Skip to main content
Log in

Factor VIII Inhibitors: Risk Factors and Methods for Prevention and Immune Modulation

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Patients with hemophilia A are deficient in coagulation Factor VIII. This bleeding disorder can be treated with Factor VIII replacement therapy, but close to a third of patients will be immunized to the treatment and begin to form inhibitory antibodies known as “inhibitors”. These inhibitors will render the treatment ineffective and represent the most severe complication in the treatment of hemophilia A. In this review, we highlight factors involved in inhibitor development and emphasize research being done to modulate the immune response to this life-saving therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hoyer LW (1994) Hemophilia A. N Engl J Med 330:38–47

    Article  PubMed  CAS  Google Scholar 

  2. Lenting PJ, van Mourik JA, Mertens K (1998) The life cycle of coagulation factor VIII in view of its structure and function. Blood 92:3983–3996

    PubMed  CAS  Google Scholar 

  3. Dasgupta S, Repesse Y, Bayry J, Navarrete AM, Wootla B, Delignat S, Irinopoulou T, Kamate C, Saint-Remy JM, Jacquemin M, Lenting PJ, Borel-Derlon A, Kaveri SV, Lacroix-Desmazes S (2007) VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors. Blood 109:610–612

    Article  PubMed  CAS  Google Scholar 

  4. Spiegel PC Jr., Jacquemin M, Saint-Remy JM, Stoddard BL, Pratt KP (2001) Structure of a factor VIII C2 domain-immunoglobulin G4kappa Fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII. Blood 98:13–19

    Article  PubMed  CAS  Google Scholar 

  5. Astermark J (2006) Basic aspects of inhibitors to factors VIII and IX and the influence of non-genetic risk factors. Haemophilia 12(Suppl 6):8–13 discussion 13–14

    Article  PubMed  CAS  Google Scholar 

  6. White GC, DiMichele D, Mertens K, Negrier C, Peake IR, Prowse C, Schwaab R, Yoshioka A, Ingerslev J (1999) Utilization of previously treated patients (PTPs), noninfected patients (NIPs), and previously untreated patients (PUPs) in the evaluation of new factor VIII and factor IX concentrates. Recommendation of the Scientific Subcommittee on Factor VIII and Factor IX of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 81:462

    PubMed  CAS  Google Scholar 

  7. Lacroix-Desmazes S, Bayry J, Misra N, Horn MP, Villard S, Pashov A, Stieltjes N, d'Oiron R, Saint-Remy JM, Hoebeke J, Kazatchkine MD, Reinbolt J, Mohanty D, Kaveri SV (2002) The prevalence of proteolytic antibodies against factor VIII in hemophilia A. N Engl J Med 346:662–667

    Article  PubMed  CAS  Google Scholar 

  8. Lacroix-Desmazes S, Moreau A, Sooryanarayana, Bonnemain C, Stieltjes N, Pashov A, Sultan Y, Hoebeke J, Kazatchkine MD, Kaveri SV (1999) Catalytic activity of antibodies against factor VIII in patients with hemophilia A. Nat Med 5:1044–1047

  9. Lacroix-Desmazes S, Navarrete AM, Andre S, Bayry J, Kaveri SV, Dasgupta S (2008) Dynamics of factor VIII interactions determine its immunological fate in hemophilia A. Blood 112(2):240–249

    Article  PubMed  CAS  Google Scholar 

  10. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  11. Dasgupta S, Navarrete AM, Delignat S, Wootla B, Andre S, Nagaraja V, Lacroix-Desmazes S, Kaveri SV (2007) Immune response against therapeutic factor VIII in hemophilia A patients—a survey of probable risk factors. Immunol Lett 110:23–28

    Article  PubMed  CAS  Google Scholar 

  12. Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM (1984) Characterization of the human factor VIII gene. Nature 312:326–330

    Article  PubMed  CAS  Google Scholar 

  13. Wood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollingshead P, Wion KL et al (1984) Expression of active human factor VIII from recombinant DNA clones. Nature 312:330–337

    Article  PubMed  CAS  Google Scholar 

  14. Toole JJ, Knopf JL, Wozney JM, Sultzman LA, Buecker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC et al (1984) Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312:342–347

    Article  PubMed  CAS  Google Scholar 

  15. Wacey AI, Kemball-Cook G, Kazazian HH, Antonarakis SE, Schwaab R, Lindley P, Tuddenham EG (1996) The haemophilia A mutation search test and resource site, home page of the factor VIII mutation database: HAMSTeRS. Nucleic Acids Res 24:100–102

    Article  PubMed  CAS  Google Scholar 

  16. Antonarakis SE, Rossiter JP, Young M, Horst J, de Moerloose P, Sommer SS, Ketterling RP, Kazazian HH Jr, Negrier C, Vinciguerra C, Gitschier J, Goossens M, Girodon E, Ghanem N, Plassa F, Lavergne JM, Vidaud M, Costa JM, Laurian Y, Lin SW, Lin SR, Shen MC, Lillicrap D, Taylor SA, Windsor S, Valleix SV, Nafa K, Sultan Y, Delpech M, Vnencak-Jones CL, Phillips JA 3rd, Ljung RC, Koumbarelis E, Gialeraki A, Mandalaki T, Jenkins PV, Collins PW, Pasi KJ, Goodeve A, Peake I, Preston FE, Schwartz M, Scheibel E, Ingerslev J, Cooper DN, Millar DS, Kakkar VV, Giannelli F, Naylor JA, Tizzano EF, Baiget M, Domenech M, Altisent C, Tusell J, Beneyto M, Lorenzo JI, Gaucher C, Mazurier C, Peerlinck K, Matthijs G, Cassiman JJ, Vermylen J, Mori PG, Acquila M, Caprino D, Inaba H (1995) Factor VIII gene inversions in severe hemophilia A: results of an international consortium study. Blood 86:2206–2212

    PubMed  CAS  Google Scholar 

  17. Bagnall RD, Waseem N, Green PM, Giannelli F (2002) Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. Blood 99:168–174

    Article  PubMed  CAS  Google Scholar 

  18. Fakharzadeh SS, Kazazian HH Jr. (2000) Correlation between factor VIII genotype and inhibitor development in hemophilia A. Semin Thromb Hemost 26:167–171

    Article  PubMed  CAS  Google Scholar 

  19. Oldenburg J, Schroder J, Brackmann HH, Muller-Reible C, Schwaab R, Tuddenham E (2004) Environmental and genetic factors influencing inhibitor development. Semin Hematol 41:82–88

    Article  PubMed  CAS  Google Scholar 

  20. Liu ML, Nakaya S, Thompson AR (2002) Non-inversion factor VIII mutations in 80 hemophilia A families including 24 with alloimmune responses. Thromb Haemost 87:273–276

    PubMed  CAS  Google Scholar 

  21. Schwaab R, Brackmann HH, Meyer C, Seehafer J, Kirchgesser M, Haack A, Olek K, Tuddenham EG, Oldenburg J (1995) Haemophilia A: mutation type determines risk of inhibitor formation. Thromb Haemost 74:1402–1406

    PubMed  CAS  Google Scholar 

  22. Astermark J (2006) Why do inhibitors develop? Principles of and factors influencing the risk for inhibitor development in haemophilia. Haemophilia 12(Suppl 3):52–60

    Article  PubMed  CAS  Google Scholar 

  23. Figueiredo MS, Bernardi F, Zago MA (1992) A novel deletion of FVIII gene associated with variable levels of FVIII inhibitor. Eur J Haematol 48:152–154

    Article  PubMed  CAS  Google Scholar 

  24. Goodeve AC, Williams I, Bray GL, Peake IR (2000) Relationship between factor VIII mutation type and inhibitor development in a cohort of previously untreated patients treated with recombinant factor VIII (Recombinate). Recombinate PUP Study Group. Thromb Haemost 83:844–848

    PubMed  CAS  Google Scholar 

  25. Oldenburg J, Pavlova A (2006) Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia 12(Suppl 6):15–22

    Article  PubMed  CAS  Google Scholar 

  26. Goodeve A (2003) The incidence of inhibitor development according to specific mutations—and treatment. Blood Coagul Fibrinolysis 14(Suppl 1):S17–21

    Article  PubMed  CAS  Google Scholar 

  27. Young M, Inaba H, Hoyer LW, Higuchi M, Kazazian HH Jr., Antonarakis SE (1997) Partial correction of a severe molecular defect in hemophilia A, because of errors during expression of the factor VIII gene. Am J Hum Genet 60:565–573

    PubMed  CAS  Google Scholar 

  28. Oldenburg J, Schroder J, Schmitt C, Brackmann HH, Schwaab R (1998) Small deletion/insertion mutations within poly-A runs of the factor VIII gene mitigate the severe haemophilia A phenotype. Thromb Haemost 79:452–453

    PubMed  CAS  Google Scholar 

  29. Hay CR (1998) Factor VIII inhibitors in mild and moderate-severity haemophilia A. Haemophilia 4:558–563

    Article  PubMed  CAS  Google Scholar 

  30. Nunez-Roldan A, Arnaiz-Villena A, Nunez-Ollero G (1979) Genetic control by the HLA region of the immune response to factor VIII in hemophilic patients. C R Seances Acad Sci D 288:1719–1720

    PubMed  CAS  Google Scholar 

  31. Lippert LE, Fisher LM, Schook LB (1990) Relationship of major histocompatibility complex class II genes to inhibitor antibody formation in hemophilia A. Thromb Haemost 64:564–568

    PubMed  CAS  Google Scholar 

  32. Hay CR, Ollier W, Pepper L, Cumming A, Keeney S, Goodeve AC, Colvin BT, Hill FG, Preston FE, Peake IR (1997) HLA class II profile: a weak determinant of factor VIII inhibitor development in severe haemophilia A. UKHCDO Inhibitor Working Party. Thromb Haemost 77:234–237

    PubMed  CAS  Google Scholar 

  33. Oldenburg J, Picard JK, Schwaab R, Brackmann HH, Tuddenham EG, Simpson E (1997) HLA genotype of patients with severe haemophilia A due to intron 22 inversion with and without inhibitors of factor VIII. Thromb Haemost 77:238–242

    PubMed  CAS  Google Scholar 

  34. Astermark J, Oldenburg J, Carlson J, Pavlova A, Kavakli K, Berntorp E, Lefvert AK (2006) Polymorphisms in the TNFA gene and the risk of inhibitor development in patients with hemophilia A. Blood 108:3739–3745

    Article  PubMed  CAS  Google Scholar 

  35. Bouma G, Crusius JB, Oudkerk Pool M, Kolkman JJ, von Blomberg BM, Kostense PJ, Giphart MJ, Schreuder GM, Meuwissen SG, Pena AS (1996) Secretion of tumour necrosis factor alpha and lymphotoxin alpha in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol 43:456–463

    Article  PubMed  CAS  Google Scholar 

  36. Wilson AG, de Vries N, Pociot F, di Giovine FS, van der Putte LB, Duff GW (1993) An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med 177:557–560

    Article  PubMed  CAS  Google Scholar 

  37. Zhou Y, Giscombe R, Huang D, Lefvert AK (2002) Novel genetic association of Wegener’s granulomatosis with the interleukin 10 gene. J Rheumatol 29:317–320

    PubMed  CAS  Google Scholar 

  38. Huang DR, Zhou YH, Xia SQ, Liu L, Pirskanen R, Lefvert AK (1999) Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: implications of diverse effects of IL-10 in the pathogenesis of the disease. J Neuroimmunol 94:82–87

    Article  PubMed  CAS  Google Scholar 

  39. Astermark J, Oldenburg J, Pavlova A, Berntorp E, Lefvert AK (2006) Polymorphisms in the IL10 but not in the IL1beta and IL4 genes are associated with inhibitor development in patients with hemophilia A. Blood 107:3167–3172

    Article  PubMed  CAS  Google Scholar 

  40. Astermark J, Berntorp E, White GC, Kroner BL (2001) The Malmo International Brother Study (MIBS): further support for genetic predisposition to inhibitor development in hemophilia patients. Haemophilia 7:267–272

    Article  PubMed  CAS  Google Scholar 

  41. Lorenzo JI, Lopez A, Altisent C, Aznar JA (2001) Incidence of factor VIII inhibitors in severe haemophilia: the importance of patient age. Br J Haematol 113:600–603

    Article  PubMed  CAS  Google Scholar 

  42. Gouw SC, van der Bom JG, Auerswald G, Ettinghausen CE, Tedgard U, van den Berg HM (2007) Recombinant versus plasma-derived factor VIII products and the development of inhibitors in previously untreated patients with severe hemophilia A: the CANAL cohort study. Blood 109:4693–4697

    Article  PubMed  CAS  Google Scholar 

  43. Santagostino E, Mancuso ME, Rocino A, Mancuso G, Mazzucconi MG, Tagliaferri A, Messina M, Mannucci PM (2005) Environmental risk factors for inhibitor development in children with haemophilia A: a case–control study. Br J Haematol 130:422–427

    Article  PubMed  CAS  Google Scholar 

  44. Sharathkumar A, Lillicrap D, Blanchette VS, Kern M, Leggo J, Stain AM, Brooker L, Carcao MD (2003) Intensive exposure to factor VIII is a risk factor for inhibitor development in mild hemophilia A. J Thromb Haemost 1:1228–1236

    Article  PubMed  CAS  Google Scholar 

  45. von Auer C, Oldenburg J, von Depka M, Escuriola-Ettinghausen C, Kurnik K, Lenk H, Scharrer I (2005) Inhibitor development in patients with hemophilia A after continuous infusion of FVIII concentrates. Ann N Y Acad Sci 1051:498–505

    Article  CAS  Google Scholar 

  46. van den Berg HM, Roosendaal G, Voorberg J, Mauser-Bunschoten EP (1999) Inhibitor development in a multitransfused patient with severe haemophilia A. Thromb Haemost 82:151–152

    PubMed  Google Scholar 

  47. Koestenberger M, Raith W, Muntean W (2000) High titre inhibitor after continuous factor VIII administration for surgery in a young infant. Haemophilia 6:120

    Article  PubMed  CAS  Google Scholar 

  48. Reipert BM, van Helden PM, Schwarz HP, Hausl C (2007) Mechanisms of action of immune tolerance induction against factor VIII in patients with congenital haemophilia A and factor VIII inhibitors. Br J Haematol 136:12–25

    Article  PubMed  CAS  Google Scholar 

  49. Aledort LM (2004) Is the incidence and prevalence of inhibitors greater with recombinant products? Yes. J Thromb Haemost 2:861–862

    Article  PubMed  CAS  Google Scholar 

  50. Lusher JM (2004) Is the incidence and prevalence of inhibitors greater with recombinant products? No. J Thromb Haemost 2:863–865

    Article  PubMed  CAS  Google Scholar 

  51. Mannucci PM (2006) Need for randomized trials in hemophilia. J Thromb Haemost 4:501–502

    Article  PubMed  CAS  Google Scholar 

  52. Goudemand J, Rothschild C, Demiguel V, Vinciguerrat C, Lambert T, Chambost H, Borel-Derlon A, Claeyssens S, Laurian Y, Calvez T (2006) Influence of the type of factor VIII concentrate on the incidence of factor VIII inhibitors in previously untreated patients with severe hemophilia A. Blood 107:46–51

    Article  PubMed  CAS  Google Scholar 

  53. Calvez T, Laurian Y, Goudemand J (2008) Inhibitor incidence with recombinant vs. plasma-derived FVIII in previously untreated patients with severe hemophilia A: homogeneous results from four published observational studies. J Thromb Haemost 6:390–392

    PubMed  CAS  Google Scholar 

  54. Ettingshausen CE, Kreuz W (2006) Recombinant vs. plasma-derived products, especially those with intact VWF, regarding inhibitor development. Haemophilia 12(Suppl 6):102–106

    Article  PubMed  Google Scholar 

  55. Chalmers EA, Brown SA, Keeling D, Liesner R, Richards M, Stirling D, Thomas A, Vidler V, Williams MD, Young D (2007) Early factor VIII exposure and subsequent inhibitor development in children with severe haemophilia A. Haemophilia 13:149–155

    Article  PubMed  CAS  Google Scholar 

  56. Scharrer I, Ehrlich HJ (2004) Reported inhibitor incidence in FVIII PUP studies: comparing apples with oranges. Haemophilia 10:197–198

    Article  PubMed  CAS  Google Scholar 

  57. Dasgupta S, Navarrete AM, Bayry J, Delignat S, Wootla B, Andre S, Christophe O, Nascimbeni M, Jacquemin M, Martinez-Pomares L, Geijtenbeek TB, Moris A, Saint-Remy JM, Kazatchkine MD, Kaveri SV, Lacroix-Desmazes S (2007) A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proc Natl Acad Sci U S A 104:8965–8970

    Article  PubMed  CAS  Google Scholar 

  58. De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28:482–490

    Article  PubMed  CAS  Google Scholar 

  59. Purohit VS, Middaugh CR, Balasubramanian SV (2006) Influence of aggregation on immunogenicity of recombinant human Factor VIII in hemophilia A mice. J Pharm Sci 95:358–371

    Article  PubMed  CAS  Google Scholar 

  60. Pfistershammer K, Stockl J, Siekmann J, Turecek PL, Schwarz HP, Reipert BM (2006) Recombinant factor VIII and factor VIII-von Willebrand factor complex do not present danger signals for human dendritic cells. Thromb Haemost 96:309–316

    PubMed  CAS  Google Scholar 

  61. Lozier JN, ZP (2005) Mapping of genes that control the antibody response to human FVIII in mice. Blood (ASH Annual Meeting Abstracts) 106:Abstract 1888

  62. Skupsky J, Lozier JN, Donahue R, Metzger M, Azimzadeh A, Pierson R, Scott D (2007) Immunogenicity of human factor VIII in rhesus and cynomolgus monkeys. Blood (ASH Annual Meeting Abstracts) 110:3148

    Google Scholar 

  63. High KA (2007) Update on progress and hurdles in novel genetic therapies for hemophilia. Hematology Am Soc Hematol Educ Program 2007:466–472

    Google Scholar 

  64. Purohit VS, Ramani K, Sarkar R, Kazazian HH Jr., Balasubramanian SV (2005) Lower inhibitor development in hemophilia A mice following administration of recombinant factor VIII-O-phospho-L-serine complex. J Biol Chem 280:17593–17600

    Article  PubMed  CAS  Google Scholar 

  65. Miao HZ, Sirachainan N, Palmer L, Kucab P, Cunningham MA, Kaufman RJ, Pipe SW (2004) Bioengineering of coagulation factor VIII for improved secretion. Blood 103:3412–3419

    Article  PubMed  CAS  Google Scholar 

  66. Powell JS, Ragni MV, White GC 2nd, Lusher JM, Hillman-Wiseman C, Moon TE, Cole V, Ramanathan-Girish S, Roehl H, Sajjadi N, Jolly DJ, Hurst D (2003) Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 102:2038–2045

    Article  PubMed  CAS  Google Scholar 

  67. Roth DA, Tawa NE Jr., O’Brien JM, Treco DA, Selden RF (2001) Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 344:1735–1742

    Article  PubMed  CAS  Google Scholar 

  68. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, Tai SJ, Ragni MV, Thompson A, Ozelo M, Couto LB, Leonard DG, Johnson FA, McClelland A, Scallan C, Skarsgard E, Flake AW, Kay MA, High KA, Glader B (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101:2963–2972

    Article  PubMed  CAS  Google Scholar 

  69. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347

    Article  PubMed  CAS  Google Scholar 

  70. Follenzi A, Benten D, Novikoff P, Faulkner L, Raut S, Gupta S (2008) Transplanted endothelial cells repopulate the liver endothelium and correct the phenotype of hemophilia A mice. J Clin Invest 118:935–945

    PubMed  CAS  Google Scholar 

  71. Bontempo FA, Lewis JH, Gorenc TJ, Spero JA, Ragni MV, Scott JP, Starzl TE (1987) Liver transplantation in hemophilia A. Blood 69:1721–1724

    PubMed  CAS  Google Scholar 

  72. Lewis JH, Bontempo FA, Spero JA, Ragni MV, Starzl TE (1985) Liver transplantation in a hemophiliac. N Engl J Med 312:1189–1190

    PubMed  CAS  Google Scholar 

  73. Barrow RT, Healey JF, Gailani D, Scandella D, Lollar P (2000) Reduction of the antigenicity of factor VIII toward complex inhibitory antibody plasmas using multiply-substituted hybrid human/porcine factor VIII molecules. Blood 95:564–568

    PubMed  CAS  Google Scholar 

  74. Brettler DB, Forsberg AD, Levine PH, Aledort LM, Hilgartner MW, Kasper CK, Lusher JM, McMillan C, Roberts H (1989) The use of porcine factor VIII concentrate (Hyate:C) in the treatment of patients with inhibitor antibodies to factor VIII. A multicenter US experience. Arch Intern Med 149:1381–1385

    Article  PubMed  CAS  Google Scholar 

  75. Morrison AE, Ludlam CA, Kessler C (1993) Use of porcine factor VIII in the treatment of patients with acquired hemophilia. Blood 81:1513–1520

    PubMed  CAS  Google Scholar 

  76. Brackmann HH, Gormsen J (1977) Massive factor-VIII infusion in haemophiliac with factor-VIII inhibitor, high responder. Lancet 2:933

    Article  PubMed  CAS  Google Scholar 

  77. Brackmann HH, Oldenburg J, Schwaab R (1996) Immune tolerance for the treatment of factor VIII inhibitors—twenty years’ ‘Bonn protocol’. Vox Sang 70(Suppl 1):30–35

    Article  PubMed  Google Scholar 

  78. Carcao M, St Louis J, Poon MC, Grunebaum E, Lacroix S, Stain AM, Blanchette VS, Rivard GE (2006) Rituximab for congenital haemophiliacs with inhibitors: a Canadian experience. Haemophilia 12:7–18

    Article  PubMed  CAS  Google Scholar 

  79. Qian J, Burkly LC, Smith EP, Ferrant JL, Hoyer LW, Scott DW, Haudenschild CC (2000) Role of CD154 in the secondary immune response: the reduction of pre-existing splenic germinal centers and anti-factor VIII inhibitor titer. Eur J Immunol 30:2548–2554

    Article  PubMed  CAS  Google Scholar 

  80. Qian J, Collins M, Sharpe AH, Hoyer LW (2000) Prevention and treatment of factor VIII inhibitors in murine hemophilia A. Blood 95:1324–1329

    PubMed  CAS  Google Scholar 

  81. Rossi G, Sarkar J, Scandella D (2001) Long-term induction of immune tolerance after blockade of CD40–CD40L interaction in a mouse model of hemophilia A. Blood 97:2750–2757

    Article  PubMed  CAS  Google Scholar 

  82. Miao CH, Ye P, Thompson AR, Rawlings DJ, Ochs HD (2006) Immunomodulation of transgene responses following naked DNA transfer of human factor VIII into hemophilia A mice. Blood 108:19–27

    Article  PubMed  CAS  Google Scholar 

  83. Peng B, Ye P, Blazar BR, Freeman GJ, Rawlings DJ, Ochs HD, Miao CH (2008) Transient blockade of the inducible costimulator pathway generates long-term tolerance for factor VIII following nonviral gene transfer into hemophilia A mice. Blood 112(5):1662–1672

    Article  PubMed  CAS  Google Scholar 

  84. Lei TC, Scott DW (2005) Induction of tolerance to factor VIII inhibitors by gene therapy with immunodominant A2 and C2 domains presented by B cells as Ig fusion proteins. Blood 105:4865–4870

    Article  PubMed  CAS  Google Scholar 

  85. El-Amine M, Melo M, Kang Y, Nguyen H, Qian J, Scott DW (2000) Mechanisms of tolerance induction by a gene-transferred peptide–IgG fusion protein expressed in B lineage cells. J Immunol 165:5631–5636

    PubMed  CAS  Google Scholar 

  86. Litzinger MT, Su Y, Lei TC, Soukhareva N, Scott DW (2005) Mechanisms of gene therapy for tolerance: B7 signaling is required for peptide–IgG gene-transferred tolerance induction. J Immunol 175:780–787

    PubMed  CAS  Google Scholar 

  87. Su Y, Carey G, Marić M, Scott DW (2008) B cells induce tolerance by presenting endogenous peptide–IgG on MHC class II molecules via an IFN-inducible lysosomal thiol reductase-dependent pathway. J Immunol 181:1153–1160

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Scott.

Additional information

Zhang, Skupsky, and Scott contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, A.H., Skupsky, J. & Scott, D.W. Factor VIII Inhibitors: Risk Factors and Methods for Prevention and Immune Modulation. Clinic Rev Allerg Immunol 37, 114–124 (2009). https://doi.org/10.1007/s12016-009-8122-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-009-8122-5

Keywords

Navigation