Skip to main content

Cutting Edge: The Etiology of Autoimmune Thyroid Diseases

Abstract

Significant progress has been made in our understanding of the mechanisms leading to autoimmune thyroid diseases (AITD). For the first time, we are beginning to unravel these mechanisms at the molecular level. AITD, including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are common autoimmune diseases affecting the thyroid. They have a complex etiology that involves genetic and environmental influences. Seven genes have been shown to contribute to the etiology of AITD. The first AITD gene discovered, HLA-DR3, is associated with both GD and HT. More recently, this association was dissected at the molecular level when it was shown that substitution of the neutral amino acids Ala or Gln with arginine at position beta 74 in the HLA-DR peptide binding pocket is the specific sequence change causing AITD. Non-MHC genes that confer susceptibility to AITD can be classified into two groups: (1) immune-regulatory genes (e.g., CD40, CTLA-4, and PTPN22); (2) thyroid-specific genes—thyroglobulin and TSH receptor genes. These genes interact with environmental factors, such as infection, likely through epigenetic mechanisms to trigger disease. In this review, we summarize the latest findings on disease susceptibility and modulation by environmental factors.

This is a preview of subscription content, access via your institution.

References

  1. Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y (2008) Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev 29:697–725

    PubMed  Article  CAS  Google Scholar 

  2. Jacobson DL, Gange SJ, Rose NR, Graham NM (223) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84:223–243

    Article  Google Scholar 

  3. Weetman AP (2000) Chronic autoimmune thyroiditis. In: Braverman LE, Utiger RD (eds) Werner and Ingbar's The thyroid. Lippincott Williams and Wilkins, Philadelphia, pp 721–732

    Google Scholar 

  4. Menconi F, Oppenheim YL, Tomer Y (2008) Graves' disease. In: Shoenfeld Y, Cervera R, Gershwin ME (eds) Diagnostic criteria in autoimmune diseases. Humana Press, Totowa, NJ, pp 231–235

    Chapter  Google Scholar 

  5. Gebe JA, Swanson E, Kwok WW (2002) HLA class II peptide-binding and autoimmunity. Tissue Antigens 59:78–87

    PubMed  Article  CAS  Google Scholar 

  6. Tomer Y (2010) Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid 20:715–725

    PubMed  Article  CAS  Google Scholar 

  7. Golden B, Levin L, Ban Y, Concepcion E, Greenberg DA, Tomer Y (2005) Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endocrinol Metab 90:4904–4911

    PubMed  Article  CAS  Google Scholar 

  8. Jacobson EM, Huber A, Tomer Y (2008) The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun 30:58–62

    PubMed  Article  CAS  Google Scholar 

  9. Menconi F, Monti MC, Greenberg DA et al (2008) Molecular amino acid signatures in the MHC class II peptide-binding pocket predispose to autoimmune thyroiditis in humans and in mice. Proc Natl Acad Sci USA 105:14034–14039

    PubMed  Article  CAS  Google Scholar 

  10. Maciel LM, Rodrigues SS, Dibbern RS, Navarro PA, Donadi EA (2001) Association of the HLA-DRB1*0301 and HLA-DQA1*0501 alleles with Graves' disease in a population representing the gene contribution from several ethnic backgrounds. Thyroid 11:31–35

    PubMed  Article  CAS  Google Scholar 

  11. Ban Y, Davies TF, Greenberg DA et al (2004) Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves' disease. Genes Immun 5:203–208

    PubMed  Article  CAS  Google Scholar 

  12. Hodge SE, Ban Y, Strug LJ et al (2006) Possible interaction between HLA-DRbeta1 and thyroglobulin variants in Graves' disease. Thyroid 16:351–355

    PubMed  Article  CAS  Google Scholar 

  13. Jacobson EM, Tomer Y (2007) The CD40, CTLA-4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J Autoimmun 28:85–98

    PubMed  Article  CAS  Google Scholar 

  14. Tomer Y, Concepcion E, Greenberg DA (2002) A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves' disease. Thyroid 12:1129–1135

    PubMed  Article  CAS  Google Scholar 

  15. Jacobson EM, Concepcion E, Oashi T, Tomer Y (2005) A Graves' disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146:2684–2691

    PubMed  Article  CAS  Google Scholar 

  16. Khattri R, Auger JA, Griffin MD, Sharpe AH, Bluestone JA (1999) Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J Immunol 162:5784–5791

    PubMed  CAS  Google Scholar 

  17. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    PubMed  Article  CAS  Google Scholar 

  18. Chung SA, Criswell LA (2007) PTPN22: its role in SLE and autoimmunity. Autoimmunity 40:582–590

    PubMed  Article  CAS  Google Scholar 

  19. Yang Y, Chung EK, Wu YL et al (2007) Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 80:1037–1054

    PubMed  Article  CAS  Google Scholar 

  20. Huber AK, Concepcion ES, Gandhi A, et al. (2010), Analysis of Immune Regulatory Genes' Copy Number Variants in Graves' Disease. Thyroid. Nov 8

  21. Ban Y, Greenberg DA, Concepcion E, Skrabanek L, Villanueva R, Tomer Y (2003) Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci U S A 100:15119–15124

    PubMed  Article  CAS  Google Scholar 

  22. Tomer Y, Ban Y, Concepcion E et al (2003) Common and unique susceptibility loci in Graves and Hashimoto diseases: results of whole-genome screening in a data set of 102 multiplex families. Am J Hum Genet 73:736–747

    PubMed  Article  CAS  Google Scholar 

  23. Brent GA (2010) Environmental exposures and autoimmune thyroid disease. Thyroid 20:755–761

    PubMed  Article  Google Scholar 

  24. Papanastasiou L, Vatalas L, Koutras DA, Mastorakos G (2007) Thyroid autoimmunity in the current iodine environment. Thyroid 17:729–739

    PubMed  Article  CAS  Google Scholar 

  25. Teng W, Shan Z, Teng X et al (2006) Effect of iodine intake on thyroid diseases in China. N Engl J Med 354:2783–2793

    PubMed  Article  CAS  Google Scholar 

  26. Doufas AG, Mastorakos G, Chatziioannou S et al (1999) The predominant form of non-toxic goiter in Greece is now autoimmune thyroiditis. Eur J Endocrinol 140:505–511

    PubMed  Article  CAS  Google Scholar 

  27. Kahaly GJ, Dienes HP, Beyer J, Hommel G (1998) Iodide induced thyroid autoimmunity in patients with endemic goiter: a randomized, double blind, placebo controlled trial. Eur J Endocrinol 139:290–297

    PubMed  Article  CAS  Google Scholar 

  28. Burek CL, Talor MV (2009) Environmental triggers of autoimmune thyroiditis. J Autoimmun 33:183–189

    PubMed  Article  CAS  Google Scholar 

  29. Tanda ML, Piatanida E, Lai A et al (2009) Thyroid autoimmunity and environment. Horm Metab Res 41:436–442

    PubMed  Article  CAS  Google Scholar 

  30. Bogazzi F, Bartalena L, Martino E (2010) Approach to the patient with amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab 95:2529–2535

    PubMed  Article  CAS  Google Scholar 

  31. Bogazzi F, Bartalena L, Gasperi M, Braverman LE, Martino E (2001) The various effects of amiodarone on thyroid function. Thyroid 11:511–519

    PubMed  Article  CAS  Google Scholar 

  32. Pitsiavas V, Smerdely P, Li M, Boyages SC (1997) Amiodarone induces a different pattern of ultrastructural change in the thyroid to iodine excess alone in both the BB/W rat and the Wistar rat. Eur J Endocrinol 137:89–98

    PubMed  Article  CAS  Google Scholar 

  33. Wiersinga WM (2010) The role of thyroid hormone nuclear receptors in the heart: evidence from pharmacological approaches. Heart Fail Rev 15:121–124

    PubMed  Article  CAS  Google Scholar 

  34. Shi RQ, Lee JK, Hayashi Y et al (2008) Long term amiodarone treatment causes cardioselective hypothyroid-like alteration in gene expression profile. Eur J Pharmacol 578:270–278

    PubMed  Article  CAS  Google Scholar 

  35. Chen F, Day SL, Metcalfe RA et al (2005) Characteristics of autoimmune thyroid disease occurring as a late complication of immune reconstitution in patients with advances human immunodeficiency virus (HIV) disease. Medicine 84:98–106

    PubMed  Article  CAS  Google Scholar 

  36. Jubault V, Penfornis A, Schillo F et al (2000) Sequential occurrence of thyroid autoantibodies and Graves’ disease after immune restoration in severely immunocompromised human immunodeficiency virus-1 infected patients. J Clin Endocrinol Metab 85:4254–4257

    PubMed  Article  CAS  Google Scholar 

  37. Madeddu G, Spanu A, Chessa F et al (2006) Thyroid function in human immunodeficiency virus patients treated with highly active antiretroviral therapy (HAART): a longitudinal study. Clin Endocrinol 64:375–383

    CAS  Google Scholar 

  38. Tomer Y, Menconi F (2009) Interferon induced thyroiditis. Best Pract Res Clin Endocrinol Metab 23:703–712

    PubMed  Article  CAS  Google Scholar 

  39. Mandac JC, Chaudhry S, Sherman KE, Tomer Y (2006) The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 43:661–672

    PubMed  Article  CAS  Google Scholar 

  40. Antonelli A, Ferri C, Pampana A et al (2004) Thyroid disorders in chronic hepatitis C. Am J Med 117:10–13

    PubMed  Article  CAS  Google Scholar 

  41. Tomer Y, Huber A (2009) The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun 32:231–239

    PubMed  Article  CAS  Google Scholar 

  42. Desailloud R, Hober D (2009) Viruses and thyroiditis: an update. Virol J 6:5

    PubMed  Article  Google Scholar 

  43. Benvenga S, Santarpia L, Trimarchi F, Guarneri F (2006) Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor. Thyroid 16:225–236

    PubMed  Article  CAS  Google Scholar 

  44. Volzke H, Werner A, Guertler L, Robinson D, Wallaschofski H, John U (2005) Putative association between anti-Borrelia IgG and autoimmune thyroid disease? Thyroid 15:1273–1277

    PubMed  Article  Google Scholar 

  45. Prummel MF, Strieder T, Wiersinga WM (2004) The environment and autoimmune thyroid diseases. Eur J Endocrinol 150:605–618

    PubMed  Article  CAS  Google Scholar 

  46. Tomer Y, Villanueva R (2004) Hepatitis C and thyroid autoimmunity: is there a link? Am J Med 117:60–61

    PubMed  Article  Google Scholar 

  47. Ganne-Carrie MA, Coderc E et al (2000) Latent autoimmune thyroiditis in untreated patients with HCV chronic hepatitis: a case control study. J Autoimmun 14:189–193

    PubMed  Article  CAS  Google Scholar 

  48. Andrade LJ, Atta AM, D'Almeida Junior A, Paraná R (2008) Thyroid dysfunction in hepatitis C individuals treated with interferon-alpha and ribavirin—a review. Braz J Infect Dis 12:144–148

    PubMed  Article  CAS  Google Scholar 

  49. Hsieh MC, Yu ML, Chuang WL et al (2000) Virologic factors related to interferon alpha induced thyroid dysfunction in patients with chronic hepatitis C. Eur J Endocrinol 142:431–437

    PubMed  Article  CAS  Google Scholar 

  50. Bartolome J (2008) Detection of hepatitis C virus in thyroid tissue from patients with chronic HCV infection. J Med Virol 80:1588–1594

    PubMed  Article  CAS  Google Scholar 

  51. Akeno N, Blackard JT, Tomer Y (2008) HCV E2 protein binds directly to thyroid cells and induces IL-8 production: a new mechanism for HCV induced thyroid autoimmunity. J Autoimmun 31:339–344

    PubMed  Article  CAS  Google Scholar 

  52. Boas M, Main KM, Feldt-Rasmussen U (2009) Environmental chemicals and thyroid function: an update. Curr Opin Endocrinol Diab Obes 16:385–391

    Article  CAS  Google Scholar 

  53. Bahn AK, Mills JL, Snyder PJ et al (1980) Hypothyroidism in workers exposed to polybrominated biphenyls. N Engl J Med 302:31–33

    PubMed  Article  CAS  Google Scholar 

  54. Moriyama K, Tagami T, Akamizu T et al (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87:5185–5190

    PubMed  Article  CAS  Google Scholar 

  55. Jungel A, Ospelt C, Gay S (2010) What can we learn from epigenetics in the year 2009? Curr Opin Rheumatol 22:284–292

    PubMed  Article  Google Scholar 

  56. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    PubMed  Article  CAS  Google Scholar 

  57. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics 3:33

    PubMed  Article  Google Scholar 

  58. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE (2010) Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 299:R711–R722

    PubMed  Article  CAS  Google Scholar 

  59. Karouzakis E, Gay RE, Gay S, Neidhart M (2009) Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol 5:266–272

    PubMed  Article  CAS  Google Scholar 

  60. Hewagama A, Richardson B (2009) The genetics and epigenetics of autoimmune diseases. J Autoimmun 33:3–11

    PubMed  Article  CAS  Google Scholar 

  61. Youngblood B, Reich NO (2008) The early expressed HIV-1 genes regulate DNMT1 expression. Epigenetics 3:149–156

    PubMed  Article  Google Scholar 

  62. Menconi F, Osman R, Monti MC, Greenberg DA, Concepcion ES, Tomer Y (2010) Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis. Proc Natl Acad Sci U S A 107:16899–16903

    PubMed  Article  CAS  Google Scholar 

  63. EM YH, Menconi F et al (2009) Employing a recombinant HLA-DR3 expression system to dissect MHC II-thyroglobulin peptide dynamism: a genetic, biochemical, and reverse immunological perspective. J Biol Chem 284:34231–34243

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants DK061659, DK067555, and DK073681 from NIDDK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaron Tomer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eschler, D.C., Hasham, A. & Tomer, Y. Cutting Edge: The Etiology of Autoimmune Thyroid Diseases. Clinic Rev Allerg Immunol 41, 190–197 (2011). https://doi.org/10.1007/s12016-010-8245-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-010-8245-8

Keywords

  • Thyroid genetics
  • Autoimmune thyroid disorders epigenetics