Clinical Reviews in Allergy & Immunology

, Volume 41, Issue 2, pp 169–178

Viruses and Cytotoxic T Lymphocytes in Type 1 Diabetes



Histopathological studies on pancreas tissues from individuals with recent-onset type 1 diabetes (T1D) consistently find that CD8 T cells substantially contribute to the formation of islet lesions. CD8 T cells reactive against islet-associated antigens can also be found in blood samples from T1D patients. Mechanistic studies on the pathogenic role of this T cell subset have mostly focused on two animal models, i.e., the non-obese diabetic mouse and the virally induced rat insulin promoter–lymphocytic choriomeningitis virus model. Data were obtained in support of a role for viral infection in expanding a population of diabetogenic cytotoxic T lymphocytes. In view of the theorized association of viral infection with initiation of islet autoimmunity and progression to clinically overt disease, CD8 T cells thus represent an attractive target for immunotherapy. We will review here arguments in favor of a pivotal role for CD8 T cells in driving T1D development and speculate on etiologic agents that may provoke their aberrant activation.


Type 1 diabetes Autoimmunity CD8 T cells CTL Beta cells 


  1. 1.
    Van Belle TL CK, von Herrath MG (2011) Type 1 diabetes: etiology, immunology and therapeutic strategies. Physiol Rev (in press)Google Scholar
  2. 2.
    Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14:619–633PubMedGoogle Scholar
  3. 3.
    Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181PubMedCrossRefGoogle Scholar
  4. 4.
    Dotta F, Censini S, van Halteren AG et al (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104:5115–5120PubMedCrossRefGoogle Scholar
  5. 5.
    Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG, Gamble DR (1985) In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med 313:353–360PubMedCrossRefGoogle Scholar
  6. 6.
    Hanninen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O (1992) Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest 90:1901–1910PubMedCrossRefGoogle Scholar
  7. 7.
    Somoza N, Vargas F, Roura-Mir C et al (1994) Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. J Immunol 153:1360–1377PubMedGoogle Scholar
  8. 8.
    In’t Veld P, Lievens D, De Grijse J et al (2007) Screening for insulitis in adult autoantibody-positive organ donors. Diabetes 56:2400–2404PubMedCrossRefGoogle Scholar
  9. 9.
    Di Lorenzo TP, Peakman M, Roep BO (2007) Translational mini-review series on type 1 diabetes: systematic analysis of T cell epitopes in autoimmune diabetes. Clin Exp Immunol 148:1–16PubMedCrossRefGoogle Scholar
  10. 10.
    Velthuis JH, Unger WW, Abreu JR et al (2010) Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers. Diabetes 59:1721–1730PubMedCrossRefGoogle Scholar
  11. 11.
    Panagiotopoulos C, Qin H, Tan R, Verchere CB (2003) Identification of a beta-cell-specific HLA class I restricted epitope in type 1 diabetes. Diabetes 52:2647–2651PubMedCrossRefGoogle Scholar
  12. 12.
    Rathmann S, Rajasalu T, Rosinger S et al (2004) Preproinsulin-specific CD8+ T cells secrete IFNgamma in human type 1 diabetes. Ann NY Acad Sci 1037:22–25PubMedCrossRefGoogle Scholar
  13. 13.
    Panina-Bordignon P, Lang R, van Endert PM et al (1995) Cytotoxic T cells specific for glutamic acid decarboxylase in autoimmune diabetes. J Exp Med 181:1923–1927PubMedCrossRefGoogle Scholar
  14. 14.
    Pinkse GG, Tysma OH, Bergen CA et al (2005) Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci USA 102:18425–18430PubMedCrossRefGoogle Scholar
  15. 15.
    Toma A, Haddouk S, Briand JP et al (2005) Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci USA 102:10581–10586PubMedCrossRefGoogle Scholar
  16. 16.
    Ouyang Q, Standifer NE, Qin H et al (2006) Recognition of HLA class I-restricted beta-cell epitopes in type 1 diabetes. Diabetes 55:3068–3074PubMedCrossRefGoogle Scholar
  17. 17.
    Monti P, Scirpoli M, Rigamonti A et al (2007) Evidence for in vivo primed and expanded autoreactive T cells as a specific feature of patients with type 1 diabetes. J Immunol 179:5785–5792PubMedGoogle Scholar
  18. 18.
    Jarchum I, Nichol L, Trucco M, Santamaria P, DiLorenzo TP (2008) Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clin Immunol 127:359–365PubMedCrossRefGoogle Scholar
  19. 19.
    Toma A, Laika T, Haddouk S et al (2009) Recognition of human proinsulin leader sequence by class I-restricted T-cells in HLA-A*0201 transgenic mice and in human type 1 diabetes. Diabetes 58:394–402PubMedCrossRefGoogle Scholar
  20. 20.
    Mallone R, Martinuzzi E, Blancou P et al (2007) CD8+ T-cell responses identify beta-cell autoimmunity in human type 1 diabetes. Diabetes 56:613–621PubMedCrossRefGoogle Scholar
  21. 21.
    Baker C, de Marquesini LG Petrich, Bishop AJ, Hedges AJ, Dayan CM, Wong FS (2008) Human CD8 responses to a complete epitope set from preproinsulin: implications for approaches to epitope discovery. J Clin Immunol 28:350–360PubMedCrossRefGoogle Scholar
  22. 22.
    Skowera A, Ellis RJ, Varela-Calvino R et al (2008) CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. J Clin Invest 118:3390–3402PubMedGoogle Scholar
  23. 23.
    Martinuzzi E, Novelli G, Scotto M et al (2008) The frequency and immunodominance of islet-specific CD8+ T-cell responses change after type 1 diabetes diagnosis and treatment. Diabetes 57:1312–1320PubMedCrossRefGoogle Scholar
  24. 24.
    Cernea S, Herold KC (2010) Monitoring of antigen-specific CD8 T cells in patients with type 1 diabetes treated with antiCD3 monoclonal antibodies. Clin Immunol 134:121–129PubMedCrossRefGoogle Scholar
  25. 25.
    Huurman VA, Hilbrands R, Pinkse GG et al (2008) Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS ONE 3:e2435PubMedCrossRefGoogle Scholar
  26. 26.
    Trudeau JD, Kelly-Smith C, Verchere CB et al (2003) Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 111:217–223PubMedGoogle Scholar
  27. 27.
    Wong CP, Stevens R, Long B et al (2007) Identical beta cell-specific CD8(+) T cell clonotypes typically reside in both peripheral blood lymphocyte and pancreatic islets. J Immunol 178:1388–1395PubMedGoogle Scholar
  28. 28.
    Enee E, Martinuzzi E, Blancou P, Bach JM, Mallone R, van Endert P (2008) Equivalent specificity of peripheral blood and islet-infiltrating CD8+ T lymphocytes in spontaneously diabetic HLA-A2 transgenic NOD mice. J Immunol 180:5430–5438PubMedGoogle Scholar
  29. 29.
    Velthuis JH, Unger WW, van der Slik AR et al (2009) Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia 52:494–503PubMedCrossRefGoogle Scholar
  30. 30.
    Tsai S, Shameli A, Santamaria P (2008) CD8+ T cells in type 1 diabetes. Adv Immunol 100:79–124PubMedCrossRefGoogle Scholar
  31. 31.
    Standifer NE, Burwell EA, Gersuk VH, Greenbaum CJ, Nepom GT (2009) Changes in autoreactive T cell avidity during type 1 diabetes development. Clin Immunol 132:312–320PubMedCrossRefGoogle Scholar
  32. 32.
    Reijonen H, Mallone R, Heninger AK et al (2004) GAD65-specific CD4+ T-cells with high antigen avidity are prevalent in peripheral blood of patients with type 1 diabetes. Diabetes 53:1987–1994PubMedCrossRefGoogle Scholar
  33. 33.
    Amrani A, Verdaguer J, Serra P, Tafuro S, Tan R, Santamaria P (2000) Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406:739–742PubMedCrossRefGoogle Scholar
  34. 34.
    Oikarinen S, Martiskainen M, Tauriainen S, et al (2010) Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes (in press)Google Scholar
  35. 35.
    Stene LC, Oikarinen S, Hyoty H et al (2010) Enterovirus infection and progression from islet autoimmunity to type 1 diabetes: the diabetes and autoimmunity study in the young (DAISY). Diabetes 59(12):3174–3180PubMedCrossRefGoogle Scholar
  36. 36.
    Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6:279–289PubMedCrossRefGoogle Scholar
  37. 37.
    Mazzaglia G, Yurgin N, Boye KS et al (2008) Prevalence and antihyperglycemic prescribing trends for patients with type 2 diabetes in Italy: a 4-year retrospective study from national primary care data. Pharmacol Res 57:358–363PubMedCrossRefGoogle Scholar
  38. 38.
    Richardson SJ, Willcox A, Bone AJ, Foulis AK, Morgan NG (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52:1143–1151PubMedCrossRefGoogle Scholar
  39. 39.
    Foulis AK, Farquharson MA, Meager A (1987) Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet 2:1423–1427PubMedCrossRefGoogle Scholar
  40. 40.
    Yoon JW, Onodera T, Jenson AB, Notkins AL (1978) Virus-induced diabetes mellitus. XI. Replication of coxsackie B3 virus in human pancreatic beta cell cultures. Diabetes 27:778–781PubMedCrossRefGoogle Scholar
  41. 41.
    Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S (2004) Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329:381–394PubMedGoogle Scholar
  42. 42.
    Kanno T, Kim K, Kono K, Drescher KM, Chapman NM, Tracy S (2006) Group B coxsackievirus diabetogenic phenotype correlates with replication efficiency. J Virol 80:5637–5643PubMedCrossRefGoogle Scholar
  43. 43.
    Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49:708–711PubMedCrossRefGoogle Scholar
  44. 44.
    Filippi CM, Estes EA, Oldham JE, von Herrath MG (2009) Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 119:1515–1523PubMedGoogle Scholar
  45. 45.
    Coppieters KT, von Herrath MG (2009) Histopathology of type 1 diabetes: old paradigms and new insights. Rev Diabet Stud 6:85–96PubMedCrossRefGoogle Scholar
  46. 46.
    Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H (1991) Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65:319–331PubMedCrossRefGoogle Scholar
  47. 47.
    Ohashi PS, Oehen S, Buerki K et al (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317PubMedCrossRefGoogle Scholar
  48. 48.
    Martinic MM, Juedes AE, Bresson D et al (2007) Minimal impact of a de novo-expressed beta-cell autoantigen on spontaneous diabetes development in NOD mice. Diabetes 56:1059–1068PubMedCrossRefGoogle Scholar
  49. 49.
    Honeyman MC, Stone NL, Falk BA, Nepom G, Harrison LC (2010) Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 184:2204–2210PubMedCrossRefGoogle Scholar
  50. 50.
    Hiemstra HS, Schloot NC, van Veelen PA et al (2001) Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc Natl Acad Sci USA 98:3988–3991PubMedCrossRefGoogle Scholar
  51. 51.
    Harkonen T, Lankinen H, Davydova B, Hovi T, Roivainen M (2002) Enterovirus infection can induce immune responses that cross-react with beta-cell autoantigen tyrosine phosphatase IA-2/IAR. J Med Virol 66:340–350PubMedCrossRefGoogle Scholar
  52. 52.
    Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N (1998) Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 4:781–785PubMedCrossRefGoogle Scholar
  53. 53.
    Wang J, Tsai S, Shameli A, Yamanouchi J, Alkemade G, Santamaria P (2010) In situ recognition of autoantigen as an essential gatekeeper in autoimmune CD8+ T cell inflammation. Proc Natl Acad Sci USA 107:9317–9322PubMedCrossRefGoogle Scholar
  54. 54.
    Lennon GP, Bettini M, Burton AR et al (2009) T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity 31:643–653PubMedCrossRefGoogle Scholar
  55. 55.
    Savinov AY, Wong FS, Stonebraker AC, Chervonsky AV (2003) Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J Exp Med 197:643–656PubMedCrossRefGoogle Scholar
  56. 56.
    Marelli-Berg FM, James MJ, Dangerfield J et al (2004) Cognate recognition of the endothelium induces HY-specific CD8+ T-lymphocyte transendothelial migration (diapedesis) in vivo. Blood 103:3111–3116PubMedCrossRefGoogle Scholar
  57. 57.
    Lieberman SM, Takaki T, Han B, Santamaria P, Serreze DV, DiLorenzo TP (2004) Individual nonobese diabetic mice exhibit unique patterns of CD8+ T cell reactivity to three islet antigens, including the newly identified widely expressed dystrophia myotonica kinase. J Immunol 173:6727–6734PubMedGoogle Scholar
  58. 58.
    Seewaldt S, Thomas HE, Ejrnaes M et al (2000) Virus-induced autoimmune diabetes: most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes. Diabetes 49:1801–1809PubMedCrossRefGoogle Scholar
  59. 59.
    Zehn D, Bevan MJ (2006) T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25:261–270PubMedCrossRefGoogle Scholar
  60. 60.
    Christen U, McGavern DB, Luster AD, von Herrath MG, Oldstone MB (2003) Among CXCR3 chemokines, IFN-gamma-inducible protein of 10 kDa (CXC chemokine ligand (CXCL) 10) but not monokine induced by IFN-gamma (CXCL9) imprints a pattern for the subsequent development of autoimmune disease. J Immunol 171:6838–6845PubMedGoogle Scholar
  61. 61.
    Lee MS, von Herrath M, Reiser H, Oldstone MB, Sarvetnick N (1995) Sensitization to self (virus) antigen by in situ expression of murine interferon-gamma. J Clin Invest 95:486–492PubMedCrossRefGoogle Scholar
  62. 62.
    Hamilton-Williams EE, Palmer SE, Charlton B, Slattery RM (2003) Beta cell MHC class I is a late requirement for diabetes. Proc Natl Acad Sci USA 100:6688–6693PubMedCrossRefGoogle Scholar
  63. 63.
    Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747PubMedCrossRefGoogle Scholar
  64. 64.
    Kagi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997PubMedCrossRefGoogle Scholar
  65. 65.
    Thomas HE, Trapani JA, Kay TW (2010) The role of perforin and granzymes in diabetes. Cell Death Differ 17:577–585PubMedCrossRefGoogle Scholar
  66. 66.
    Kagi D, Odermatt B, Ohashi PS, Zinkernagel RM, Hengartner H (1996) Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med 183:2143–2152PubMedCrossRefGoogle Scholar
  67. 67.
    Savinov AY, Tcherepanov A, Green EA, Flavell RA, Chervonsky AV (2003) Contribution of Fas to diabetes development. Proc Natl Acad Sci USA 100:628–632PubMedCrossRefGoogle Scholar
  68. 68.
    Allison J, Thomas HE, Catterall T, Kay TW, Strasser A (2005) Transgenic expression of dominant-negative Fas-associated death domain protein in beta cells protects against Fas ligand-induced apoptosis and reduces spontaneous diabetes in nonobese diabetic mice. J Immunol 175:293–301PubMedGoogle Scholar
  69. 69.
    von Herrath MG, Oldstone MB (1997) Interferon-gamma is essential for destruction of beta cells and development of insulin-dependent diabetes mellitus. J Exp Med 185:531–539CrossRefGoogle Scholar
  70. 70.
    Thomas HE, Darwiche R, Corbett JA, Kay TW (2002) Interleukin-1 plus gamma-interferon-induced pancreatic beta-cell dysfunction is mediated by beta-cell nitric oxide production. Diabetes 51:311–316PubMedCrossRefGoogle Scholar
  71. 71.
    Thomas HE, Parker JL, Schreiber RD, Kay TW (1998) IFN-gamma action on pancreatic beta cells causes class I MHC upregulation but not diabetes. J Clin Invest 102:1249–1257PubMedCrossRefGoogle Scholar
  72. 72.
    Amrani A, Verdaguer J, Thiessen S, Bou S, Santamaria P (2000) IL-1alpha, IL-1beta, and IFN-gamma mark beta cells for Fas-dependent destruction by diabetogenic CD4(+) T lymphocytes. J Clin Invest 105:459–468PubMedCrossRefGoogle Scholar
  73. 73.
    Campbell PD, Estella E, Dudek NL et al (2008) Cytotoxic T-lymphocyte-mediated killing of human pancreatic islet cells in vitro. Hum Immunol 69:543–551PubMedCrossRefGoogle Scholar
  74. 74.
    Estella E, McKenzie MD, Catterall T et al (2006) Granzyme B-mediated death of pancreatic beta-cells requires the proapoptotic BH3-only molecule bid. Diabetes 55:2212–2219PubMedCrossRefGoogle Scholar
  75. 75.
    Loweth AC, Williams GT, James RF, Scarpello JH, Morgan NG (1998) Human islets of Langerhans express Fas ligand and undergo apoptosis in response to interleukin-1beta and Fas ligation. Diabetes 47:727–732PubMedCrossRefGoogle Scholar
  76. 76.
    Meier JJ, Ritzel RA, Maedler K, Gurlo T, Butler PC (2006) Increased vulnerability of newly forming beta cells to cytokine-induced cell death. Diabetologia 49:83–89PubMedCrossRefGoogle Scholar
  77. 77.
    Moriwaki M, Itoh N, Miyagawa J et al (1999) Fas and Fas ligand expression in inflamed islets in pancreas sections of patients with recent-onset Type I diabetes mellitus. Diabetologia 42:1332–1340PubMedCrossRefGoogle Scholar
  78. 78.
    Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRefGoogle Scholar
  79. 79.
    Butler AE, Galasso R, Meier JJ, Basu R, Rizza RA, Butler PC (2007) Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 50:2323–2331PubMedCrossRefGoogle Scholar
  80. 80.
    Stassi G, De Maria R, Trucco G et al (1997) Nitric oxide primes pancreatic beta cells for Fas-mediated destruction in insulin-dependent diabetes mellitus. J Exp Med 186:1193–1200PubMedCrossRefGoogle Scholar
  81. 81.
    Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103:2334–2339PubMedCrossRefGoogle Scholar
  82. 82.
    Itoh N, Hanafusa T, Miyazaki A et al (1993) Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 92:2313–2322PubMedCrossRefGoogle Scholar
  83. 83.
    Tree TI, Lawson J, Edwards H et al (2010) Naturally arising human CD4 T-cells that recognize islet autoantigens and secrete interleukin-10 regulate proinflammatory T-cell responses via linked suppression. Diabetes 59:1451–1460PubMedCrossRefGoogle Scholar
  84. 84.
    Martinez NR, Augstein P, Moustakas AK et al (2003) Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J Clin Invest 111:1365–1371PubMedGoogle Scholar
  85. 85.
    Tsui H, Chan Y, Tang L et al (2008) Targeting of pancreatic glia in type 1 diabetes. Diabetes 57:918–928PubMedCrossRefGoogle Scholar
  86. 86.
    Aichele P, Kyburz D, Ohashi PS et al (1994) Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci USA 91:444–448PubMedCrossRefGoogle Scholar
  87. 87.
    Bresson D, Togher L, Rodrigo E et al (2006) Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs. J Clin Invest 116:1371–1381PubMedCrossRefGoogle Scholar
  88. 88.
    Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC (2005) TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 115:2904–2913PubMedCrossRefGoogle Scholar
  89. 89.
    Tsai S, Shameli A, Yamanouchi J et al (2010) Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32:568–580PubMedCrossRefGoogle Scholar
  90. 90.
    Vincent BG, Young EF, Buntzman AS et al (2010) Toxin-coupled MHC class I tetramers can specifically ablate autoreactive CD8+ T cells and delay diabetes in nonobese diabetic mice. J Immunol 184:4196–4204PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Type 1 Diabetes CenterThe La Jolla Institute for Allergy and ImmunologyLa JollaUSA

Personalised recommendations