Skip to main content

Advertisement

Log in

Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In recent years, the rapid emergence of 3D organoid technology has garnered significant attention from researchers. These miniature models accurately replicate the structure and function of human tissues and organs, offering more physiologically relevant platforms for cancer research. These intricate 3D structures not only serve as promising models for studying human cancer, but also significantly contribute to the advancement of various potential applications in the field of cancer research. To date, organoids have been efficiently constructed from both normal and malignant tissues originating from patients. Using such bioengineering platforms, simulations of infections and cancer processes, mutations and carcinogenesis can be achieved, and organoid technology is also expected to facilitate drug testing and personalized therapies. In conclusion, regenerative medicine has the potential to enhance organoid technology and current transplantation treatments by utilizing genetically identical healthy organoids as substitutes for irreversibly deteriorating diseased organs. This review explored the evolution of cancer organoids and emphasized the significant role these models play in fundamental research and the advancement of personalized medicine in oncology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All required data included in text and supplementary. Any further any formation required is available with the corresponding author.

Code Availability

All required code included in text and supplementary.

Abbreviations

MRA:

Microraft array

HCS:

High-content screening

CF:

Cystic fibrosis

ESCs:

Embryonic stem cells

iPSC:

Induced pluripotent stem cells

Rb:

Retinoblastoma

PSCs:

Pluripotent stem cells

hPSCs:

Human pluripotent stem cells

SAM:

S-adenosylmethionine

PM:

Paraxial mesoderm

WOI:

Window-of-implantation

CRC:

Colorectal cancer

PDOs:

Patient-derived organoids

OC:

Ovarian cancer

HGSOC:

High-grade serous ovarian cancer

PDAC:

Pancreatic ductal adenocarcinoma

PRMT5:

Protein arginine methyltransferase gene 5

PDXs:

Patient-derived xenografts

DLA:

Diagnostic leukapheresis

CTC:

Circulating tumor cell

NSCLC:

Non-small cell lung cancer

References

  1. Xu, H., Lyu, X., Yi, M., Zhao, W., Song, Y., & Wu, K. (2018). Organoid technology and applications in cancer research. Journal of Hematology & Oncology, 11(1). https://doi.org/10.1186/s13045-018-0662-9. [online].

  2. Clevers, H., & Tuveson, D. A. (2019). Organoid models for cancer research. Annual Review of Cancer Biology, 3(1), 223–234. https://doi.org/10.1146/annurev-cancerbio-030518-055702

    Article  Google Scholar 

  3. Yang, L., Yang, S., Li, X., Li, B., Li, Y., Zhang, X., Ma, Y., Peng, X., Jin, H., Fan, Q., Wei, S., Liu, J., & Li, H. (2019). Tumor organoids: From inception to future in cancer research. Cancer Letters, 454, 120–133. https://doi.org/10.1016/j.canlet.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  4. Liu, C., Qin, T., Huang, Y., Li, Y., Chen, G., & Sun, C. (2020). Drug screening model meets cancer organoid technology. Translational Oncology, 13(11). https://doi.org/10.1016/j.tranon.2020.100840. [online].

  5. Kretzschmar, K. (2020). Cancer research using organoid technology. Journal of Molecular Medicine. https://doi.org/10.1007/s00109-020-01990-z

    Article  PubMed  Google Scholar 

  6. Gilazieva, Z., Ponomarev, A., Rutland, C., Rizvanov, A., & Solovyeva, V. (2020). Promising applications of tumor spheroids and organoids for personalized medicine. Cancers, 12(10), 2727. https://doi.org/10.3390/cancers12102727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mullenders, J., et al. (2019). Mouse and human urothelial cancer organoids: A tool for bladder cancer research. Proceedings of the National Academy of Sciences, 116(10), 4567–4574. https://www.pnas.org/content/116/10/4567. https://doi.org/10.1073/pnas.1803595116. Accessed 20 Dec 2023

  8. Lensink, M. A., Boers, S. N., Jongsma, K. R., Carter, S. E., van der Ent, C. K., & Bredenoord, A. L. (2021). Organoids for personalized treatment of Cystic Fibrosis: Professional perspectives on the ethics and governance of organoid biobanking. Journal of Cystic Fibrosis, 20(3), 443–451. https://doi.org/10.1016/j.jcf.2020.11.015

    Article  PubMed  Google Scholar 

  9. Kim, S. K., Kim, Y. H., Park, S., & Cho, S.-W. (2021). Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomaterialia, 132, 37–51. https://doi.org/10.1016/j.actbio.2021.03.002. [online].

    Article  CAS  PubMed  Google Scholar 

  10. Yang, H., Wang, Y., Wang, P., Zhang, N., & Wang, P. (2021). Tumor organoids for cancer research and personalized medicine. Cancer Biology and Medicine, 18(-). https://doi.org/10.20892/j.issn.2095-3941.2021.0335

  11. Olayanju, A., Jones, L., Greco, K., Goldring, C. E., & Ansari, T. (2018). Application of porcine gastrointestinal organoid units as a potential in vitro tool for drug discovery and development. Journal of Applied Toxicology, 39(1), 4–15. https://doi.org/10.1002/jat.3641

    Article  CAS  PubMed  Google Scholar 

  12. Cruz-Acuña, R., & García, A. J. (2019). Engineered materials to model human intestinal development and cancer using organoids. Experimental Cell Research, 377(1–2), 109–114. https://doi.org/10.1016/j.yexcr.2019.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, H., Zhang, Y., Zhang, Y.-Y., Li, Y.-P., Hua, Z.-Q., Zhang, C.-J., Wu, K.-C., Yu, F., Zhang, Y., Su, J., & Jin, Z.-B. (2020). Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 33628–33638. https://doi.org/10.1073/pnas.2011780117. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mullenders, J., Buijs, A., Fielmich, L.-E., Sluimer, J., Sun, J., Vries, R. G., & Boj, S. F. (2021). Abstract 126: HUB Organoids: Bringing the ‘patient in the lab’ for preclinical and clinical development. Cancer Research, 81(13_Supplement), 126–126. https://doi.org/10.1158/1538-7445.am2021-126

    Article  Google Scholar 

  15. Duzagac, F., Saorin, G., Memeo, L., Canzonieri, V., & Rizzolio, F. (2021). Microfluidic organoids-on-a-chip: Quantum leap in cancer research. Cancers, 13(4), 737. https://doi.org/10.3390/cancers13040737. [online].

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qu, J., Kalyani, F. S., Liu, L., Cheng, T., & Chen, L. (2021). Tumor organoids: Synergistic applications, current challenges, and future prospects in cancer therapy. Cancer Communications, 41(12), 1331–1353. https://doi.org/10.1002/cac2.12224

    Article  PubMed  PubMed Central  Google Scholar 

  17. Uzquiano, A., Kedaigle, A. J., Pigoni, M., Paulsen, B., Adiconis, X., Kim, K., Faits, T., Nagaraja, S., Antón-Bolaños, N., Gerhardinger, C., Tucewicz, A., Murray, E., Jin, X., Buenrostro, J., Chen, F., Velasco, S., Regev, A., Levin, J. Z., & Arlotta, P. (2022). Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex. Cell, 185(20), 3770-3788.e27. https://doi.org/10.1016/j.cell.2022.09.010. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Richiardone, E., Van den Bossche, V., & Corbet, C. (2022). Metabolic studies in organoids: Current applications. Opportunities and Challenges. Organoids, 1(1), 85–105. https://doi.org/10.3390/organoids1010008

    Article  Google Scholar 

  19. Nuciforo, S., Fofana, I., Matter, M. S., Blumer, T., Calabrese, D., Boldanova, T., Piscuoglio, S., Wieland, S., Ringnalda, F., Schwank, G., Terracciano, L. M., Ng, C. K. Y., & Heim, M. H. (2018). Organoid models of human liver cancers derived from tumor needle biopsies. Cell Reports, 24(5), 1363–1376. https://doi.org/10.1016/j.celrep.2018.07.001.PMID:30067989;PMCID:PMC6088153

    Article  CAS  PubMed  Google Scholar 

  20. Augustyniak, J., Bertero, A., Coccini, T., Baderna, D., Buzanska, L., & Caloni, F. (2019). Organoids are promising tools for species-specific in vitro toxicological studies. Journal of Applied Toxicology. https://doi.org/10.1002/jat.3815

    Article  PubMed  Google Scholar 

  21. Farzaneh, Z., Abbasalizadeh, S., Asghari-Vostikolaee, M.-H., Alikhani, M., Joaquim & Baharvand, H. (2020). Dissolved oxygen concentration regulates human hepatic organoid formation from pluripotent stem cells in a fully controlled bioreactor. Biotechnology and Bioengineering, 117(12), 3739–3756. https://doi.org/10.1002/bit.27521

    Article  CAS  PubMed  Google Scholar 

  22. Akiva, A., Melke, J., Ansari, S., Liv, N., Meijden, R., Erp, M., Zhao, F., Stout, M., Nijhuis, W. H., Heus, C., Muñiz Ortera, C., Fermie, J., Klumperman, J., Ito, K., Sommerdijk, N., & Hofmann, S. (2021). An organoid for woven bone. Advanced Functional Materials, 31(17), 2010524. https://doi.org/10.1002/adfm.202010524

    Article  CAS  Google Scholar 

  23. Wang, Q., Xiong, Y., Zhang, S., Sui, Y., Yu, C., Liu, P., Li, H., Guo, W., Gao, Y., Przepiorski, A., Davidson, A. J., Guo, M., & Zhang, X. (2021). The dynamics of metabolic characterization in iPSC-derived kidney organoid differentiation via a comparative omics approach. Frontiers in Genetics, 12, 632810. https://doi.org/10.3389/fgene.2021.632810. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zahmatkesh, E., Khoshdel-Rad, N., Mirzaei, H., Shpichka, A., Timashev, P., Mahmoudi, T., & Vosough, M. (2021). Evolution of organoid technology: Lessons learnt in co-culture systems from developmental biology. Developmental Biology, 475, 37–53. https://doi.org/10.1016/j.ydbio.2021.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Tortorella, I., Argentati, C., Emiliani, C., Martino, S., & Morena, F. (2021). The role of physical cues in the development of stem cell-derived organoids. European Biophysics Journal, 51(2), 105–117. https://doi.org/10.1007/s00249-021-01551-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gjorevski, N., Nikolaev, M., Brown, T.E., Mitrofanova, O., Brandenberg, N., DelRio, F.W., Yavitt, F.M., Liberali, P., Anseth, K.S., & Lutolf, M.P. (2022). Tissue geometry drives deterministic organoid patterning. Science, 375(6576). https://doi.org/10.1126/science.aaw9021

  27. Budjan, C., Liu, S., Ranga, A., Gayen, S., Pourquié, O., & Hormoz, S. (n.d.). Paraxial mesoderm organoids model development of human somites. eLife, 11, e68925. https://doi.org/10.7554/eLife.68925. [online].

  28. Yu, Z., Zhao, R.-S., Yang, C., Song, J., Liu, P., Li, Y., Liu, B., Li, T., Yin, C., Lü, M., Hou, Z., Zhang, C., Chen, Z., Wu, K., & Han, Z. (2023). Human receptive endometrial organoid for deciphering the implantation window. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2023.07.27.550771

  29. Arena, S., Corti, G., Durinikova, E., Montone, M., Reilly, N., Russo, M., Lorenzato, A., Arcella, P., Lazzari, L., Rospo, G., Pagani, M., Cancelliere, C., Negrino, C., Isella, C., Bartolini, A., Cassingena, A., Sartore-Bianchi, A., Mauri, G., Bianchi, P., & Mittica, G. (2020). A subset of colorectal cancers with cross-sensitivity to olaparib and oxaliplatin. 26(6), 1372–1384. https://doi.org/10.1158/1078-0432.ccr-19-2409

  30. Wong, C., Han, H.-W., Tien, Y., & Hsu, S. (2019). Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials, 213, 119202–119202. https://doi.org/10.1016/j.biomaterials.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  31. Kondo, J., & Inoue, M. (2019). Application of cancer organoid model for drug screening and personalized therapy. Cells, 8(5), 470. https://doi.org/10.3390/cells8050470. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo, Z., Zhou, X., Mandal, K., He, N., Wennerberg, W., Qu, M., Jiang, X., Sun, W., & Khademhosseini, A. (2021). Reconstructing the tumor architecture into organoids. Advanced Drug Delivery Reviews, 176, 113839–113839. https://doi.org/10.1016/j.addr.2021.113839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren, X., Chen, W., Yang, Q., Li, X., & Xu, L. (2022). Patient-derived cancer organoids for drug screening: Basic technology and clinical application. Journal of Gastroenterology and Hepatology, 37(8), 1446–1454. https://doi.org/10.1111/jgh.15930

    Article  PubMed  Google Scholar 

  34. Xie, X., Li, X. and Song, W. (2023). Tumor organoid biobank-new platform for medical research. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-29065-2

  35. Zhao, D.-K., Liang, J., Huang, X., Shen, S. and Wang, J. (2023). Organoids technology for advancing the clinical translation of cancer nanomedicine. WIREs Nanomedicine and Nanobiotechnology, 15(5). https://doi.org/10.1002/wnan.1892

  36. El-Salam, M. A., Troulis, M. J., Pan, C., & Rao, R. (2023). Unlocking the potential of organoids in cancer treatment and translational research: An application of cytologic techniques. Cancer Cytopathology. https://doi.org/10.1002/cncy.22769

    Article  Google Scholar 

  37. Kopper, O., de Witte, C. J., Lõhmussaar, K., Valle-Inclan, J. E., Hami, N., Kester, L., Balgobind, A. V., Korving, J., Proost, N., Begthel, H., van Wijk, L. M., Revilla, S. A., Theeuwsen, R., van de Ven, M., van Roosmalen, M. J., Ponsioen, B., Ho, V. W. H., Neel, B. G., Bosse, T., & Gaarenstroom, K. N. (2019). An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nature Medicine, 25(5), 838–849. https://doi.org/10.1038/s41591-019-0422-6. [online].

    Article  CAS  PubMed  Google Scholar 

  38. Maenhoudt, N., Defraye, C., Boretto, M., Jan, Z., Heremans, R., Boeckx, B., Hermans, F., Arijs, I., Cox, B., Nieuwenhuysen, E. V., Vergote, I., Rompuy, A.-S.V., Lambrechts, D., Timmerman, D., & Vankelecom, H. (2020). Developing organoids from ovarian cancer as experimental and preclinical models. Stem Cell Reports, 14(4), 717–729. https://doi.org/10.1016/j.stemcr.2020.03.004. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Witte, C.J. de, Valle-Inclan, J.E., Hami, N., Lõhmussaar, K., Kopper, O., Vreuls, C.P.H., Jonges, G.N., Diest, P. van, Nguyen, L., Clevers, H., Kloosterman, W.P., Cuppen, E., Snippert, H.J.G., Zweemer, R.P., Witteveen, P.O., & Stelloo, E. (2020). Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Reports, 31(11). https://doi.org/10.1016/j.celrep.2020.107762. [online].

  40. Bi, J., Thiel, K. W., Litman, J. M., Zhang, Y., Devor, E. J., Newtson, A. M., Schnieders, M. J., Bosquet, J. G., & Leslie, K. K. (2020). Characterization of a TP53 somatic variant of unknown function from an ovarian cancer patient using organoid culture and computational modeling. Clinical Obstetrics and Gynecology, 63(1), 109–119. https://doi.org/10.1097/grf.0000000000000516

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lui, G. Y. L., Richardson, A. B., Chatterjee, P., Pollastro, M., Lints, M., Peretti, D., Rosati, R., Appleyard, L., Durenberger, G., Diaz, R. L., Gurley, K. E., Stork, I. N., Whitney, A., Kapeli, K., Swan, H. A., Memari, Y., Davies, H., Nik-Zainal, S., Banda, K., & Gray, H. J. (2021). Abstract 534: Functional drug screening of organoids from ovarian cancer patients demonstrates clinical and genomic concordance and identifies novel therapeutic vulnerabilities. Clinical Research (Excluding Clinical Trials). https://doi.org/10.1158/1538-7445.am2021-534

    Article  Google Scholar 

  42. Maru, Y., Tanaka, N., Itami, M., & Hippo, Y. (2019). Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. Gynecologic Oncology, 154(1), 189–198. https://doi.org/10.1016/j.ygyno.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  43. Battaglia, A., Piermattei, A., Buzzonetti, A., Pasciuto, T., Zampetti, N., Fossati, M., Angelico, G., Iacobelli, V., Nero, C., Iannucci, V., Scambia, G., Fagotti, A., & Fattorossi, A. (2021). PD-L1 expression on circulating tumour-derived microvesicles as a complementary tool for stratification of high-grade serous ovarian cancer patients. Cancers, 13(20), 5200–5200. https://doi.org/10.3390/cancers13205200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rauth, S., et al. (2021). Recent advances in organoid development and applications in disease modeling. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1875(2), 188527. https://www.sciencedirect.com/science/article/pii/S0304419X21000263. https://doi.org/10.1016/j.bbcan.2021.188527. Accessed 5 Jan 2024

  45. Saito, Y. (2019). Establishment of an organoid bank of biliary tract and pancreatic cancers and its application for personalized therapy and future treatment. Journal of Gastroenterology and Hepatology, 34(11), 1906–1910. https://doi.org/10.1111/jgh.14773

    Article  PubMed  Google Scholar 

  46. Camara, R., Ogbeni, D., Gerstmann, L., Ostovar, M., Hurer, E., Scott, M., Mahmoud, N. G., Radon, T., Crnogorac-Jurcevic, T., Patel, P., Mackenzie, L. S., Chau, D. Y. S., Kirton, S. B., & Rossiter, S. (2020). Discovery of novel small molecule inhibitors of S100P with in vitro anti-metastatic effects on pancreatic cancer cells. European Journal of Medicinal Chemistry, 203, 112621. https://doi.org/10.1016/j.ejmech.2020.112621. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wei, X., Yang, J., Adair, S. J., Ozturk, H., Kuscu, C., Lee, K. Y., Kane, W. J., O’Hara, P. E., Liu, D., Demirlenk, Y. M., Habieb, A. H., Yilmaz, E., Dutta, A., Bauer, T. W., & Adli, M. (2020). Targeted CRISPR screening identifies PRMT5 as synthetic lethality combinatorial target with gemcitabine in pancreatic cancer cells. Proceedings of the National Academy of Sciences, 117(45), 28068–28079. https://doi.org/10.1073/pnas.2009899117. [online].

    Article  CAS  Google Scholar 

  48. Driehuis, E., Gracanin, A., Vries, R. G. J., Clevers, H., & Boj, S. F. (2020). Establishment of Pancreatic Organoids from Normal Tissue and Tumors. STAR Protocols, 1(3), 100192. https://doi.org/10.1016/j.xpro.2020.100192. [online].

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bengtsson, A., Andersson, R., Rahm, J., Ganganna, K., Andersson, B., & Ansari, D. (2021). Organoid technology for personalized pancreatic cancer therapy. Cellular Oncology, 44(2), 251–260. https://doi.org/10.1007/s13402-021-00585-1

    Article  Google Scholar 

  50. Yang, G., Guan, W., Cao, Z., Guo, W., Xiong, G., Zhao, F., Feng, M., Qiu, J., Liu, Y., Zhang, M. Q., You, L., Zhang, T., Zhao, Y., & Gu, J. (2021). Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models. Clinical Cancer Research, 27(12), 3383–3396. https://doi.org/10.1158/1078-0432.ccr-19-3975. [online].

    Article  CAS  PubMed  Google Scholar 

  51. Chin, Y. T., He, Z.-R., Chen, C., Chu, H.-C., Ho, Y., Su, P.-Y., Yang, Y., Wang, K., Shih, Y.-J., Chen, Y. R., Pedersen, J. Z., Incerpi, S., Nana, A. W., Tang, H.-Y., Lin, H.-Y., Mousa, S. A., Davis, P. J., & Whang‐Peng, J. (2019). Tetrac and NDAT induce anti-proliferation via integrin αvβ3 in colorectal cancers with different K-RAS status. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00130

  52. Wang, Y., Liao, H., Zheng, T., Wang, J., Guo, D., Lü, Z., Li, Z., Chen, Y., Shen, L., Zhang, Y., & Gao, J. (2020). Conditionally reprogrammed colorectal cancer cells combined with mouse avatars identify synergy between EGFR and MEK or CDK4/6 inhibitors. PubMed, 10(1), 249–262.

    CAS  Google Scholar 

  53. Yao, Y., et al. (2020). Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell, 26(1), 17-26.e6. https://doi.org/10.1016/j.stem.2019.10.010

    Article  CAS  PubMed  Google Scholar 

  54. Smit, T., Calitz, C., Willers, C., Svitina, H., Hamman, J. H., Fey, S. J., Gouws, C., & Wrzesinski, K. (2020). Characterization of an alginate encapsulated LS180 spheroid model for anti-colorectal cancer compound screening. ACS Medicinal Chemistry Letters, 11(5), 1014–1021. https://doi.org/10.1021/acsmedchemlett.0c00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ramzy, G. M., Koessler, T., Ducrey, E., McKee, T., Ris, F., Buchs, N., Rubbia-Brandt, L., Dietrich, P.-Y., & Nowak-Sliwinska, P. (2020). Patient-derived in vitro models for drug discovery in colorectal carcinoma. Cancers, 12(6), 1423. https://doi.org/10.3390/cancers12061423. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mout, L., van Dessel, Kraan, J., Jong, Neves, R. P., Erkens-Schulze, S., Beaufort, C. M., Sieuwerts, A. M., van Riet, J., Woo, T., de Wit, R., Sleijfer, S., Hamberg, P., Sandberg, Y., te Boekhorst, P., Martens, J. W. M., Stoecklein, N. H., van Weerden & Lolkema, M. P. (2021). Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells. European Journal of Cancer, 150, 179–189. https://doi.org/10.1016/j.ejca.2021.03.023

  57. (2018). Metastatic prostate cancer. New England Journal of Medicine, 378(17), 1653–1654. https://doi.org/10.1056/nejmc1803343

  58. Wu, Q., Wei, X., Pan, Y., Zou, Y., Hu, N., & Wang, P. (2018). Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening. 20(4). https://doi.org/10.1007/s10544-018-0329-x

  59. Sachs, N., Papaspyropoulos, A., Zomer-van Ommen, D. D., Heo, I., Böttinger, L., Klay, D., Weeber, F., Huelsz-Prince, G., Iakobachvili, N., Amatngalim, G. D., de Ligt, J., van Hoeck, A., Proost, N., Viveen, M. C., Lyubimova, A., Teeven, L., Derakhshan, S., Korving, J., Begthel, H., & Dekkers, J. F. (2019). Long-term expanding human airway organoids for disease modeling. The EMBO journal, 38(4). https://doi.org/10.15252/embj.2018100300. [online].

  60. Mazzocchi, A., Devarasetty, M., Herberg, S., Petty, W. J., Marini, F., Miller, L., Kucera, G., Dukes, D. K., Ruiz, J., Skardal, A., & Soker, S. (2019). Pleural effusion aspirate for use in 3D lung cancer modeling and chemotherapy screening. ACS Biomaterials Science & Engineering, 5(4), 1937–1943. https://doi.org/10.1021/acsbiomaterials.8b01356

    Article  CAS  Google Scholar 

  61. Kim, M., Mun, H., Sung, C. O., Cho, E. J., Jeon, H.-J., Chun, S.-M., Jung, D. J., Shin, T. H., Jeong, G. S., Kim, D. K., Choi, E. K., Jeong, S.-Y., Taylor, A. M., Jain, S., Meyerson, M., & Jang, S. J. (2019). Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nature Communications, 10(1), 3991. https://doi.org/10.1038/s41467-019-11867-6. [online].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pauli, C., Puca, L., Emerling, B. M., Hopkins, B., Sboner, A., Elemento, O., Mosquera, J. M., Beltran, H., & Rubin, M. A. (2016). Abstract 619: Personalized models to guide precision medicine. Cancer Research, 76(14_Supplement), 619–619. https://doi.org/10.1158/1538-7445.am2016-619

    Article  Google Scholar 

  63. Ho, B., Pek, N., & Soh, B.-S. (2018). Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International Journal of Molecular Sciences, 19(4), 936. https://doi.org/10.3390/ijms19040936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lau, H. C. H., Kranenburg, O., Xiao, H., & Yu, J. (2020). Organoid models of gastrointestinal cancers in basic and translational research. Nature Reviews Gastroenterology & Hepatology, 17(4), 203–222. https://doi.org/10.1038/s41575-019-0255-2

    Article  Google Scholar 

  65. Horie, M., et al. (2012). Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model. Biochemical and Biophysical Research Communications, 423(1), 158–163. https://doi.org/10.1016/j.bbrc.2012.05.104

    Article  CAS  PubMed  Google Scholar 

  66. Salgueiredo-Giudice, F., et al. (2012). An in vitro study showing the three-dimensional microenvironment influence over the behavior of head and neck squamous cell carcinoma. Medicina Oral Patologia Oral Y Cirugia Bucal, e377–e382. https://doi.org/10.4317/medoral.17538. Accessed 26 Feb. 2024.

  67. Maru, Y., et al. (2019). Establishment and characterization of patient‐derived organoids from a young patient with cervical clear cell carcinoma. Cancer Science, 110(9), 2992–3005. https://www.onlinelibrary.wiley.com/doi/abs/10.1111/cas.14119. https://doi.org/10.1111/cas.14119. Accessed 6 Jan 2024

  68. Velasco, S, et al. (2019). Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 570(7762), 523–527. https://www.ncbi.nlm.nih.gov/pubmed/31168097. https://doi.org/10.1038/s41586-019-1289-x. Accessed 6 Jan 2024

Download references

Acknowledgements

This work was supported by Hebei Medical University and funded by National Natural Science Foundation of China (No. 81971474, 8197061369 and 82201953), General Program of China Postdoctoral Science Foundation (No. 2021M701036), Hebei Key R&D Program Project Special Project for the Construction of Beijing-Tianjin-Hebei Collaborative Innovation Community (No. 22347702D), and Key Project of Natural Science Foundation of Hebei Province (C2021206011).

Funding

The work was supported by grants from the National Natural Science Foundation of China (No. 81971474, 8197061369 and 82201953), General Program of China Postdoctoral Science Foundation (No. 2021M701036), Hebei Key R&D Program Project Special Project for the Construction of Beijing-Tianjin-Hebei Collaborative Innovation Community (No. 22347702D), and Key Project of Natural Science Foundation of Hebei Province (C2021206011).

Author information

Authors and Affiliations

Authors

Contributions

YJY performed the selection of literature, drafted the manuscript, and prepared the figures. YJY, JLC, YJK, and ZJG collected the related references. YH and YJY carried out the design of this review and revised the manuscript. All authors contributed to this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cuiqing Ma.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors have agreed to publish this manuscript.

Competing Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Kong, Y., Cui, J. et al. Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine. Stem Cell Rev and Rep (2024). https://doi.org/10.1007/s12015-024-10714-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12015-024-10714-6

Keywords

Navigation