Skip to main content

Advertisement

Log in

Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Pluripotent stem cells (PSCs) are widely recognized as one of the most promising types of stem cells for applications in regenerative medicine, tissue engineering, disease modeling, and drug screening. This is due to their unique ability to differentiate into cells from all three germ layers and their capacity for indefinite self-renewal. Initially, PSCs were cultured using animal feeder cells, but these systems presented several limitations, particularly in terms of Good Manufacturing Practices (GMP) regulations. As a result, feeder-free systems were introduced as a safer alternative. However, the precise mechanisms by which feeder cells support pluripotency are not fully understood. More importantly, it has been observed that some aspects of the need for feeder cells like the optimal density and cell type can vary depending on conditions such as the developmental stage of the PSCs, phases of the culture protocol, the method used in culture for induction of pluripotency, and intrinsic variability of PSCs. Thus, gaining a better understanding of the divergent roles and necessity of feeder cells in various conditions would lead to the development of condition-specific defined feeder-free systems that resolve the failure of current feeder-free systems in some conditions. Therefore, this review aims to explore considerable feeder-related issues that can lead to the development of condition-specific feeder-free systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

PSC:

Pluripotent stem cell

ESC:

Embryonic stem cell

iPSC:

Induced pluripotent stem cell

SSC:

Spermatogonial stem cell

VSEL:

Very small embryonic-like stem cell

MAPC:

multipotent adult progenitor cell

pGSC:

Pluripotent germline stem cell

GMP:

Good manufacturing practices

FGF:

Fibroblast growth factor

TGF-β:

Transforming growth factor

GDNF:

Glial cell line-derived neurotrophic factor

EGF:

Epidermal growth factor

LIF:

Leukemia inhibitory factor

ECM:

Extracellular Matrix

KSR:

Knockout serum replacement

MET:

Mesenchymal to epithelial transition

References

  1. Mills, R. J., Parker, B. L., Quaife-Ryan, G. A., Voges, H. K., Needham, E. J., Bornot, A., Ding, M., Andersson, H., Polla, M., & Elliott, D. A. (2019). Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell stem cell, 24(6), 895–907. e6.

    Article  CAS  PubMed  Google Scholar 

  2. Inoue, H., Nagata, N., Kurokawa, H., & Yamanaka, S. (2014). iPS cells: A game changer for future medicine. The EMBO Journal, 33(5), 409–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghaedi, M., Le, A. V., Hatachi, G., Beloiartsev, A., Rocco, K., Sivarapatna, A., Mendez, J. J., Baevova, P., Dyal, R. N., & Leiby, K. L. (2018). Bioengineered lungs generated from human i PSC s-derived epithelial cells on native extracellular matrix. Journal of Tissue Engineering and Regenerative Medicine, 12(3), e1623–e1635.

    Article  CAS  PubMed  Google Scholar 

  4. Khandany, B., Heidari, M. M., & Khatami, M. (2019). Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy. Iranian Journal of Pediatric Hematology and Oncology, 9(2), 117–130.

    Google Scholar 

  5. Fuchs, E., & Segre, J. A. (2000). Stem cells: A new lease on life. Cell, 100(1), 143–155.

    Article  CAS  PubMed  Google Scholar 

  6. Shah, A. A., & Khan, F. A. (2021). Types and classification of stem cells. Advances in Application of Stem Cells: from Bench to Clinics, 25–49.

  7. Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy—promise and challenges. Cell stem cell, 27(4), 523–531.

    Article  CAS  PubMed  Google Scholar 

  8. Rahmani, F., Movahedin, M., Mazaheri, Z., & Soleimani, M. (2019). Transplantation of mouse iPSCs into testis of azoospermic mouse model: In vivo and in vitro study. Artificial Cells Nanomedicine and Biotechnology, 47(1), 1585–1594.

    Article  CAS  PubMed  Google Scholar 

  9. Makoolati, Z., Movahedin, M., & Forouzandeh-Moghadam, M. (2016). In vitro germ cell differentiation from embryonic stem cells of mice: Induction control by BMP4 signalling. Bioscience Reports, 36(6), e00407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  11. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Eiselleova, L., Peterkova, I., Neradil, J., Slaninova, I., Hampl, A., & Dvorak, P. (2004). Comparative study of mouse and human feeder cells for human embryonic stem cells. International Journal of Developmental Biology, 52(4), 353–363.

    Article  Google Scholar 

  13. Bendall, S. C., Stewart, M. H., & Bhatia, M. (2008). Human Embryonic stem Cells: Lessons from stem cell Niches in vivo

  14. Klimanskaya, I., Chung, Y., Meisner, L., Johnson, J., West, M. D., & Lanza, R. (2005). Human embryonic stem cells derived without feeder cells. The Lancet, 365(9471), 1636–1641.

    Article  CAS  Google Scholar 

  15. Villa-Diaz, L., Ross, A., Lahann, J., & Krebsbach, P. (2013). Concise review: The evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. Stem Cells, 31(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  16. Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020). Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem cell Reviews and Reports, 16, 3–32.

    Article  PubMed  Google Scholar 

  17. Lannon, C., Moody, J., King, D., Thomas, T., Eaves, A., & Miller, C. (2008). A defined, feeder-independent medium for human embryonic stem cell culture. Cell Research, 18(1), S34–S34.

    Article  Google Scholar 

  18. Wang, Y., Chou, B. K., Dowey, S., He, C., Gerecht, S., & Cheng, L. (2013). Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem cell Research, 11(3), 1103–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ludwig, T. E., Levenstein, M. E., Jones, J. M., Berggren, W. T., Mitchen, E. R., Frane, J. L., Crandall, L. J., Daigh, C. A., Conard, K. R., & Piekarczyk, M. S. (2006). Derivation of human embryonic stem cells in defined conditions. Nature Biotechnology, 24(2), 185–187.

    Article  CAS  PubMed  Google Scholar 

  20. Allegrucci, C., Denning, C. N., Burridge, P., Steele, W., Sinclair, K. D., & Young, L. E. (2005). Human embryonic stem cells as a model for nutritional programming: An evaluation. Reproductive Toxicology, 20(3), 353–367.

    Article  CAS  PubMed  Google Scholar 

  21. Guo, R., Ye, X., Yang, J., Zhou, Z., Tian, C., Wang, H., Wang, H., Fu, H., Liu, C., & Zeng, M. (2018). Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells. Nature Communications, 9(1), 2620.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  22. Ullmann, U., In’t Veld, P., Gilles, C., Sermon, K., De Rycke, M., Van de Velde, H., Van Steirteghem, A., & Liebaers, I. (2007). Epithelial–mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Molecular Human Reproduction, 13(1), 21–32.

    Article  CAS  PubMed  Google Scholar 

  23. Hassani, S. N., Moradi, S., Taleahmad, S., Braun, T., & Baharvand, H. (2019). Transition of inner cell mass to embryonic stem cells: Mechanisms, facts, and hypotheses. Cellular and Molecular life Sciences, 76, 873–892.

    Article  CAS  PubMed  Google Scholar 

  24. O’leary, T., Heindryckx, B., Lierman, S., Van Bruggen, D., Goeman, J. J., Vandewoestyne, M., Deforce, D., de Sousa, S. M. C., Lopes, & De Sutter, P. (2012). Tracking the progression of the human inner cell mass during embryonic stem cell derivation. Nature Biotechnology, 30(3), 278–282.

    Article  PubMed  Google Scholar 

  25. Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., Lao, K., & Surani, M. A. (2010). Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell stem cell, 6(5), 468–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Darr, H., Mayshar, Y., & Benvenisty, N. (2006). Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features.

  27. Van der Jeught, M., O’Leary, T., Ghimire, S., Lierman, S., Duggal, G., Versieren, K., Deforce, D., Chuva de Sousa Lopes, S., Heindryckx, B., & De Sutter, P. (2013). The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4-and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells and Development, 22(2), 296–306.

    Article  PubMed  Google Scholar 

  28. Baharvand, H., Ashtiani, S. K., Taee, A., Massumi, M., Valojerdi, M. R., Yazdi, P. E., Moradi, S. Z., & Farrokhi, A. (2006). Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Development Growth & Differentiation, 48(2), 117–128.

    Article  Google Scholar 

  29. Van der Jeught, M., Heindryckx, B., O’Leary, T., Duggal, G., Ghimire, S., Lierman, S., Van Roy, N., Chuva de, S. M., Lopes, S., Deroo, T., & Deforce, D. (2014). Treatment of human embryos with the TGFβ inhibitor SB431542 increases epiblast proliferation and permits successful human embryonic stem cell derivation. Human Reproduction, 29(1), 41–48.

    Article  PubMed  Google Scholar 

  30. David, L., & Polo, J. M. (2014). Phases of reprogramming. Stem cell Research, 12(3), 754–761.

    Article  PubMed  Google Scholar 

  31. Hanna, J., Saha, K., Pando, B., Van Zon, J., Lengner, C. J., Creyghton, M. P., van Oudenaarden, A., & Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462(7273), 595–601.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Chen, M., Sun, X., Jiang, R., Shen, W., Zhong, X., Liu, B., Qi, Y., Huang, B., Xiang, A. P., & Ge, J. (2009). Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts. Cell Biology International, 33(12), 1268–1273.

    Article  CAS  PubMed  Google Scholar 

  33. Sugii, S., Kida, Y., Berggren, W. T., & Evans, R. M. (2011). Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nature Protocols, 6(3), 346–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guan, J., Wang, G., Wang, J., Zhang, Z., Fu, Y., Cheng, L., Meng, G., Lyu, Y., Zhu, J., & Li, Y. (2022). Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature, 605(7909), 325–331.

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Kim, H. J., Lee, H. J., Lim, J. J., Kwak, K. H., Kim, J. S., Kim, J. H., Han, Y. M., Kim, K. S., & Lee, D. R. (2010). Identification of an intermediate state as spermatogonial stem cells reprogram to multipotent cells. Molecules and Cells, 29, 519–526.

    Article  CAS  PubMed  Google Scholar 

  36. Youn, H., Kim, S. H., Choi, K. A., & Kim, S. (2013). Characterization of Oct4-GFP spermatogonial stem cell line and its application in the reprogramming studies. Journal of Cellular Biochemistry, 114(4), 920–928.

    Article  CAS  PubMed  Google Scholar 

  37. Zahiri, M., Movahedin, M., Mowla, S. J., Noruzinia, M., Koruji, M., Nowroozi, M. R., & Asgari, F. (2022). Genetic and epigenetic evaluation of human spermatogonial stem cells isolated by MACS in different two and three-dimensional culture systems. Cell Journal (Yakhteh), 24(8), 481.

    Google Scholar 

  38. Kanatsu-Shinohara, M., Inoue, K., Lee, J., Yoshimoto, M., Ogonuki, N., Miki, H., Baba, S., Kato, T., Kazuki, Y., & Toyokuni, S. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119(7), 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  39. Conrad, S., Renninger, M., Hennenlotter, J., Wiesner, T., Just, L., Bonin, M., Aicher, W., Bühring, H. J., Mattheus, U., & Mack, A. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456(7220), 344–349.

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Azimi, A., Mazaheri, Z., & Movahedin, M. (2017). Production of embryonic stem like-cells from neonatal mouse testis after exposure to low-intensity ultrasound. Pathobiology Research, 20(3), 49–60.

    Google Scholar 

  41. Zhang, S., Sun, J., Pan, S., Zhu, H., Wang, L., Hu, Y., Wang, J., Wang, F., Cao, H., & Yan, X. (2011). Retinol (vitamin A) maintains self-renewal of pluripotent male germline stem cells (mGSCs) from adult mouse testis. Journal of Cellular Biochemistry, 112(4), 1009–1021.

    Article  CAS  PubMed  Google Scholar 

  42. Nazm Bojnordi, M., Movahedin, M., Tiraihi, T., & Javan, M. (2013). Alteration in genes expression patterns during in vitro differentiation of mouse spermatogonial cells into neuroepithelial-like cells. Cytotechnology, 65, 97–104.

    Article  CAS  PubMed  Google Scholar 

  43. Bojnordi, M. N., Azizi, H., Skutella, T., Movahedin, M., Pourabdolhossein, F., Shojaei, A., & Hamidabadi, H. G. (2017). Differentiation of spermatogonia stem cells into functional mature neurons characterized with differential gene expression. Molecular Neurobiology, 54, 5676–5682.

    Article  CAS  PubMed  Google Scholar 

  44. Lee, S. W., Wu, G., Choi, N. Y., Lee, H. J., Bang, J. S., Lee, Y., Lee, M., Ko, K., Schöler, H. R., & Ko, K. (2018). Self-reprogramming of spermatogonial stem cells into pluripotent stem cells without microenvironment of feeder cells. Molecules and Cells, 41(7), 631.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hai, Y., Hou, J., Liu, Y., Liu, Y., Yang, H., Li, Z., & He, Z. (2014). The roles and regulation of sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Seminars in cell & developmental biology. Elsevier.

  46. Bojnordi, M. N., Movahedin, M., Tiraihi, T., & Javan, M. (2012). A simple co-culture system for generation of embryonic stem-like cells from testis. Iranian Red Crescent Medical Journal, 14(12), 811.

    Article  Google Scholar 

  47. Giritharan, G., Ilic, D., Gormley, M., & Krtolica, A. (2011). Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS One, 6(10), e26570.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Lorthongpanich, C., Yang, S. H., Piotrowska-Nitsche, K., Parnpai, R., & Chan, A. W. (2008). Chemical enhancement in embryo development and stem cell derivation from single blastomeres. Cloning and Stem Cells, 10(4), 503–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geens, M., Mateizel, I., Sermon, K., De Rycke, M., Spits, C., Cauffman, G., Devroey, P., Tournaye, H., & Liebaers, I. (2009). Van De Velde, Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Human Reproduction, 24(11), 2709–2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taei, A., Hassani, S. N., Eftekhari-Yazdi, P., Rezazadeh Valojerdi, M., Nokhbatolfoghahai, M., Masoudi, N. S., Pakzad, M., Gourabi, H., & Baharvand, H. (2013). Enhanced generation of human embryonic stem cells from single blastomeres of fair and poor-quality cleavage embryos via inhibition of glycogen synthase kinase β and rho-associated kinase signaling. Human Reproduction, 28(10), 2661–2671.

    Article  CAS  PubMed  Google Scholar 

  51. Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., & Lanza, R. (2007). Derivation of human embryonic stem cells from single blastomeres. Nature Protocols, 2(8), 1963–1972.

    Article  CAS  PubMed  Google Scholar 

  52. Chung, Y., Klimanskaya, I., Becker, S., Li, T., Maserati, M., Lu, S. J., Zdravkovic, T., Ilic, D., Genbacev, O., & Fisher, S. (2008). Human embryonic stem cell lines generated without embryo destruction. Cell stem cell, 2(2), 113–117.

    Article  CAS  PubMed  Google Scholar 

  53. Ilic, D., Giritharan, G., Zdravkovic, T., Caceres, E., Genbacev, O., Fisher, S. J., & Krtolica, A. (2009). Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells and Development, 18(9), 1343–1350.

    Article  CAS  PubMed  Google Scholar 

  54. Rodin, S., Antonsson, L., Niaudet, C., Simonson, O. E., Salmela, E., Hansson, E. M., Domogatskaya, A., Xiao, Z., Damdimopoulou, P., & Sheikhi, M. (2014). Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature Communications, 5(1), 3195.

    Article  PubMed  ADS  Google Scholar 

  55. Beltrami, A. P., Cesselli, D., Bergamin, N., Marcon, P., Rigo, S., Puppato, E., D’Aurizio, F., Verardo, R., Piazza, S., & Pignatelli, A. (2007). Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood the Journal of the American Society of Hematology, 110(9), 3438–3446.

    CAS  Google Scholar 

  56. Kucia, M. J., Wysoczynski, M., Wu, W., Zuba-Surma, E. K., Ratajczak, J., & Ratajczak, M. Z. (2008). Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells, 26(8), 2083–2092.

    Article  CAS  PubMed  Google Scholar 

  57. Ratajczak, M., Zuba-Surma, E., Wojakowski, W., Suszynska, M., Mierzejewska, K., Liu, R., Ratajczak, J., Shin, D., & Kucia, M. (2014). Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: Recent pros and cons in the midst of a lively debate. Leukemia, 28(3), 473–484.

    Article  CAS  PubMed  Google Scholar 

  58. Ratajczak, M. Z., Zuba-Surma, E. K., Wysoczynski, M., Wan, W., Ratajczak, J., Wojakowski, W., & Kucia, M. (2008). Hunt for pluripotent stem cell–regenerative medicine search for almighty cell. Journal of Autoimmunity, 30(3), 151–162.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jacobs, S. A., Roobrouck, V. D., Verfaillie, C. M., & Van Gool, S. W. (2013). Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunology and cell Biology, 91(1), 32–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dan, Y. Y., Riehle, K., Lazaro, C., Teoh, N., Haque, J., Campbell, J. S., & Fausto, N. (2006). Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proceedings of the National Academy of Sciences, 103(26), p. 9912–9917.

  61. Mareschi, K., Rustichelli, D., Calabrese, R., Gunetti, M., Sanavio, F., Castiglia, S., Risso, A., Ferrero, I., Tarella, C., & Fagioli, F. (2012). Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use. Stem Cells International, 2012.

  62. Price, E. M., Prather, R. S., & Foley, C. M. (2006). Multipotent adult progenitor cell lines originating from the peripheral blood of green fluorescent protein transgenic swine. Stem Cells and Development, 15(4), 507–522.

    Article  PubMed  Google Scholar 

  63. Jahagirdar, B. N., & Verfaillie, C. (2005). Multipotent adult progenitor cell and stem cell plasticity. Stem cell Reviews, 1(1), 53–59.

    Article  CAS  PubMed  Google Scholar 

  64. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs) an update and future directions. Circulation Research, 124(2), 208–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Los Angeles, A., Loh, Y. H., Tesar, P. J., & Daley, G. Q. (2012). Accessing naive human pluripotency. Current Opinion in Genetics & Development, 22(3), 272–282.

    Article  Google Scholar 

  66. Hassani, S. N., Pakzad, M., Asgari, B., Taei, A., & Baharvand, H. (2014). Suppression of transforming growth factor β signaling promotes ground state pluripotency from single blastomeres. Human Reproduction, 29(8), 1739–1748.

    Article  CAS  PubMed  Google Scholar 

  67. Kiani, M., Movahedin, M., Halvaei, I., & Soleimani, M. (2023). In vitro differentiation of primed human induced pluripotent stem cells into primordial germ cell-like cells. Molecular Biology Reports, 50(3), 1971–1979.

    Article  CAS  PubMed  Google Scholar 

  68. Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith, A., & Nichols, J. (2016). Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem cell Reports, 6(4), 437–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Szczerbinska, I., Gonzales, K. A. U., Cukuroglu, E., Ramli, M. N. B., Lee, B. P. G., Tan, C. P., Wong, C. K., Rancati, G. I., Liang, H., & Göke, J. (2019). A chemically defined feeder-free system for the establishment and maintenance of the human naive pluripotent state. Stem cell Reports, 13(4), 612–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zorzan, I., Betto, R. M., Rossignoli, G., Arboit, M., Drusin, A., Corridori, C., Martini, P., & Martello, G. (2023). Chemical conversion of human conventional PSCs to TSCs following transient naive gene activation. EMBO Reports, 24(4), e55235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Giulitti, S., Pellegrini, M., Zorzan, I., Martini, P., Gagliano, O., Mutarelli, M., Ziller, M. J., Cacchiarelli, D., Romualdi, C., & Elvassore, N. (2019). Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nature cell Biology, 21(2), 275–286.

    Article  CAS  PubMed  Google Scholar 

  72. Romayor, I., Herrera, L., Burón, M., Martin-Inaraja, M., Prieto, L., Etxaniz, J., Inglés-Ferrándiz, M., Pineda, J. R., & Eguizabal, C. (2022). A comparative study of Cell Culture conditions during Conversion from Primed to Naive Human pluripotent stem cells. Biomedicines, 10(6), 1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bayerl, J., Ayyash, M., Shani, T., Manor, Y. S., Gafni, O., Massarwa, R., Kalma, Y., Aguilera-Castrejon, A., Zerbib, M., & Amir, H. (2021). Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell stem cell, 28(9), 1549–1565. e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng, R., Geng, T., Wu, D. Y., Zhang, T., He, H. N., Du, H. N., Zhang, D., Miao, Y. L., & Jiang, W. (2021). Derivation of feeder-free human extended pluripotent stem cells. Stem cell Reports, 16(7), 1686–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu, J., Chau, K. F., Vodyanik, M. A., Jiang, J., & Jiang, Y. (2011). Efficient feeder-free episomal reprogramming with small molecules. PLoS One, 6(3), e17557.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. MacArthur, C. C., Fontes, A., Ravinder, N., Kuninger, D., Kaur, J., Bailey, M., Taliana, A., Vemuri, M. C., & Lieu, P. T. (2012). Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem Cells International, 2012.

  77. Warren, L., Ni, Y., Wang, J., & Guo, X. (2012). Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Scientific Reports, 2(1), 657.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  78. Richards, M., Fong, C. Y., Chan, W. K., Wong, P. C., & Bongso, A. (2002). Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nature Biotechnology, 20(9), 933–936.

    Article  CAS  PubMed  Google Scholar 

  79. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., & Carpenter, M. K. (2001). Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 19(10), 971–974.

    Article  CAS  PubMed  Google Scholar 

  80. Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., & Carpenter, M. K. (2004). Itskovitz-Eldor, differences between human and mouse embryonic stem cells. Developmental Biology, 269(2), 360–380.

    Article  CAS  PubMed  Google Scholar 

  81. Galvin-Burgess, K. E., Travis, E. D., Pierson, K. E., & Vivian, J. L. (2013). TGF-β-superfamily signaling regulates embryonic stem cell heterogeneity: Self-renewal as a dynamic and regulated equilibrium. Stem Cells, 31(1), 48–58.

    Article  CAS  PubMed  Google Scholar 

  82. Teotia, P., Mohanty, S., Kabra, M., Gulati, S., & Airan, B. (2015). Enhanced reprogramming efficiency and kinetics of induced pluripotent stem cells derived from human duchenne muscular dystrophy. PLoS Currents, 7.

  83. Mohamed, A., Chow, T., Whiteley, J., Fantin, A., Sorra, K., Hicks, R., & Rogers, I. M. (2021). Umbilical cord tissue as a source of young cells for the derivation of induced pluripotent stem cells using non-integrating episomal vectors and feeder-free conditions. Cells, 10(1), 49.

    Article  CAS  Google Scholar 

  84. Takahashi, K., Narita, M., Yokura, M., Ichisaka, T., & Yamanaka, S. (2009). Human induced pluripotent stem cells on autologous feeders. PLoS One, 4(12), e8067.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  85. Hua, Y., Yoshimochi, K., Li, J., Takekita, K., Shimotsuma, M., Li, L., Qu, X., Zhang, J., Sawa, Y., & Liu, L. (2022). Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem cell Research & Therapy, 13(1), 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No funding was received to assist with the preparation of this manuscript.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Bardia Khandani suggested the concept, designed the outline, collected and analyzed the data and wrote the manuscript. Mansoureh Movahedin contributed to the study conception and revised the manuscript with her scientific inputs. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mansoureh Movahedin.

Ethics declarations

Conflicts of Interest/Competing Interests

Authors of this article have no conflict of interest to disclose. Authors declare that they have no financial or non-financial competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandani, B., Movahedin, M. Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems. Stem Cell Rev and Rep 20, 484–494 (2024). https://doi.org/10.1007/s12015-023-10662-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10662-7

Keywords

Navigation