Skip to main content
Log in

Medical Treatment of Primary Sclerosing Cholangitis: A Role for Novel Bile Acids and other (post-)Transcriptional Modulators?

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Primary sclerosing cholangitis (PSC) is a rare chronic cholestatic disease of the liver and bile ducts that is associated with inflammatory bowel disease, generally leads to end-stage liver disease, and is complicated by malignancies of the biliary tree and the large intestine. The pathogenesis of PSC remains enigmatic, making the development of targeted therapeutic strategies difficult. Immunosuppressive and antifibrotic therapeutic agents were ineffective or accompanied by major side effects. Ursodeoxycholic acid (UDCA) has consistently been shown to improve serum liver tests and might lower the risk of colon carcinoma and cholangiocarcinoma by yet unknown mechanisms. Whether “high dose” UDCA improves the long-term prognosis in PSC as suggested by small pilot trials remains to be demonstrated. The present overview discusses potential therapeutic options aside of targeted immunological therapies and UDCA. The C23 bile acid norUDCA has been shown to markedly improve biochemical and histological features in a mouse model of sclerosing cholangitis without any toxic effects. Studies in humans are eagerly being awaited. Nuclear receptors like the farnesoid-X receptor (FXR), pregnane-X receptor (PXR), vitamin D receptor (VDR), and peroxisome-proliferator-activator receptors (PPARs) have been shown to induce expression of diverse carriers and biotransformation enzymes of the intestinal and hepatic detoxification machinery and/or to modulate fibrogenesis. Pros and cons of respective receptor agonists for the future treatment of PSC are discussed in detail. In our view, the novel bile acid norUDCA and agonists of PPARs, VDR, and PXR appear particularly attractive for further studies in PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LaRusso NF, Shneider BL, Black D et al (2006) Primary sclerosing cholangitis: summary of a workshop. Hepatology 44(3):746–764

    PubMed  Google Scholar 

  2. O’Mahony CA, Vierling JM (2006) Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis 26(1):3–21

    PubMed  Google Scholar 

  3. Worthington J, Cullen S, Chapman R (2005) Immunopathogenesis of primary sclerosing cholangitis. Clin Rev Allergy Immunol 28(2):93–103

    PubMed  CAS  Google Scholar 

  4. Adams DH, Eksteen B (2006) Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6(3):244–251

    PubMed  CAS  Google Scholar 

  5. Trauner M, Meier PJ, Boyer JL (1998) Molecular pathogenesis of cholestasis. N Engl J Med 339(17):1217–1227

    PubMed  CAS  Google Scholar 

  6. Paumgartner G (2006) Medical treatment of cholestatic liver diseases: from pathobiology to pharmacological targets. World J Gastroenterol 12(28):4445–4451

    PubMed  CAS  Google Scholar 

  7. Fischer S, Beuers U, Spengler U, Zwiebel FM, Koebe HG (1996) Hepatic levels of bile acids in end-stage chronic cholestatic liver disease. Clin Chim Acta 251(2):173–186

    PubMed  CAS  Google Scholar 

  8. Beuers U, Boyer JL, Paumgartner G (1998) Ursodeoxycholic acid in cholestasis: potential mechanisms of action and therapeutic applications. Hepatology 28(6):1449–1453

    PubMed  CAS  Google Scholar 

  9. Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83(2):633–671

    PubMed  CAS  Google Scholar 

  10. Boyer JL (2007) New perspectives for the treatment of cholestasis: lessons from basic science applied clinically. J Hepatol 46(3):365–371

    PubMed  Google Scholar 

  11. Stedman CA, Liddle C, Coulter SA et al (2005) Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci U S A 102(6):2063–2068

    PubMed  CAS  Google Scholar 

  12. Zollner G, Marschall HU, Wagner M, Trauner M (2006) Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 3(3):231–251

    PubMed  CAS  Google Scholar 

  13. Bergquist A, Ekbom A, Olsson R et al (2002) Hepatic and extrahepatic malignancies in primary sclerosing cholangitis. J Hepatol 36(3):321–327

    PubMed  Google Scholar 

  14. Melum E, Karlsen TH, Schrumpf E et al (2008) Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology 47(1):90–96

    PubMed  CAS  Google Scholar 

  15. Karlsen TH, Schrumpf E, Boberg KM (2007) Genetic epidemiology of primary sclerosing cholangitis. World J Gastroenterol 13(41):5421–5431

    PubMed  CAS  Google Scholar 

  16. Broome U, Lofberg R, Veress B, Eriksson LS (1995) Primary sclerosing cholangitis and ulcerative colitis: evidence for increased neoplastic potential. Hepatology 22(5):1404–1408

    PubMed  CAS  Google Scholar 

  17. Vera A, Gunson BK, Ussatoff V et al (2003) Colorectal cancer in patients with inflammatory bowel disease after liver transplantation for primary sclerosing cholangitis. Transplantation 75(12):1983–1988

    PubMed  Google Scholar 

  18. Loftus EV Jr, Aguilar HI, Sandborn WJ et al (1998) Risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis following orthotopic liver transplantation. Hepatology 27(3):685–690

    PubMed  Google Scholar 

  19. Narumi S, Roberts JP, Emond JC, Lake J, Ascher NL (1995) Liver transplantation for sclerosing cholangitis. Hepatology 22(2):451–457

    Article  PubMed  CAS  Google Scholar 

  20. Soetikno RM, Lin OS, Heidenreich PA, Young HS, Blackstone MO (2002) Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. Gastrointest Endosc 56(1):48–54

    PubMed  Google Scholar 

  21. Lindberg BU, Broome U, Persson B (2001) Proximal colorectal dysplasia or cancer in ulcerative colitis. The impact of primary sclerosing cholangitis and sulfasalazine: results from a 20-year surveillance study. Dis Colon Rectum 44(1):77–85

    PubMed  CAS  Google Scholar 

  22. Loftus EV Jr, Harewood GC, Loftus CG et al (2005) PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 54(1):91–96

    PubMed  Google Scholar 

  23. Cullen SN, Chapman RW (2006) The medical management of primary sclerosing cholangitis. Semin Liver Dis 26(1):52–61

    PubMed  CAS  Google Scholar 

  24. Beuers U, Spengler U, Kruis W et al (1992) Ursodeoxycholic acid for treatment of primary sclerosing cholangitis: a placebo-controlled trial. Hepatology 16(3):707–714

    PubMed  CAS  Google Scholar 

  25. Stiehl A, Walker S, Stiehl L, Rudolph G, Hofmann WJ, Theilmann L (1994) Effect of ursodeoxycholic acid on liver and bile duct disease in primary sclerosing cholangitis. A 3-year pilot study with a placebo-controlled study period. J Hepatol 20(1):57–64

    PubMed  CAS  Google Scholar 

  26. Lindor KD (1997) Ursodiol for primary sclerosing cholangitis. Mayo Primary Sclerosing Cholangitis-Ursodeoxycholic Acid Study Group. N Engl J Med 336(10):691–695

    PubMed  CAS  Google Scholar 

  27. Mitchell SA, Bansi DS, Hunt N, Von Bergmann K, Fleming KA, Chapman RW (2001) A preliminary trial of high-dose ursodeoxycholic acid in primary sclerosing cholangitis. Gastroenterology 121(4):900–907

    PubMed  CAS  Google Scholar 

  28. Olsson R, Boberg KM, de Muckadell OS et al (2005) High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology 129(5):1464–1472

    PubMed  CAS  Google Scholar 

  29. Cullen SN, Rust C, Fleming K, Edwards C, Beuers U, Chapman R (2008) High dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis is safe and effective. J Hepatol 48(5):792–800

    PubMed  CAS  Google Scholar 

  30. Harnois DM, Angulo P, Jorgensen RA, Larusso NF, Lindor KD (2001) High-dose ursodeoxycholic acid as a therapy for patients with primary sclerosing cholangitis. Am J Gastroenterol 96(5):1558–1562

    PubMed  CAS  Google Scholar 

  31. Brandsaeter B, Isoniemi H, Broome U et al (2004) Liver transplantation for primary sclerosing cholangitis; predictors and consequences of hepatobiliary malignancy. J Hepatol 40(5):815–822

    PubMed  CAS  Google Scholar 

  32. Pardi DS, Loftus EV Jr., Kremers WK, Keach J, Lindor KD (2003) Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. Gastroenterology 124(4):889–893

    PubMed  CAS  Google Scholar 

  33. Tung BY, Emond MJ, Haggitt RC et al (2001) Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann Intern Med 134(2):89–95

    PubMed  CAS  Google Scholar 

  34. Beuers U (2006) Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nature Clin Pract Gastroenterol Hepatol 3(6):318–328

    CAS  Google Scholar 

  35. Paumgartner G, Beuers U (2002) Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36(3):525–531

    PubMed  CAS  Google Scholar 

  36. Lazaridis KN, Gores GJ, Lindor KD (2001) Ursodeoxycholic acid ‘mechanisms of action and clinical use in hepatobiliary disorders’. J Hepatol 35(1):134–146

    PubMed  CAS  Google Scholar 

  37. Karlsen TH, Lie BA, Frey Froslie K et al (2006) Polymorphisms in the steroid and xenobiotic receptor gene influence survival in primary sclerosing cholangitis. Gastroenterology 131(3):781–787

    PubMed  CAS  Google Scholar 

  38. Hruz P, Zimmermann C, Gutmann H et al (2006) Adaptive regulation of the ileal apical sodium dependent bile acid transporter (ASBT) in patients with obstructive cholestasis. Gut 55(3):395–402

    PubMed  CAS  Google Scholar 

  39. Stiehl A, Rudolph G, Sauer P, Theilmann L (1995) Biliary secretion of bile acids and lipids in primary sclerosing cholangitis. Influence of cholestasis and effect of ursodeoxycholic acid treatment. J Hepatol 23(3):283–289

    PubMed  CAS  Google Scholar 

  40. Serfaty L, De Leusse A, Rosmorduc O et al (2003) Ursodeoxycholic acid therapy and the risk of colorectal adenoma in patients with primary biliary cirrhosis: an observational study. Hepatology 38(1):203–209

    PubMed  CAS  Google Scholar 

  41. Fickert P, Wagner M, Marschall HU et al (2006) 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 130(2):465–481

    PubMed  CAS  Google Scholar 

  42. Hofmann AF, Zakko SF, Lira M et al (2005) Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology 42(6):1391–1398

    PubMed  CAS  Google Scholar 

  43. Makishima M, Okamoto AY, Repa JJ et al (1999) Identification of a nuclear receptor for bile acids. Science 284(5418):1362–1365

    PubMed  CAS  Google Scholar 

  44. Parks DJ, Blanchard SG, Bledsoe RK et al (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418):1365–1368

    PubMed  CAS  Google Scholar 

  45. Paumgartner G, Pusl T (2008) Medical treatment of cholestatic liver disease. Clin Liver Dis 12(1):53–80

    PubMed  Google Scholar 

  46. Eloranta JJ, Jung D, Kullak-Ublick GA (2006) The human Na + -taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-dependent mechanism. Mol Endocrinol 20(1):65–79

    PubMed  CAS  Google Scholar 

  47. Jung D, Kullak-Ublick GA (2003) Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 37(3):622–631

    PubMed  CAS  Google Scholar 

  48. Eloranta JJ, Kullak-Ublick GA (2005) Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 433(2):397–412

    PubMed  CAS  Google Scholar 

  49. Barbier O, Torra IP, Sirvent A et al (2003) FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124(7):1926–1940

    PubMed  CAS  Google Scholar 

  50. Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA (2004) Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics 14(10):635–645

    PubMed  CAS  Google Scholar 

  51. Grober J, Zaghini I, Fujii H et al (1999) Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 274(42):29749–29754

    PubMed  CAS  Google Scholar 

  52. Cariou B, Staels B (2006) The expanding role of the bile acid receptor FXR in the small intestine. J Hepatol 44(6):1213–1215

    PubMed  CAS  Google Scholar 

  53. Landrier JF, Eloranta JJ, Vavricka SR, Kullak-Ublick GA (2006) The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-alpha and -beta genes. Am J Physiol Gastrointest Liver Physiol 290(3):G476–485

    PubMed  CAS  Google Scholar 

  54. Neimark E, Chen F, Li X, Shneider BL (2004) Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40(1):149–156

    PubMed  CAS  Google Scholar 

  55. Pellicciari R, Fiorucci S, Camaioni E et al (2002) 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45(17):3569–3572

    PubMed  CAS  Google Scholar 

  56. Fiorucci S, Clerici C, Antonelli E et al (2005) Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 313(2):604–612

    PubMed  CAS  Google Scholar 

  57. Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6(3):517–526

    PubMed  CAS  Google Scholar 

  58. Liu Y, Binz J, Numerick MJ et al (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 112(11):1678–1687

    PubMed  CAS  Google Scholar 

  59. Fiorucci S, Antonelli E, Rizzo G et al (2004) The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 127(5):1497–1512

    PubMed  CAS  Google Scholar 

  60. Wagner M, Fickert P, Zollner G et al (2003) Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 125(3):825–838

    PubMed  CAS  Google Scholar 

  61. Stedman C, Liddle C, Coulter S et al (2006) Benefit of farnesoid X receptor inhibition in obstructive cholestasis. Proc Natl Acad Sci U S A 103(30):11323–11328

    PubMed  CAS  Google Scholar 

  62. Kliewer SA, Willson TM (2002) Regulation of xenobiotic and bile acid metabolism by the nuclear pregnane X receptor. J Lipid Res 43(3):359–364

    PubMed  CAS  Google Scholar 

  63. Bertilsson G, Heidrich J, Svensson K et al (1998) Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc Natl Acad Sci U S A 95(21):12208–12213

    PubMed  CAS  Google Scholar 

  64. Staudinger JL, Goodwin B, Jones SA et al (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A 98(6):3369–3374

    PubMed  CAS  Google Scholar 

  65. Fang HL, Strom SC, Ellis E et al (2007) Positive and negative regulation of human hepatic hydroxysteroid sulfotransferase (SULT2A1) gene transcription by rifampicin: roles of hepatocyte nuclear factor 4alpha and pregnane X receptor. J Pharmacol Exp Ther 323(2):586–598

    PubMed  CAS  Google Scholar 

  66. Gardner-Stephen D, Heydel JM, Goyal A et al (2004) Human PXR variants and their differential effects on the regulation of human UDP-glucuronosyltransferase gene expression. Drug Metab Dispos 32(3):340–347

    PubMed  CAS  Google Scholar 

  67. Geick A, Eichelbaum M, Burk O (2001) Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 276(18):14581–14587

    PubMed  CAS  Google Scholar 

  68. Kast HR, Goodwin B, Tarr PT et al (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277(4):2908–2915

    PubMed  CAS  Google Scholar 

  69. Teng S, Jekerle V, Piquette-Miller M (2003) Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos 31(11):1296–1299

    PubMed  CAS  Google Scholar 

  70. Teng S, Piquette-Miller M (2007) Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br J Pharmacol 151(3):367–376

    PubMed  CAS  Google Scholar 

  71. Bachs L, Pares A, Elena M, Piera C, Rodes J (1989) Comparison of rifampicin with phenobarbitone for treatment of pruritus in biliary cirrhosis. Lancet 1(8638):574–576

    PubMed  CAS  Google Scholar 

  72. Bachs L, Pares A, Elena M, Piera C, Rodes J (1992) Effects of long-term rifampicin administration in primary biliary cirrhosis. Gastroenterology 102(6):2077–2080

    PubMed  CAS  Google Scholar 

  73. Marschall HU, Wagner M, Zollner G et al (2005) Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans. Gastroenterology 129(2):476–485

    PubMed  Google Scholar 

  74. Dilger K, Denk A, Heeg MH, Beuers U (2005) No relevant effect of ursodeoxycholic acid on cytochrome P450 3A metabolism in primary biliary cirrhosis. Hepatology 41(3):595–602

    PubMed  CAS  Google Scholar 

  75. Khurana S, Singh P (2006) Rifampin is safe for treatment of pruritus due to chronic cholestasis: a meta-analysis of prospective randomized-controlled trials. Liver Int 26(8):943–948

    PubMed  CAS  Google Scholar 

  76. Wagner M, Halilbasic E, Marschall HU et al (2005) CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42(2):420–430

    PubMed  CAS  Google Scholar 

  77. Stojakovic T, Putz-Bankuti C, Fauler G et al (2007) Atorvastatin in patients with primary biliary cirrhosis and incomplete biochemical response to ursodeoxycholic acid. Hepatology 46(3):776–784

    PubMed  CAS  Google Scholar 

  78. Boberg KM, Egeland T, Schrumpf E (2003) Long-term effect of corticosteroid treatment in primary sclerosing cholangitis patients. Scand J Gastroenterol 38(9):991–995

    PubMed  CAS  Google Scholar 

  79. Maier A, Zimmermann C, Beglinger C, Drewe J, Gutmann H (2007) Effects of budesonide on P-glycoprotein expression in intestinal cell lines. Br J Pharmacol 150(3):361–368

    PubMed  CAS  Google Scholar 

  80. Sandborn WJ, Feagan BG, Lichtenstein GR (2007) Medical management of mild to moderate Crohn’s disease: evidence-based treatment algorithms for induction and maintenance of remission. Aliment Pharmacol Ther 26(7):987–1003

    Article  PubMed  CAS  Google Scholar 

  81. Wiegand J, Schuler A, Kanzler S et al (2005) Budesonide in previously untreated autoimmune hepatitis. Liver Int 25(5):927–934

    PubMed  CAS  Google Scholar 

  82. Leuschner M, Maier KP, Schlichting J et al (1999) Oral budesonide and ursodeoxycholic acid for treatment of primary biliary cirrhosis: results of a prospective double-blind trial. Gastroenterology 117(4):918–925

    PubMed  CAS  Google Scholar 

  83. Rautiainen H, Karkkainen P, Karvonen AL et al (2005) Budesonide combined with UDCA to improve liver histology in primary biliary cirrhosis: a three-year randomized trial. Hepatology 41(4):747–752

    PubMed  CAS  Google Scholar 

  84. Hempfling W, Grunhage F, Dilger K, Reichel C, Beuers U, Sauerbruch T (2003) Pharmacokinetics and pharmacodynamic action of budesonide in early- and late-stage primary biliary cirrhosis. Hepatology 38(1):196–202

    PubMed  CAS  Google Scholar 

  85. Jung D, Fantin AC, Scheurer U, Fried M, Kullak-Ublick GA (2004) Human ileal bile acid transporter gene ASBT (SLC10A2) is transactivated by the glucocorticoid receptor. Gut 53(1):78–84

    PubMed  CAS  Google Scholar 

  86. van Hoogstraten HJ, Vleggaar FP, Boland GJ et al (2000) Budesonide or prednisone in combination with ursodeoxycholic acid in primary sclerosing cholangitis: a randomized double-blind pilot study. Belgian–Dutch PSC Study Group. Am J Gastroenterol 95(8):2015–2022

    PubMed  Google Scholar 

  87. Angulo P, Batts KP, Jorgensen RA, LaRusso NA, Lindor KD (2000) Oral budesonide in the treatment of primary sclerosing cholangitis. Am J Gastroenterol 95(9):2333–2337

    PubMed  CAS  Google Scholar 

  88. Lechner D, Kallay E, Cross HS (2007) 1alpha,25-dihydroxyvitamin D3 downregulates CYP27B1 and induces CYP24A1 in colon cells. Mol Cell Endocrinol 263(1–2):55–64

    PubMed  CAS  Google Scholar 

  89. Kim MS, Fujiki R, Kitagawa H, Kato S (2007) 1alpha,25(OH)2D3-induced DNA methylation suppresses the human CYP27B1 gene. Mol Cell Endocrinol 265–266:168–173

    PubMed  Google Scholar 

  90. Turunen MM, Dunlop TW, Carlberg C, Vaisanen S (2007) Selective use of multiple vitamin D response elements underlies the 1 alpha,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene. Nucleic Acids Res 35(8):2734–2747

    PubMed  CAS  Google Scholar 

  91. Wang TT, Tavera-Mendoza LE, Laperriere D et al (2005) Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 19(11):2685–2695

    PubMed  CAS  Google Scholar 

  92. Shneider BL (2001) Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 32(4):407–417

    PubMed  CAS  Google Scholar 

  93. Craddock AL, Love MW, Daniel RW et al (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274(1 Pt 1):G157–169

    PubMed  CAS  Google Scholar 

  94. Chen X, Chen F, Liu S et al (2006) Transactivation of rat apical sodium-dependent bile acid transporter and increased bile acid transport by 1alpha,25-dihydroxyvitamin D3 via the vitamin D receptor. Mol Pharmacol 69(6):1913–1923

    PubMed  CAS  Google Scholar 

  95. McCarthy TC, Li X, Sinal CJ (2005) Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 280(24):23232–23242

    PubMed  CAS  Google Scholar 

  96. Kozoni V, Tsioulias G, Shiff S, Rigas B (2000) The effect of lithocholic acid on proliferation and apoptosis during the early stages of colon carcinogenesis: differential effect on apoptosis in the presence of a colon carcinogen. Carcinogenesis 21(5):999–1005

    PubMed  CAS  Google Scholar 

  97. Miyata M, Matsuda Y, Tsuchiya H et al (2006) Chenodeoxycholic acid-mediated activation of the farnesoid X receptor negatively regulates hydroxysteroid sulfotransferase. Drug Metab Pharmacokinet 21(4):315–323

    PubMed  CAS  Google Scholar 

  98. Makishima M, Lu TT, Xie W et al (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571):1313–1316

    PubMed  CAS  Google Scholar 

  99. Song CS, Echchgadda I, Seo YK et al (2006) An essential role of the CAAT/enhancer binding protein-alpha in the vitamin D-induced expression of the human steroid/bile acid-sulfotransferase (SULT2A1). Mol Endocrinol 20(4):795–808

    PubMed  CAS  Google Scholar 

  100. Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A (2003) The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 37(5):1034–1042

    PubMed  CAS  Google Scholar 

  101. Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    PubMed  CAS  Google Scholar 

  102. Zandbergen F, Plutzky J (2007) PPARalpha in atherosclerosis and inflammation. Biochim Biophys Acta 1771(8):972–982

    PubMed  CAS  Google Scholar 

  103. Itakura J, Izumi N, Nishimura Y et al (2004) Prospective randomized crossover trial of combination therapy with bezafibrate and UDCA for primary biliary cirrhosis. Hepatol Res 29(4):216–222

    PubMed  CAS  Google Scholar 

  104. Dohmen K, Mizuta T, Nakamuta M, Shimohashi N, Ishibashi H, Yamamoto K (2004) Fenofibrate for patients with asymptomatic primary biliary cirrhosis. World J Gastroenterol 10(6):894–898

    PubMed  CAS  Google Scholar 

  105. Iwasaki S, Akisawa N, Saibara T, Onishi S (2007) Fibrate for treatment of primary biliary cirrhosis. Hepatol Res 37(Suppl 3):S515–S517

    PubMed  CAS  Google Scholar 

  106. Kleemann R, Verschuren L, de Rooij BJ et al (2004) Evidence for anti-inflammatory activity of statins and PPARalpha activators in human C-reactive protein transgenic mice in vivo and in cultured human hepatocytes in vitro. Blood 103(11):4188–4194

    PubMed  CAS  Google Scholar 

  107. Kleemann R, Gervois PP, Verschuren L, Staels B, Princen HM, Kooistra T (2003) Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation. Blood 101(2):545–551

    PubMed  CAS  Google Scholar 

  108. Panigrahy D, Kaipainen A, Huang S, et al (2008) PPAR{alpha} agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. PNAS 105:985–990

    Google Scholar 

  109. Jung D, Fried M, Kullak-Ublick GA (2002) Human apical sodium-dependent bile salt transporter (SLC10A2) gene is regulated by the peroxisome proliferator-activated receptor alpha. J Biol Chem 277(34):30559–30566

    PubMed  CAS  Google Scholar 

  110. Heikkinen S, Auwerx J, Argmann CA (2007) PPARgamma in human and mouse physiology. Biochim Biophys Acta 1771(8):999–1013

    PubMed  CAS  Google Scholar 

  111. Belfort R, Harrison SA, Brown K et al (2006) A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 355(22):2297–2307

    PubMed  CAS  Google Scholar 

  112. Harada K, Isse K, Kamihira T, Shimoda S, Nakanuma Y (2005) Th1 cytokine-induced downregulation of PPARgamma in human biliary cells relates to cholangitis in primary biliary cirrhosis. Hepatology 41(6):1329–1338

    PubMed  CAS  Google Scholar 

  113. Fickert P, Moustafa T, Trauner M (2007) Primary sclerosing cholangitis—the arteriosclerosis of the bile duct? Lipids Health Dis 6:3

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Beuers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beuers, U., Kullak-Ublick, G.A., Pusl, T. et al. Medical Treatment of Primary Sclerosing Cholangitis: A Role for Novel Bile Acids and other (post-)Transcriptional Modulators?. Clinic Rev Allerg Immunol 36, 52–61 (2009). https://doi.org/10.1007/s12016-008-8085-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-008-8085-y

Keywords

Navigation