, Guerrero KT, Henning JS, Battafarano DF (2008) Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: a literature review and potential mechanisms of action. Arthritis Rheum 59:996–1001PubMedCrossRefGoogle Scholar
  116. 116.
    Ramos-Casals M et al (2007) Autoimmune diseases induced by TNF-targeted therapies: analysis of 233 cases. Medicine (Baltimore) 86:242–251CrossRefGoogle Scholar
  117. 117.
    Harrison MJ et al (2009) Rates of new-onset psoriasis in patients with rheumatoid arthritis receiving anti-tumour necrosis factor alpha therapy: results from the British Society for Rheumatology Biologics Register. Ann Rheum Dis 68:209–215PubMedCrossRefGoogle Scholar
  118. 118.
    Cope AP et al (1994) Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest 94:749–760PubMedCrossRefGoogle Scholar
  119. 119.
    Pasparakis M, Alexopoulou L, Episkopou V, Kollias G (1996) Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184:1397–1411PubMedCrossRefGoogle Scholar
  120. 120.
    McDevitt H, Munson S, Ettinger R, Wu A (2002) Multiple roles for tumor necrosis factor-alpha and lymphotoxin alpha/beta in immunity and autoimmunity. Arthritis Res 4(Suppl 3):S141–S152PubMedCrossRefGoogle Scholar
  121. 121.
    Maverakis E, van den Elzen P, Sercarz EE (2001) Self-reactive T cells and degeneracy of T cell recognition: evolving concepts—from sequence homology to shape mimicry and TCR flexibility. J Autoimmun 16:201–209PubMedCrossRefGoogle Scholar
  122. 122.
    Maverakis E et al (2003) Autoreactive T cells can be protected from tolerance induction through competition by flanking determinants for access to class II MHC. Proc Natl Acad Sci USA 100:5342–5347PubMedCrossRefGoogle Scholar
  123. 123.
    De Rycke L et al (2005) Infliximab, but not etanercept, induces IgM anti-double-stranded DNA autoantibodies as main antinuclear reactivity: biologic and clinical implications in autoimmune arthritis. Arthritis Rheum 52:2192–2201PubMedCrossRefGoogle Scholar
  124. 124.
    Maverakis E, Goodarzi H, Wehrli LN, Ono Y, Garcia MS (2011) The etiology of paraneoplastic autoimmunity. Clin Rev Allergy Immunol. doi: 10.1007/s12016-010-8248-5
  125. 125.
    Rosh JR, Gross T, Mamula P, Griffiths A, Hyams J (2007) Hepatosplenic T-cell lymphoma in adolescents and young adults with Crohn’s disease: a cautionary tale? Inflamm Bowel Dis 13:1024–1030PubMedCrossRefGoogle Scholar
  126. 126.
    Brown SL, Greene MH, Gershon SK, Edwards ET, Braun MM (2002) Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration. Arthritis Rheum 46:3151–3158PubMedCrossRefGoogle Scholar
  127. 127.
    Wolfe F, Michaud K (2007) Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis Rheum 56:2886–2895PubMedCrossRefGoogle Scholar
  128. 128.
    Bongartz T et al (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285PubMedCrossRefGoogle Scholar
  129. 129.
    Maverakis E et al (2010) Light, including ultraviolet. J Autoimmun 34:J247–J257PubMedCrossRefGoogle Scholar
  130. 130.
    Patel RV, Clark LN, Lebwohl M, Weinberg JM (2009) Treatments for psoriasis and the risk of malignancy. J Am Acad Dermatol 60:1001–1017PubMedCrossRefGoogle Scholar
  131. 131.
    Vasiliauskas EA et al (2006) Case report: evidence for transplacental transfer of maternally administered infliximab to the newborn. Clin Gastroenterol Hepatol 4:1255–1258PubMedCrossRefGoogle Scholar
  132. 132.
    Mishkin DS, Van Deinse W, Becker JM, Farraye FA (2006) Successful use of adalimumab (Humira) for Crohn’s disease in pregnancy. Inflamm Bowel Dis 12:827–828PubMedCrossRefGoogle Scholar
  133. 133.
    Roux CH, Brocq O, Breuil V, Albert C, Euller-Ziegler L (2007) Pregnancy in rheumatology patients exposed to anti-tumour necrosis factor (TNF)-alpha therapy. Rheumatology (Oxford) 46:695–698CrossRefGoogle Scholar
  134. 134.
    Coburn LA, Wise PE, Schwartz DA (2006) The successful use of adalimumab to treat active Crohn’s disease of an ileoanal pouch during pregnancy. Dig Dis Sci 51:2045–2047PubMedCrossRefGoogle Scholar
  135. 135.
    Carter JD, Ladhani A, Ricca LR, Valeriano J, Vasey FB (2009) A safety assessment of tumor necrosis factor antagonists during pregnancy: a review of the Food and Drug Administration database. J Rheumatol 36:635–641PubMedCrossRefGoogle Scholar
  136. 136.
    Solovic I et al (2010) The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement. Eur Respir J 36:1185–1206PubMedCrossRefGoogle Scholar
  137. 137.
    Cooper AM, Khader SA (2008) The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 226:191–204PubMedCrossRefGoogle Scholar
  138. 138.
    Khader SA et al (2005) IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available. J Immunol 175:788–795PubMedGoogle Scholar
  139. 139.
    Gardam MA et al (2003) Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 3:148–155PubMedCrossRefGoogle Scholar
  140. 140.
    Hernandez C, Cetner AS, Jordan JE, Puangsuvan SN, Robinson JK (2008) Tuberculosis in the age of biologic therapy. J Am Acad Dermatol 59:363–380, quiz 382–364PubMedCrossRefGoogle Scholar
  141. 141.
    Flynn JL et al (1995) Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572PubMedCrossRefGoogle Scholar
  142. 142.
    Senaldi G et al (1996) Corynebacterium parvum- and Mycobacterium bovis bacillus Calmette–Guerin-induced granuloma formation is inhibited in TNF receptor I (TNF-RI) knockout mice and by treatment with soluble TNF-RI. J Immunol 157:5022–5026PubMedGoogle Scholar
  143. 143.
    Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P (1989) The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731–740PubMedCrossRefGoogle Scholar
  144. 144.
    Keane J et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104PubMedCrossRefGoogle Scholar
  145. 145.
    Gomez-Reino JJ, Carmona L, Valverde VR, Mola EM, Montero MD (2003) Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report. Arthritis Rheum 48:2122–2127PubMedCrossRefGoogle Scholar
  146. 146.
    Dixon WG et al (2010) Drug-specific risk of tuberculosis in patients with rheumatoid arthritis treated with anti-TNF therapy: results from the British Society for Rheumatology Biologics Register (BSRBR). Ann Rheum Dis 69:522–528PubMedCrossRefGoogle Scholar
  147. 147.
    Wallis RS (2011) Biologics and infections: lessons from tumor necrosis factor blocking agents. Infect Dis Clin North Am 25:895–910PubMedCrossRefGoogle Scholar
  148. 148.
    Doherty SD et al (2008) National Psoriasis Foundation consensus statement on screening for latent tuberculosis infection in patients with psoriasis treated with systemic and biologic agents. J Am Acad Dermatol 59:209–217PubMedCrossRefGoogle Scholar
  149. 149.
    Tsiouri G et al (2009) Tuberculin skin test overestimates tuberculosis hypersensitivity in adult patients with psoriasis. Dermatology 219:119–125PubMedCrossRefGoogle Scholar
  150. 150.
    Brown AJ, Lesher JL Jr (2009) Anti-tumor necrosis factor therapy and interpreting tuberculin skin tests. J Am Acad Dermatol 60:e21–e22PubMedCrossRefGoogle Scholar
  151. 151.
    Inanc N et al (2009) Agreement between Quantiferon-TB gold test and tuberculin skin test in the identification of latent tuberculosis infection in patients with rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 36:2675–2681PubMedCrossRefGoogle Scholar
  152. 152.
    Tamborenea MN, Tate G, Mysler E, Debonis J, Schijedman A (2010) Prevalence of positive ppd in a cohort of rheumatoid arthritis patients. Rheumatol Int 30:613–616PubMedCrossRefGoogle Scholar
  153. 153.
    Matulis G, Juni P, Villiger PM, Gadola SD (2008) Detection of latent tuberculosis in immunosuppressed patients with autoimmune diseases: performance of a Mycobacterium tuberculosis antigen-specific interferon gamma assay. Ann Rheum Dis 67:84–90PubMedCrossRefGoogle Scholar
  154. 154.
    Shovman O et al (2009) QuantiFERON-TB Gold in the identification of latent tuberculosis infection in rheumatoid arthritis: a pilot study. Int J Tuber Lung Dis 13:1427–1432Google Scholar
  155. 155.
    Chiu HY, Hsueh PR, Tsai TF (2011) Clinical experience of QuantiFERON((R))-TB gold testing in psoriasis patients treated with tumour necrosis factor blockers in Taiwan. Br J Dermatol 164:553–559Google Scholar
  156. 156.
    Diel R et al (2011) Interferon-gamma release assays for the diagnosis of latent Mycobacterium tuberculosis infection: a systematic review and meta-analysis. Eur Respir J 37:88–99PubMedCrossRefGoogle Scholar
  157. 157.
    Sester M et al (2011) Interferon-gamma release assays for the diagnosis of active tuberculosis: a systematic review and meta-analysis. Eur Respir J 37:100–111PubMedCrossRefGoogle Scholar
  158. 158.
    Hamdi H et al (2006) Inhibition of anti-tuberculosis T-lymphocyte function with tumour necrosis factor antagonists. Arthritis Res Ther 8:R114PubMedCrossRefGoogle Scholar
  159. 159.
    Weinfurter P et al (2011) Predictors of discordant tuberculin skin test and QuantiFERON(R)-TB Gold In-Tube results in various high-risk groups. Int J Tuber Lung Dis 15:1056–1061CrossRefGoogle Scholar
  160. 160.
    Carmona L et al (2005) Effectiveness of recommendations to prevent reactivation of latent tuberculosis infection in patients treated with tumor necrosis factor antagonists. Arthritis Rheum 52:1766–1772PubMedCrossRefGoogle Scholar
  161. 161.
    Winthrop KL, Siegel JN, Jereb J, Taylor Z, Iademarco MF (2005) Tuberculosis associated with therapy against tumor necrosis factor alpha. Arthritis Rheum 52:2968–2974PubMedCrossRefGoogle Scholar
  162. 162.
    Mariette X, Salmon D (2003) French guidelines for diagnosis and treating latent and active tuberculosis in patients with RA treated with TNF blockers. Ann Rheum Dis 62:791PubMedCrossRefGoogle Scholar
  163. 163.
    Lim WS, Powell RJ, Johnston ID (2002) Tuberculosis and treatment with infliximab. N Engl J Med 346:623–626PubMedCrossRefGoogle Scholar
  164. 164.
    Gori A, Fabroni C, Prignano F, Lotti T (2010) Unusual presentation of tuberculosis in an infliximab-treated patient—which is the correct TB screening before starting a biologic? Dermatol Ther 23(Suppl 1):S1–S3PubMedCrossRefGoogle Scholar
  165. 165.
    Huo R, Romanelli P (2010) Etanercept therapy for psoriasis in a patient with active pulmonary tuberculosis. Am J Clin Dermatol 11(Suppl 1):39–40PubMedCrossRefGoogle Scholar
  166. 166.
    Vermeire S et al (2007) Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut 56:1226–1231PubMedCrossRefGoogle Scholar
  167. 167.
    Bartelds GM et al (2007) Clinical response to adalimumab: relationship to anti-adalimumab antibodies and serum adalimumab concentrations in rheumatoid arthritis. Ann Rheum Dis 66:921–926PubMedCrossRefGoogle Scholar
  168. 168.
    Kirby B, Marsland AM, Carmichael AJ, Griffiths CE (2001) Successful treatment of severe recalcitrant psoriasis with combination infliximab and methotrexate. Clin Exp Dermatol 26:27–29PubMedCrossRefGoogle Scholar
  169. 169.
    Myers W, Christiansen L, Gottlieb AB (2005) Treatment of palmoplantar psoriasis with intramuscular alefacept. J Am Acad Dermatol 53:S127–S129PubMedCrossRefGoogle Scholar
  170. 170.
    Prossick TA, Belsito DV (2006) Alefacept in the treatment of recalcitrant palmoplantar and erythrodermic psoriasis. Cutis 78:178–180PubMedGoogle Scholar
  171. 171.
    Carr D et al (2008) Open label trial of alefacept in palmoplantar pustular psoriasis. J Dermatol Treat 19:97–100CrossRefGoogle Scholar
  172. 172.
    Sivamani RK et al (2010) Biological therapy of psoriasis. Indian J Dermatol 55:161–170PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • Raja K. Sivamani
    • 1
  • Heidi Goodarzi
    • 1
  • Miki Shirakawa Garcia
    • 1
  • Siba P. Raychaudhuri
    • 2
  • Lisa N. Wehrli
    • 1
    • 2
  • Yoko Ono
    • 1
    • 2
  • Emanual Maverakis
    • 1
    • 2
    Email author
  1. 1.Department of Dermatology, School of MedicineUniversity of California, DavisSacramentoUSA
  2. 2.Veterans Affairs Northern California Health Care SystemSacramentoUSA

Personalised recommendations