Skip to main content

Advertisement

Log in

Dendritic Cells and Contact Dermatitis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Contact dermatitis is a biological response to simple chemicals in the skin. Although it is well known that allergic contact dermatitis is mediated by the immune system, it is still uncertain whether it is a kind of protective response or it is simply an unnecessary response. We have demonstrated the following: (1) haptens activate Langerhans cells in the initiation phase of murine allergic contact dermatitis in vivo, (2) haptens activate human monocyte-derived dendritic cells in vitro, (3) the activation of dendritic cells by haptens is primarily mediated by the activation of p38 mitogen-activated protein kinase (MAPK), and (4) the activation of p38 MAPK is mediated by stimulation related to an imbalance of intracellular redox. Based on these observations, we will discuss the biological significance of contact dermatitis. In addition, we will review some up-to-date findings on Langerhans cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aiba S, Tagami H (1999) Dendritic cell activation induced by various stimuli, e.g., exposure to microorganisms, their products, cytokines and simple chemicals as well as adhesion to extracellular matrix. J Dermatol Sci 20:1–13

    Article  CAS  Google Scholar 

  2. Saeki H, Moore AM, Brown MJ, Hwang ST (1999) Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162:2472–2475

    PubMed  CAS  Google Scholar 

  3. Engeman TM, Gorbachev AV, Gladue RP, Heeger PS, Fairchild RL (2000) Inhibition of functional T cell priming and contact hypersensitivity responses by treatment with anti-secondary lymphoid chemokine antibody during hapten sensitization. J Immunol 164:5207–5214

    PubMed  CAS  Google Scholar 

  4. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H (1999) Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460

    Article  PubMed  CAS  Google Scholar 

  5. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E, Lipp M (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    Article  PubMed  CAS  Google Scholar 

  6. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC (1993) Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361:82–85

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi Y (1997) Langerhans’ cells produce type IV collagenase (MMP-9) following epicutaneous stimulation with haptens. Immunology 90:496–501

    Article  PubMed  CAS  Google Scholar 

  8. Kobayashi Y, Matsumoto M, Kotani M, Makino T (1999) Possible involvement of matrix metalloproteinase-9 in Langerhans cell migration and maturation. J Immunol 163:5989–5993

    PubMed  CAS  Google Scholar 

  9. Ratzinger G, Stoitzner P, Ebner S, Lutz MB, Layton GT, Rainer C, Senior RM, Shipley JM, Fritsch P, Schuler G, Romani N (2002) Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J Immunol 168:4361–4371

    PubMed  CAS  Google Scholar 

  10. Grabbe S, Schwarz T (1998) Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 19:37–44

    Article  PubMed  CAS  Google Scholar 

  11. Gocinski BL, Tigelaar RE (1990) Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J Immunol 144:4121–4128

    PubMed  CAS  Google Scholar 

  12. Hayashi M, Higashi K, Kato H, Kaneko H (2001) Assessment of preferential Th1 or Th2 induction by low-molecular-weight compounds using a reverse transcription-polymerase chain reaction method, comparison of two mouse strains, C57BL/6 and BALB/c. Toxicol Appl Pharmacol 177:38–45

    Article  PubMed  CAS  Google Scholar 

  13. Dearman RJ, Warbrick EV, Skinner R, Kimber I (2002) Cytokine fingerprinting of chemical allergens: species comparisons and statistical analyses. Food Chem Toxicol 40:1881–1892

    Article  PubMed  CAS  Google Scholar 

  14. Cumberbatch M, Dearman RJ, Griffiths CE, Kimber I (2003) Epidermal Langerhans cell migration and sensitisation to chemical allergens. Apmis 111:797–804

    Article  PubMed  CAS  Google Scholar 

  15. Vandebriel RJ, De Jong WH, Spiekstra SW, Van Dijk M, Fluitman A, Garssen J, Van Loveren H (2000) Assessment of preferential T-helper 1 or T-helper 2 induction by low molecular weight compounds using the local lymph node assay in conjunction with RT-PCR and ELISA for interferon-gamma and interleukin-4. Toxicol Appl Pharmacol 162:77–85

    Article  PubMed  CAS  Google Scholar 

  16. Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew DP, Warnke R, Ruffing N, Kassam N, Wu L, Butcher EC (1999) The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400:776–780

    Article  PubMed  CAS  Google Scholar 

  17. Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, McEvoy L, Lauerma AI, Assmann T, Bunemann E, Lehto M, Wolff H, Yen D, Marxhausen H, To W, Sedgwick J, Ruzicka T, Lehmann P, Zlotnik A (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8:157–165

    Article  PubMed  CAS  Google Scholar 

  18. la Sala A, Sebastiani S, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2002) Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood 99:1715–1722

    Article  PubMed  Google Scholar 

  19. Takahashi R, Mizukawa Y, Yamazaki Y, Hayakawa K, Hayakawa J, Kudo A, Shiohara T (2003) In vitro differentiation from naive to mature E-selectin binding CD4 T cells: acquisition of skin-homing properties occurs independently of cutaneous lymphocyte antigen expression. J Immunol 171:5769–5777

    PubMed  CAS  Google Scholar 

  20. Fitzhugh DJ, Naik S, Caughman SW, Hwang ST (2000) Cutting edge: C–C chemokine receptor 6 is essential for arrest of a subset of memory T cells on activated dermal microvascular endothelial cells under physiologic flow conditions in vitro. J Immunol 165:6677–6681

    PubMed  CAS  Google Scholar 

  21. Gorbachev AV, Heeger PS, Fairchild RL (2001) CD4+ and CD8+ T cell priming for contact hypersensitivity occurs independently of CD40-CD154 interactions. J Immunol 166:2323–2332

    PubMed  CAS  Google Scholar 

  22. Akiba H, Kehren J, Ducluzeau MT, Krasteva M, Horand F, Kaiserlian D, Kaneko F, Nicolas JF (2002) Skin inflammation during contact hypersensitivity is mediated by early recruitment of CD8+ T cytotoxic 1 cells inducing keratinocyte apoptosis. J Immunol 168:3079–3087

    PubMed  CAS  Google Scholar 

  23. Saint-Mezard P, Berard F, Dubois B, Kaiserlian D, Nicolas JF (2004) The role of CD4+ and CD8+ T cells in contact hypersensitivity and allergic contact dermatitis. Eur J Dermatol 14:131–138

    PubMed  Google Scholar 

  24. Vocanson M, Hennino A, Cluzel-Tailhardat M, Saint-Mezard P, Benetiere J, Chavagnac C, Berard F, Kaiserlian D, Nicolas JF (2006) CD8+ T cells are effector cells of contact dermatitis to common skin allergens in mice. J Invest Dermatol 126:815–820

    Article  PubMed  CAS  Google Scholar 

  25. Trautmann A, Akdis M, Kleemann D, Altznauer F, Simon HU, Graeve T, Noll M, Brocker EB, Blaser K, Akdis CA (2000) T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106:25–35

    Article  PubMed  CAS  Google Scholar 

  26. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  27. Aiba S, Katz SI (1990) Phenotypic and functional characteristics of in vivo-activated Langerhans cells. J Immunol 145:2791–2796

    PubMed  CAS  Google Scholar 

  28. Ozawa H, Nakagawa S, Tagami H, Aiba S (1996) Interleukin-1 beta and granulocyte-macrophage colony-stimulating factor mediate Langerhans cell maturation differently. J Invest Derm 106:441–445

    Article  PubMed  CAS  Google Scholar 

  29. Enk AH, Katz SI (1992) Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci USA 89:1398–1402

    Article  PubMed  CAS  Google Scholar 

  30. Aiba S, Terunuma A, Manome H, Tagami H (1997) Dendritic cells differently respond to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur J Immunol 27:3031–3038

    Article  PubMed  CAS  Google Scholar 

  31. Geissmann F, Prost C, Monnet JP, Dy M, Brousse N, Hermine O (1998) Transforming growth factor beta1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med 187:961–966

    Article  PubMed  CAS  Google Scholar 

  32. Aiba S, Manome H, Yoshino Y, Tagami H (2000) In vitro treatment of human transforming growth factor-beta1-treated monocyte-derived dendritic cells with haptens can induce the phenotypic and functional changes similar to epidermal Langerhans cells in the initiation phase of allergic contact sensitivity reaction. Immunology 101:68–75

    Article  PubMed  CAS  Google Scholar 

  33. Schwarzenberger K, Udey MC (1996) Contact allergens and epidermal proinflammatory cytokines modulate Langerhans cell E-cadherin expression in situ. J Invest Dermatol 106:553–558

    Article  PubMed  CAS  Google Scholar 

  34. Ebner S, Lenz A, Reider D, Fritsch P, Schuler G, Romani N (1998) Expression of maturation-/migration-related molecules on human dendritic cells from blood and skin. Immunobiology 198:568–587

    PubMed  CAS  Google Scholar 

  35. Staquet MJ, Levarlet B, Dezutter-Dambuyant C, Schmitt D (1992) Human epidermal Langerhans cells express beta 1 integrins that mediate their adhesion to laminin and fibronectin. J Invest Dermatol 99:12S–14S

    Article  PubMed  CAS  Google Scholar 

  36. Aiba S, Nakagawa S, Ozawa H, Miyake K, Yagita H, Tagami H (1993) Up-regulation of alpha 4 integrin on activated Langerhans cells, analysis of adhesion molecules on Langerhans cells relating to their migration from skin to draining lymph nodes. J Invest Dermatol 100:143–147

    Article  PubMed  CAS  Google Scholar 

  37. Weiss JM, Sleeman J, Renkl AC, Dittmar H, Termeer CC, Taxis S, Howells N, Hofmann M, Kohler G, Schopf E, Ponta H, Herrlich P, Simon JC (1997) An essential role for CD44 variant isoforms in epidermal Langerhans cell and blood dendritic cell function. J Cell Biol 137:1137–1147

    Article  PubMed  CAS  Google Scholar 

  38. Dieu MC, Vanbervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, Briere F, Zlotnik A, Lebecque S, Caux C (1998) Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188:373–386

    Article  PubMed  CAS  Google Scholar 

  39. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769

    Article  PubMed  CAS  Google Scholar 

  40. Kuhn U, Brand P, Willemsen J, Jonuleit H, Enk AH, Brandwijk-Petershans R, Saloga J, Knop J, Becker D (1998) Induction of tyrosine phosphorylation in human MHC class II-positive antigen-presenting cells by stimulation with contact sensitizers. J Immunol 160:667–673

    PubMed  CAS  Google Scholar 

  41. Ardeshna KM, Pizzey AR, Devereux S, Khwaja A (2000) The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96:1039–1046

    PubMed  CAS  Google Scholar 

  42. Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 166:3837–3845

    PubMed  CAS  Google Scholar 

  43. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  PubMed  CAS  Google Scholar 

  44. Minden A, Karin M (1997) Regulation and function of the JNK subgroup of MAP kinases. Biochim Biophys Acta 1333:F85–F104

    PubMed  CAS  Google Scholar 

  45. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  PubMed  CAS  Google Scholar 

  46. Aiba S, Manome H, Nakagawa S, Mollah ZU, Mizuashi M, Ohtani T, Yoshino Y, Tagami H (2003) p38 Mitogen-activated protein kinase and extracellular signal-regulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and DNCB. J Invest Dermatol 120:390–398

    Article  PubMed  CAS  Google Scholar 

  47. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  PubMed  CAS  Google Scholar 

  48. Pias EK, Aw TY (2002) Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production. FASEB J 16:781–790

    Article  PubMed  CAS  Google Scholar 

  49. Nordberg J, Zhong L, Holmgren A, Arner ES (1998) Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. J. Biol. Chem. 273:10835–10842

    Article  PubMed  CAS  Google Scholar 

  50. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    Article  PubMed  CAS  Google Scholar 

  51. Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20

    Article  PubMed  CAS  Google Scholar 

  52. Mizumoto N, Mummert ME, Shalhevet D, Takashima A (2003) Keratinocyte ATP release assay for testing skin-irritating potentials of structurally diverse chemicals. J Invest Dermatol 121:1066–1072

    Article  PubMed  CAS  Google Scholar 

  53. Termeer CC, Hennies J, Voith U, Ahrens T, Weiss JM, Prehm P, Simon JC (2000) Oligosaccharides of hyaluronan are potent activators of dendritic cells. J Immunol 165:1863–1870

    PubMed  CAS  Google Scholar 

  54. Berchtold S, Ogilvie AL, Bogdan C, Muhl-Zurbes P, Ogilvie A, Schuler G, Steinkasserer A (1999) Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett 458:424–428

    Article  PubMed  CAS  Google Scholar 

  55. Ferrari D, La Sala A, Chiozzi P, Morelli A, Falzoni S, Girolomoni G, Idzko M, Dichmann S, Norgauer J, Di Virgilio F (2000) The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J 14:2466–2476

    Article  PubMed  CAS  Google Scholar 

  56. Marteau F, Communi D, Boeynaems JM, Suarez Gonzalez N (2004) Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotides diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 76:796–803

    Article  PubMed  CAS  Google Scholar 

  57. Schnurr M, Then F, Galambos P, Scholz C, Siegmund B, Endres S Eigler A (2000) Extracellular ATP and TNF-alpha synergize in the activation and maturation of human dendritic cells. J Immunol 165:4704–4709

    PubMed  CAS  Google Scholar 

  58. Granstein RD, Ding W, Huang J, Holzer A, Gallo RL, Di Nardo A, Wagner JA (2005) Augmentation of cutaneous immune responses by ATP gamma S: purinergic agonists define a novel class of immunologic adjuvants. J Immunol 174:7725–7731

    PubMed  CAS  Google Scholar 

  59. Kabashima K, Sakata D, Nagamachi M, Miyachi Y, Inaba K, Narumiya S (2003) Prostaglandin E2-EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat Med 9:744–749

    Article  PubMed  CAS  Google Scholar 

  60. Legler DF, Krause P, Scandella E, Singer E, Groettrup M (2006) Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J Immunol 176:966–973

    PubMed  CAS  Google Scholar 

  61. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, Weissman IL, Cyster JG, Engleman EG (2002) Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3:1135–1141

    Article  PubMed  CAS  Google Scholar 

  62. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M (2006) Langerhans cells arise from monocytes in vivo. Nat Immunol 7:265–273

    Article  PubMed  CAS  Google Scholar 

  63. Mollah Z, Aiba S, Nakagawa S, Hara M, Manome H, Mizuashi M, Ohtani T, Yoshino Y, Tagami H (2003) M-CSF in cooperation with transforming growth factor-b1 induces the differentiation of CD34+ hematopoietic progenitor cells into Langerhans cells under serum-free conditions without GM-CSF. J Invest Dermatol 120:256–265

    Article  PubMed  CAS  Google Scholar 

  64. Larregina AT, Morelli AE, Spencer LA, Logar AJ, Watkins SC, Thomson AW, Falo LD, Jr (2001), Dermal-resident CD14+ cells differentiate into Langerhans cells. Nat Immunol 2:1151–1158

    Article  PubMed  CAS  Google Scholar 

  65. Schaerli P, Willimann K, Ebert LM, Walz A, Moser B (2005) Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23:331–342

    Article  PubMed  CAS  Google Scholar 

  66. Heinz LX, Platzer B, Reisner PM, Jorgl A, Taschner S, Gobel F, Strobl H (2006) Differential involvement of PU.1 and Id2 downstream of TGF-beta1 during Langerhans-cell commitment. Blood 107:1445–1453

    Article  PubMed  CAS  Google Scholar 

  67. Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    Article  PubMed  CAS  Google Scholar 

  68. Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML, Clausen BE (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169:569–576

    Article  PubMed  CAS  Google Scholar 

  69. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ (2005) Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23:611–620

    Article  PubMed  CAS  Google Scholar 

  70. Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, Carbone FR (2003) Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science 301:1925–1928

    Article  PubMed  CAS  Google Scholar 

  71. Ritter U, Meissner A, Scheidig C, Korner H (2004) CD8 alpha- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur J Immunol 34:1542–1550

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuya Aiba.

Additional information

Grants: This study was supported in part by the 21st COE program of Tohoku University and by new Energy and Industrial Technology Development Organization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, Y., Aiba, S. Dendritic Cells and Contact Dermatitis. Clinic Rev Allerg Immunol 33, 27–34 (2007). https://doi.org/10.1007/s12016-007-0034-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-007-0034-7

Keywords

Navigation