Skip to main content

Advertisement

Log in

Pathways to ANCA Production: From Differentiation of Dendritic Cells by Proteinase 3 to B Lymphocyte Maturation in Wegener’s Granuloma

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Wegener’s granulomatosis, microscopic polyangiitis, and Churg–Strauss syndrome are idiopathic systemic vasculitides in which circulating anti-neutrophil cytoplasmic antibodies (ANCA) directed against proteinase 3 (PR3) or myeloperoxidase (MPO) are commonly found. Within the last 25 years, these antibodies were subject of intensive studies, and a growing body of evidence arose for a distinct role of ANCA in the pathogenesis of the ANCA-associated vasculitides (AAV). Yet, the evidence derived from clinical observations and in vitro studies remains circumstantial. The various animal models have provided substantial support for a pathogenic role of MPO–ANCA in vivo, but the debate if ANCA play a primary role in the pathogenesis of these diseases is still open. The aim of this review was to update current basic and clinical research on ANCA in the pathophysiology of AAV and to point out and discuss limitations and inconsistencies of the clinical and experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gross WL, Csernok E, Schmitt WH (1991) Antineutrophil cytoplasmic autoantibodies: immunobiological aspects. Klin Wochenschr 69:558–556

    Article  PubMed  CAS  Google Scholar 

  2. Jagiello P, Aries P, Arning L et al (2005) The PTPN22 620W allele is a risk factor for Wegener’s granulomatosis. Arthritis Rheum 52:4039–4043

    Article  PubMed  CAS  Google Scholar 

  3. Lee YH, Rho YH, Choi SJ et al (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford) 46:49–56

    Article  CAS  Google Scholar 

  4. Kaufman KM, Kelly JA, Herring BJ et al (2006) Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus erythematosus. Arthritis Rheum 54:2533–2540

    Article  PubMed  CAS  Google Scholar 

  5. Begovich AB, Carlton VE, Honigberg LA et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75:330–337

    Article  PubMed  CAS  Google Scholar 

  6. Nuyts GD, Van Vlem E, De Vos A et al (1995) Wegener granulomatosis is associated to exposure to silicon compounds: a case-control study. Nephrol Dial Transplant 10:1162–1165

    PubMed  CAS  Google Scholar 

  7. Stegeman CA, Tervaert JW, Sluiter WJ et al (1994) Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med 120:12–17

    PubMed  CAS  Google Scholar 

  8. Schultz H (2007) From infection to autoimmunity: a new model for induction of ANCA against the bactericidal/permeability increasing protein (BPI). Autoimmun Rev 6:223–227

    Article  PubMed  CAS  Google Scholar 

  9. Choi HK, Lamprecht P, Niles JL et al (2000) Subacute bacterial endocarditis with positive cytoplasmic antineutrophil cytoplasmic antibodies and anti-proteinase 3 antibodies. Arthritis Rheum 43:226–231

    Article  PubMed  CAS  Google Scholar 

  10. Pendergraft WF 3rd, Preston GA, Shah RR et al (2004) Autoimmunity is triggered by cPR-3(105–201), a protein complementary to human autoantigen proteinase-3. Nat Med 10:72–79

    Article  PubMed  CAS  Google Scholar 

  11. Mueller A, Trabandt A, Gloeckner-Hofmann K et al (2000) Localized Wegener’s granulomatosis: predominance of CD26 and IFN-gamma expression. J Pathol 192:113–120

    Article  Google Scholar 

  12. Voswinkel J, Mueller A, Kraemer JA et al (2006) B lymphocyte maturation in Wegener’s granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann Rheum Dis 65:859–864

    Article  PubMed  CAS  Google Scholar 

  13. Lamprecht P, Gross WL (2007) Current knowledge on cellular interactions in the WG-granuloma. Clin Exp Rheumatol 25:S49–S51

    PubMed  CAS  Google Scholar 

  14. Plotz PH (2003) The autoantibody repertoire: searching for order. Nat Rev Immunol 3:73–78

    Article  PubMed  CAS  Google Scholar 

  15. Csernok E, Ai M, Gross WL, Wicklein D et al (2006) Wegener autoantigen induces maturation of dendritic cells and licenses them for Th1 priming via the protease-activated receptor-2 pathway. Blood 107:4440–4448

    Article  PubMed  CAS  Google Scholar 

  16. Aries PM, Lamprecht P, Gross WL (2006) Rituximab in refractory Wegener’s granulomatosis: favorable or not? Am J Respir Crit Care Med 173:815–816

    PubMed  Google Scholar 

  17. Hellmich B, Lamprecht P, Gross WL (2006) Advances in the therapy of Wegener’s granulomatosis. Curr Opin Rheumatol 18:25–32

    Article  PubMed  CAS  Google Scholar 

  18. Geffriaud-Ricouard C, Noel LH, Chauveau D et al (1993) Clinical spectrum associated with ANCA of defined antigen specificities in 98 selected patients. Clin Nephrol 39:125–136

    PubMed  CAS  Google Scholar 

  19. Schoenermarck U, Lamprecht P, Csernok E et al (2001) Prevalence and spectrum of rheumatic diseases associated with proteinase 3-antineutrophil cytoplasmic antibodies (ANCA) and myeloperoxidase-ANCA. Rheumatology (Oxford) 40:178–184

    Article  Google Scholar 

  20. Hauer HA, Bajema IM, van Houwelingen HC et al (2002) Renal histology in ANCA-associated vasculitis: differences between diagnostic and serologic subgroups. Kidney Int 61:80–89

    Article  PubMed  Google Scholar 

  21. Michlewska S, McColl A, Rossi AG et al (2007) Clearance of dying cells and autoimmunity. Autoimmunity 40:267–273

    Article  PubMed  CAS  Google Scholar 

  22. Duan-Porter WD, Casciola-Rosen L, Rosen A (2005) Autoantigens: the critical partner in initiating and propagating systemic autoimmunity. Ann N Y Acad Sci 1062:127–136

    Article  PubMed  Google Scholar 

  23. Gilligan HM, Bredy B, Brady HR et al (1996) Antineutrophil cytoplasmic autoantibodies interact with primary granule constituents on the surface of apoptotic neutrophils in the absence of neutrophil priming. J Exp Med 184:2231–2241

    Article  PubMed  CAS  Google Scholar 

  24. Moosig F, Csernok E, Kumanovics G et al (2000) Opsonization of apoptotic neutrophils by anti-neutrophil cytoplasmic antibodies (ANCA) leads to enhanced uptake by macrophages and increased release of tumour necrosis factor-alpha (TNF-alpha). Clin Exp Immunol 122:499–503

    Article  PubMed  CAS  Google Scholar 

  25. Harper L, Ren Y, Savill J, Adu D et al (2000) Antineutrophil cytoplasmic antibodies induce reactive oxygen-dependent dysregulation of primed neutrophil apoptosis and clearance by macrophages. Am J Pathol 157:211–220

    PubMed  CAS  Google Scholar 

  26. Kettritz R, Scheumann J, Xu Y et al (2002) TNF-alpha-accelerated apoptosis abrogates ANCA-mediated neutrophil respiratory burst by a caspase-dependent mechanism. Kidney Int 61:502–515

    Article  PubMed  CAS  Google Scholar 

  27. Patry YC, Trewick DC, Gregoire M et al (2001) Rats injected with syngenic rat apoptotic neutrophils develop antineutrophil cytoplasmic antibodies. J Am Soc Nephrol 12:1764–1768

    PubMed  CAS  Google Scholar 

  28. Kallenberg CG, Heeringa P, Stegeman CA (2006) Mechanisms of disease: pathogenesis and treatment of ANCA-associated vasculitides. Nat Clin Pract Rheumatol 2:661–670

    Article  PubMed  CAS  Google Scholar 

  29. Heeringa P, Foucher P, Klok PA et al (1997) Systemic injection of products of activated neutrophils and H2O2 in myeloperoxidase-immunized rats leads to necrotizing vasculitis in the lungs and gut. Am J Pathol 151:131–140

    PubMed  CAS  Google Scholar 

  30. Harper JM, Thiru S, Lockwood CM et al (1998) Myeloperoxidase autoantibodies distinguish vasculitis mediated by anti-neutrophil cytoplasm antibodies from immune complex disease in MRL/Mp-lpr/lpr mice: a spontaneous model for human microscopic angiitis. Eur J Immunol 28:2217–2226

    Article  PubMed  CAS  Google Scholar 

  31. Tomer Y, Gilburd B, Blank M et al (1995) Characterization of biologically active antineutrophil cytoplasmic antibodies induced in mice. Pathogenetic role in experimental vasculitis. Arthritis Rheum 38:1375–1381

    Article  PubMed  CAS  Google Scholar 

  32. Wiesner O, Litwiller RD, Hummel AM et al (2005) Differences between human proteinase 3 and neutrophil elastase and their murine homologues are relevant for murine model experiments. FEBS Lett 579:5305–5312

    Article  PubMed  CAS  Google Scholar 

  33. Xiao H, Heeringa P, Hu P et al (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963

    PubMed  CAS  Google Scholar 

  34. Little MA, Smyth CL, Yadav R, Ambrose L, Coock HT, Nourshargh S, Pusey CD (2005) Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo. Blood 106(86):2050–2058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by BMBF grant no. 01 G1 9951, Competence network systemic inflammatory rheumatic diseases and Verein zur Förderung der Erforschung und Bekämpfung rheumatischer Erkrankungen Bad Bramstedt e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Csernok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csernok, E., Moosig, F. & Gross, W.L. Pathways to ANCA Production: From Differentiation of Dendritic Cells by Proteinase 3 to B Lymphocyte Maturation in Wegener’s Granuloma. Clinic Rev Allerg Immunol 34, 300–306 (2008). https://doi.org/10.1007/s12016-007-8056-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-007-8056-8

Keywords

Navigation