Clinical Reviews in Allergy & Immunology

, Volume 42, Issue 1, pp 5–15 | Cite as

Hygiene Hypothesis and Autoimmune Diseases

  • Graham A. W. RookEmail author


Throughout the twentieth century, there were striking increases in the incidences of many chronic inflammatory disorders in the rich developed countries. These included autoimmune disorders such as Type 1 diabetes and multiple sclerosis. Although genetics and specific triggering mechanisms such as molecular mimicry and viruses are likely to be involved, the increases have been so rapid that any explanation that omits environmental change is incomplete. This chapter suggests that a series of environmental factors, most of them microbial, have led to a decrease in the efficiency of our immunoregulatory mechanisms because we are in a state of evolved dependence on organisms with which we co-evolved (and that had to be tolerated) as inducers of immunoregulatory circuits. These organisms (“Old Friends”) are depleted from the modern urban environment. Rather than considering fetal programming by maternal microbial exposures, neonatal programming, the hygiene hypothesis, gut microbiota, and diet as separate and competing hypotheses, I attempt here to integrate these ideas under a single umbrella concept that can provide the missing immunoregulatory environmental factor that is needed to explain the recent increases in autoimmune disease.


Immunoregulation “Old Friends” Microbiota Treg 


  1. 1.
    Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–1113PubMedCrossRefGoogle Scholar
  2. 2.
    De Filippo C, Cavalieri D, Di Paola M et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696PubMedCrossRefGoogle Scholar
  3. 3.
    Cani PD, Delzenne NM (2011) The gut microbiome as therapeutic target. Pharmacol Ther 130:202–212PubMedCrossRefGoogle Scholar
  4. 4.
    Blackley CH (1873) Experimental Researches on the Causes and Nature of Catarrhus Aestivus (Hay-fever and Hay-asthma), Baillière Tindall and CoxGoogle Scholar
  5. 5.
    Leibowitz U, Antonovsky A, Medalie JM, Smith HA, Halpern L, Alter M (1966) Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation. J Neurol Neurosurg Psychiatry 29:60–68PubMedCrossRefGoogle Scholar
  6. 6.
    Strachan DP (1989) Hay fever, hygiene, and household size. Brit Med J 299:1259–1260PubMedCrossRefGoogle Scholar
  7. 7.
    Rook GAW, Stanford JL (1998) Give us this day our daily germs. Immunol Today 19:113–116PubMedCrossRefGoogle Scholar
  8. 8.
    Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920PubMedCrossRefGoogle Scholar
  9. 9.
    Stene LC, Nafstad P (2001) Relation between occurrence of type 1 diabetes and asthma. Lancet 357:607PubMedCrossRefGoogle Scholar
  10. 10.
    Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz HM (2004) Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J Exp Med 199:1285–1291PubMedCrossRefGoogle Scholar
  11. 11.
    Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979PubMedCrossRefGoogle Scholar
  12. 12.
    Badami E, Sorini C, Coccia M et al (2011) Defective differentiation of regulatory FoxP3+ T Cells by small-intestinal dendritic cells in patients with Type 1 diabetes. Diabetes 60:2120–2124PubMedCrossRefGoogle Scholar
  13. 13.
    Rook GAW (2010) 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol 160:70–79PubMedCrossRefGoogle Scholar
  14. 14.
    Wildin RS, Smyk-Pearson S, Filipovich AH (2002) Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39:537–545PubMedCrossRefGoogle Scholar
  15. 15.
    Fumagalli M, Pozzoli U, Cagliani R et al (2009) Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J Exp Med 206:1395–1408PubMedCrossRefGoogle Scholar
  16. 16.
    Barnes KC, Grant AV, Gao P (2005) A review of the genetic epidemiology of resistance to parasitic disease and atopic asthma: common variants for common phenotypes? Curr Opin Allergy Clin Immunol 5:379–385PubMedCrossRefGoogle Scholar
  17. 17.
    Moller M, Gravenor MB, Roberts SE, Sun D, Gao P, Hopkin JM (2007) Genetic haplotypes of Th-2 immune signalling link allergy to enhanced protection to parasitic worms. Hum Mol Genet 16:1828–1836PubMedCrossRefGoogle Scholar
  18. 18.
    Fredericks CA, Drabant EM, Edge MD et al (2010) Healthy young women with serotonin transporter SS polymorphism show a pro-inflammatory bias under resting and stress conditions. Brain Behav Immun 24:350–357PubMedCrossRefGoogle Scholar
  19. 19.
    Smith AM, Rahman FZ, Hayee B et al (2009) Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease. J Exp Med 206:1883–1897PubMedCrossRefGoogle Scholar
  20. 20.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323PubMedCrossRefGoogle Scholar
  21. 21.
    McDade TW, Rutherford J, Adair L, Kuzawa CW (2010) Early origins of inflammation: microbial exposures in infancy predict lower levels of C-reactive protein in adulthood. Proc Biol Sci 277:1129–1137PubMedCrossRefGoogle Scholar
  22. 22.
    Riedler J, Braun-Fahrlander C, Eder W et al (2001) Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358:1129–1133PubMedCrossRefGoogle Scholar
  23. 23.
    Aichbhaumik N, Zoratti EM, Strickler R et al (2008) Prenatal exposure to household pets influences fetal immunoglobulin E production. Clin Exp Allergy 38:1787–1794PubMedGoogle Scholar
  24. 24.
    Armelagos GJ, Brown PJ, Turner B (2005) Evolutionary, historical and political economic perspectives on health and disease. Soc Sci Med 61:755–765PubMedCrossRefGoogle Scholar
  25. 25.
    Van Blerkom LM (2003) Role of viruses in human evolution. Am J Phys Anthropol Suppl 37:14–46CrossRefGoogle Scholar
  26. 26.
    Kohashi O, Kohashi Y, Takahashi T, Ozawa A, Shigematsu N (1985) Reverse effect of gram-positive bacteria vs. gram-negative bacteria on adjuvant-induced arthritis in germfree rats. Microbiol Immunol 29:487–497PubMedGoogle Scholar
  27. 27.
    Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498PubMedCrossRefGoogle Scholar
  28. 28.
    Gaboriau-Routhiau V, Rakotobe S, Lecuyer E et al (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689PubMedCrossRefGoogle Scholar
  29. 29.
    Wu HJ, Ivanov II, Darce J et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827PubMedCrossRefGoogle Scholar
  30. 30.
    Geuking MB, Cahenzli J, Lawson MA et al (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806PubMedCrossRefGoogle Scholar
  31. 31.
    Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory t cells by indigenous Clostridium species. Science 331:337–341PubMedCrossRefGoogle Scholar
  32. 32.
    Round JL, Lee SM, Li J et al (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–977PubMedCrossRefGoogle Scholar
  33. 33.
    Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1754PubMedGoogle Scholar
  34. 34.
    Maslowski KM, Vieira AT, Ng A et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286PubMedCrossRefGoogle Scholar
  35. 35.
    dos Santos VM, Muller M, de Vos WM (2010) Systems biology of the gut: the interplay of food, microbiota and host at the mucosal interface. Curr Op Biotechnol 21:1–12CrossRefGoogle Scholar
  36. 36.
    Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736PubMedCrossRefGoogle Scholar
  37. 37.
    Reyes A, Haynes M, Hanson N et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338PubMedCrossRefGoogle Scholar
  38. 38.
    Pelosi U, Porcedda G, Tiddia F et al (2005) The inverse association of salmonellosis in infancy with allergic rhinoconjunctivitis and asthma at school-age: a longitudinal study. Allergy 60:626–630PubMedCrossRefGoogle Scholar
  39. 39.
    Matricardi PM, Rosmini F, Riondino S et al (2000) Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma; epidemiological study. Brit Med J 320:412–417PubMedCrossRefGoogle Scholar
  40. 40.
    Umetsu DT, McIntire JJ, DeKruyff RH (2005) TIM-1, hepatitis A virus and the hygiene theory of atopy: association of TIM-1 with atopy. J Pediatr Gastroenterol Nutr 40(1):S43PubMedCrossRefGoogle Scholar
  41. 41.
    Seiskari T, Kondrashova A, Viskari H et al (2007) Allergic sensitization and microbial load—a comparison between Finland and Russian Karelia. Clin Exp Immunol 148:47–52PubMedCrossRefGoogle Scholar
  42. 42.
    Yazdanbakhsh M, Wahyuni S (2005) The role of helminth infections in protection from atopic disorders. Curr Opin Allergy Clin Immunol 5:386–391PubMedCrossRefGoogle Scholar
  43. 43.
    Stoll NR (1947) This wormy world. J Parasitol 33:1–18PubMedCrossRefGoogle Scholar
  44. 44.
    Gale EA (2002) A missing link in the hygiene hypothesis? Diabetologia 45:588–594PubMedCrossRefGoogle Scholar
  45. 45.
    Lynch NR, Lopez R, Isturiz G, Tenias-Salazar E (1983) Allergic reactivity and helminthic infection in Amerindians of the Amazon Basin. Int Arch Allergy Appl Immunol 72:369–372PubMedCrossRefGoogle Scholar
  46. 46.
    Hagel I, Lynch NR, Perez M, Di Prisco MC, Lopez R, Rojas E (1993) Modulation of the allergic reactivity of slum children by helminthic infection. Parasite Immunol 15:311–315PubMedCrossRefGoogle Scholar
  47. 47.
    Araujo MI, Lopes AA, Medeiros M et al (2000) Inverse association between skin response to aeroallergens and Schistosoma mansoni infection. Int Arch Allergy Immunol 123:145–148PubMedCrossRefGoogle Scholar
  48. 48.
    Nyan OA, Walraven GE, Banya WA et al (2001) Atopy, intestinal helminth infection and total serum IgE in rural and urban adult Gambian communities. Clin Exp Allergy 31:1672–1678PubMedCrossRefGoogle Scholar
  49. 49.
    Cooper PJ, Chico ME, Rodrigues LC et al (2003) Reduced risk of atopy among school-age children infected with geohelminth parasites in a rural area of the tropics. J Allergy Clin Immunol 111:995–1000PubMedCrossRefGoogle Scholar
  50. 50.
    Scrivener S, Yemaneberhan H, Zebenigus M et al (2001) Independent effects of intestinal parasite infection and domestic allergen exposure on risk of wheeze in Ethiopia: a nested case-control study. Lancet 358:1493–1499PubMedCrossRefGoogle Scholar
  51. 51.
    Huang SL, Tsai PF, Yeh YF (2002) Negative association of Enterobius infestation with asthma and rhinitis in primary school children in Taipei. Clin Exp Allergy 32:1029–1032PubMedCrossRefGoogle Scholar
  52. 52.
    Medeiros M Jr, Figueiredo JP, Almeida MC et al (2003) Schistosoma mansoni infection is associated with a reduced course of asthma. J Allergy Clin Immunol 111:947–951PubMedCrossRefGoogle Scholar
  53. 53.
    Flohr C, Tuyen LN, Quinnell RJ et al (2010) Reduced helminth burden increases allergen skin sensitization but not clinical allergy: a randomized, double-blind, placebo-controlled trial in Vietnam. Clin Exp Allergy 40:131–142PubMedGoogle Scholar
  54. 54.
    Lynch NR, Hagel I, Perez M, Di Prisco MC, Lopez R, Alvarez N (1993) Effect of anthelmintic treatment on the allergic reactivity of children in a tropical slum. J Allergy Clin Immunol 92:404–411PubMedCrossRefGoogle Scholar
  55. 55.
    van den Biggelaar AH, Rodrigues LC, van Ree R et al (2004) Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. J Infect Dis 189:892–900PubMedCrossRefGoogle Scholar
  56. 56.
    Leonardi-Bee J, Pritchard D, Britton J (2006) Asthma and current intestinal parasite infection: systematic review and meta-analysis. Am J Respir Crit Care Med 174:514–523PubMedCrossRefGoogle Scholar
  57. 57.
    Fleming JO, Cook TD (2006) Multiple sclerosis and the hygiene hypothesis. Neurology 67:2085–2086PubMedCrossRefGoogle Scholar
  58. 58.
    Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 61:97–108PubMedCrossRefGoogle Scholar
  59. 59.
    Correale J, Farez M, Razzitte G (2008) Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol 64:187–199PubMedCrossRefGoogle Scholar
  60. 60.
    Correale, J. and Farez, M.F. (2011) The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol Google Scholar
  61. 61.
    Koloski NA, Bret L, Radford-Smith G (2008) Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature. World J Gastroenterol 14:165–173PubMedCrossRefGoogle Scholar
  62. 62.
    Weinstock JV, Elliott DE (2009) Helminths and the IBD hygiene hypothesis. Inflamm Bowel Dis 15:128–133PubMedCrossRefGoogle Scholar
  63. 63.
    Walk ST, Blum AM, Ewing SA, Weinstock JV, Young VB (2010) Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm Bowel Dis 16:1841–1849PubMedCrossRefGoogle Scholar
  64. 64.
    Hang L, Setiawan T, Blum AM et al (2010) Heligmosomoides polygyrus infection can inhibit colitis through direct interaction with innate immunity. J Immunol 185:3184–3189PubMedCrossRefGoogle Scholar
  65. 65.
    Grainger JR, Smith KA, Hewitson JP et al (2010) Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-beta pathway. J Exp Med doi: 10.1084/jem.20101074
  66. 66.
    Schnoeller C, Rausch S, Pillai S et al (2008) A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 180:4265–4272PubMedGoogle Scholar
  67. 67.
    Osada Y, Kanazawa T (2010) Parasitic helminths: new weapons against immunological disorders. J Biomed Biotechnol 2010:743–758CrossRefGoogle Scholar
  68. 68.
    Whitlock DR, Feelisch M (2009) Soil bacteria, nitrite, and the skin. In The Hygiene Hypothesis and Darwinian Medicine (Rook, G.A.W., ed.), Birkhäuser, pp. 103–116Google Scholar
  69. 69.
    Huang YJ, Nelson CE, Brodie EL et al (2011) Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 127(372–381):e371–e373Google Scholar
  70. 70.
    Singhal S, Dian D, Keshavarzian A, Fogg L, Fields JZ, Farhadi A (2011) The role of oral hygiene in inflammatory bowel disease. Dig Dis Sci 56:170–175PubMedCrossRefGoogle Scholar
  71. 71.
    Donnet-Hughes A, Perez PF, Dore J et al (2010) Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 69:407–415PubMedCrossRefGoogle Scholar
  72. 72.
    Friberg IM, Bradley JE and Jackson JA (2010) Macroparasites, innate immunity and immunoregulation: developing natural models. Trends Parasitol Google Scholar
  73. 73.
    Zuany-Amorim C, Sawicka E, Manlius C et al (2002) Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med 8:625–629PubMedCrossRefGoogle Scholar
  74. 74.
    Ricklin-Gutzwiller ME, Reist M, Peel JE, Seewald W, Brunet LR, Roosje PJ (2007) Intradermal injection of heat-killed Mycobacterium vaccae in dogs with atopic dermatitis: a multicentre pilot study. Vet Dermatol 18:87–93PubMedCrossRefGoogle Scholar
  75. 75.
    Le Bert N, Chain BM, Rook G, Noursadeghi M (2011) DC priming by M. vaccae inhibits th2 responses in contrast to specific TLR2 priming and is associated with selective activation of the CREB pathway. PLoS One 6:e18346PubMedCrossRefGoogle Scholar
  76. 76.
    Umetsu DT, DeKruyff RH (2010) Microbes, apoptosis and TIM-1 in the development of asthma. Clin Exp Immunol 160:125–129PubMedCrossRefGoogle Scholar
  77. 77.
    Matricardi PM, Rosmini F, Panetta V, Ferrigno L, Bonini S (2002) Hay fever and asthma in relation to markers of infection in the United States. J Allergy Clin Immunol 110:381–387PubMedCrossRefGoogle Scholar
  78. 78.
    Strachan DP, Taylor EM, Carpenter RG (1996) Family structure, neonatal infection, and hay fever in adolescence. Arch Dis Child 74:422–426PubMedCrossRefGoogle Scholar
  79. 79.
    Matricardi PM, Franzinelli F, Franco A et al (1998) Sibship size, birth order, and atopy in 11,371 Italian young men. J Allergy Clin Immunol 101:439–444PubMedCrossRefGoogle Scholar
  80. 80.
    Benn CS, Melbye M, Wohlfahrt J, Bjorksten B, Aaby P (2004) Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis during first 18 months of life. BMJ 328:1223PubMedCrossRefGoogle Scholar
  81. 81.
    Dunder T, Tapiainen T, Pokka T, Uhari M (2007) Infections in child day care centers and later development of asthma, allergic rhinitis, and atopic dermatitis: prospective follow-up survey 12 years after controlled randomized hygiene intervention. Arch Pediatr Adolesc Med 161:972–977PubMedCrossRefGoogle Scholar
  82. 82.
    Cardwell CR, Carson DJ, Yarnell J, Shields MD, Patterson CC (2008) Atopy, home environment and the risk of childhood-onset type 1 diabetes: a population-based case-control study. Pediatr Diabetes 9:191–196PubMedCrossRefGoogle Scholar
  83. 83.
    Amre DK, Lambrette P, Law L et al (2006) Investigating the hygiene hypothesis as a risk factor in pediatric onset Crohn's disease: a case-control study. Am J Gastroenterol 101:1005–1011PubMedCrossRefGoogle Scholar
  84. 84.
    Bernstein CN, Rawsthorne P, Cheang M, Blanchard JF (2006) A population-based case control study of potential risk factors for IBD. Am J Gastroenterol 101:993–1002PubMedCrossRefGoogle Scholar
  85. 85.
    Filippi CM, von Herrath MG (2008) Viral trigger for type 1 diabetes: pros and cons. Diabetes 57:2863–2871PubMedCrossRefGoogle Scholar
  86. 86.
    Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49:708–711PubMedCrossRefGoogle Scholar
  87. 87.
    Harrison LC, Honeyman MC, Morahan G et al (2008) Type 1 diabetes: lessons for other autoimmune diseases? J Autoimmun 31:306–310PubMedCrossRefGoogle Scholar
  88. 88.
    Lassmann H, Niedobitek G, Aloisi F, Middeldorp JM (2011) Epstein–Barr virus in the multiple sclerosis brain: a controversial issue—report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain Google Scholar
  89. 89.
    Christensen T (2005) Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol 15:179–211PubMedCrossRefGoogle Scholar
  90. 90.
    Disanto G, Meier U, Giovannoni G, Ramagopalan SV (2011) Vitamin D: a link between Epstein–Barr virus and multiple sclerosis development? Expert Rev Neurother 11:1221–1224PubMedCrossRefGoogle Scholar
  91. 91.
    Cordain L, Eaton SB, Sebastian A et al (2005) Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354PubMedGoogle Scholar
  92. 92.
    Stringer, C. (2011) The origin of our species, PenguinGoogle Scholar
  93. 93.
    Kondrashova A, Reunanen A, Romanov A et al (2005) A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med 37:67–72PubMedCrossRefGoogle Scholar
  94. 94.
    Pakarinen J, Hyvarinen A, Salkinoja-Salonen M et al (2008) Predominance of Gram-positive bacteria in house dust in the low-allergy risk Russian Karelia. Environ Microbiol 10:3317–3325PubMedCrossRefGoogle Scholar
  95. 95.
    Fleming J, Isaak A, Lee J et al (2011) Probiotic helminth administration in relapsing-remitting multiple sclerosis: a phase 1 study. Mult Scler 17:743–754PubMedCrossRefGoogle Scholar
  96. 96.
    Summers RW, Elliott DE, Urban JF Jr, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn's disease. Gut 54:87–90PubMedCrossRefGoogle Scholar
  97. 97.
    Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology 128:825–832PubMedCrossRefGoogle Scholar
  98. 98.
    Feary JR, Venn AJ, Mortimer K et al (2010) Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin Exp Allergy 40:299–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of InfectionCentre for Clinical Microbiology, University College London (UCL)LondonUK

Personalised recommendations