Skip to main content

Advertisement

Log in

Potential Application of Intestinal Organoids in Intestinal Diseases

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

To accurately reveal the scenario and mecahnism of gastrointestinal diseases, the establishment of in vitro models of intestinal diseases and drug screening platforms have become the focus of attention. Over the past few decades, animal models and immortalized cell lines have provided valuable but limited insights into gastrointestinal research. In recent years, the development of intestinal organoid culture system has revolutionized in vitro studies of intestinal diseases. Intestinal organoids are derived from self-renewal and self-organization intestinal stem cells (ISCs), which can replicate the genetic characteristics, functions, and structures of the original tissues. Consequently, they provide new stragety for studying various intestinal diseases in vitro. In the review, we will discuss the culture techniques of intestinal organoids and describe the use of intestinal organoids as research tools for intestinal diseases. The role of intestinal epithelial cells (IECs) played in the pathogenesis of inflammatory bowel diseases (IBD) and the treatment of intestinal epithelial dysfunction will be highlighted. Besides, we review the current knowledge on using intestinal organoids as models to study the pathogenesis of IBD caused by epithelial dysfunction and to develop new therapeutic approaches. Finally, we shed light on the current challenges of using intestinal organoids as in vitro models.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

None declared.

References

  1. Turner, J. R. (2009). Intestinal mucosal barrier function in health and disease. Nature Reviews. Immunology, 9, 799–809.

    Article  CAS  PubMed  Google Scholar 

  2. Foley, K. E. (2017). Organoids: A better in vitro model. Nature Methods, 14, 559–562.

    Article  CAS  PubMed  Google Scholar 

  3. Dutta, D., Heo, I., & Clevers, H. (2017). Disease modeling in stem cell-derived 3D organoid systems. Trends in Molecular Medicine, 23, 393–410.

    Article  CAS  PubMed  Google Scholar 

  4. Huch, M., Knoblich, J. A., Lutolf, M. P., et al. (2017). The hope and the hype of organoid research. Development (Cambridge, England), 144, 938–941.

    Article  CAS  PubMed  Google Scholar 

  5. Date, S., & Sato, T. (2015). Mini-gut organoids: Reconstitution of the stem cell niche. Annual Review of Cell and Developmental Biology, 31, 269–289.

    Article  CAS  PubMed  Google Scholar 

  6. Stanifer, M. L., & Boulant, S. (2021). Adapting gastrointestinal organoids for pathogen infection and single cell sequencing under biosafety level 3 (BSL-3) conditions. Journal of visualized experiments: JoVE, e62857.

  7. Yin, Y., Liu, P. Y., Shi, Y., et al. (2021). Single-cell sequencing and organoids: A powerful combination for modelling organ development and diseases. Reviews of Physiology, Biochemistry and Pharmacology, 179, 189–210.

    Article  CAS  PubMed  Google Scholar 

  8. Ramakrishna, G., Babu, P. E., Singh, R., et al. (2021). Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids. Hepatology International, 15, 1309–1317.

    Article  PubMed  Google Scholar 

  9. Zhou, H., Wang, Y., Liu, L. P., et al. (2021). Gene editing in pluripotent stem cells and their derived organoids. Stem Cells International, 2021, 8130828.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Osaki, T., Sivathanu, V., & Kamm, R. D. (2018). Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering. Current Opinion in Biotechnology, 52, 116–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dekkers, J. F., Wiegerinck, C. L., de Jonge, H. R., et al. (2013). A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Medicine, 19, 939–945.

    Article  CAS  PubMed  Google Scholar 

  12. Garcez, P. P., Loiola, E. C., Madeiro da Costa, R., et al. (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science (New York, N.Y.), 352, 816–818.

    Article  CAS  PubMed  Google Scholar 

  13. Bouchi, R., Foo, K. S., Hua, H., et al. (2014). FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nature Communications, 5, 4242.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, K. G., Mallon, B. S., Park, K., et al. (2018). Pluripotent stem cell platforms for drug discovery. Trends in Molecular Medicine, 24, 805–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, F., Huang, J., Ning, B., et al. (2016). Drug discovery via human-derived stem cell organoids. Frontiers in Pharmacology, 7, 334.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Leslie, J. L., Huang, S., Opp, J. S., et al. (2015). Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infection and Immunity, 83, 138–145.

    Article  PubMed  Google Scholar 

  17. Mittal, R., Woo, F. W., Castro, C. S., et al. (2019). Organ-on-chip models: Implications in drug discovery and clinical applications. Journal of Cellular Physiology, 234, 8352–8380.

    Article  CAS  PubMed  Google Scholar 

  18. Davoudi, Z., Peroutka-Bigus, N., Bellaire, B., et al. (2018). Intestinal organoids containing poly(lactic-co-glycolic acid) nanoparticles for the treatment of inflammatory bowel diseases. Journal of Biomedical Materials Research. Part A, 106, 876–886.

    Article  CAS  PubMed  Google Scholar 

  19. Peng, H., Wang, C., Xu, X., et al. (2015). An intestinal Trojan horse for gene delivery. Nanoscale, 7, 4354–4360.

    Article  CAS  PubMed  Google Scholar 

  20. Pleguezuelos-Manzano, C., Puschhof, J., van den Brink, S., et al. (2020). Establishment and culture of human intestinal organoids derived from adult stem cells. Current Protocols in Immunology, 130, e106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, C. T., Bendriem, R. M., Wu, W. W., et al. (2017). 3D brain Organoids derived from pluripotent stem cells: Promising experimental models for brain development and neurodegenerative disorders. Journal of Biomedical Science, 24, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Broutier, L., Andersson-Rolf, A., Hindley, C. J., et al. (2016). Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 11, 1724–1743.

    Article  CAS  PubMed  Google Scholar 

  23. Takasato, M., Er, P. X., Becroft, M., et al. (2014). Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nature Cell Biology, 16, 118–126.

    Article  CAS  PubMed  Google Scholar 

  24. Sato, T., Vries, R. G., Snippert, H. J., et al. (2009). Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 459, 262–265.

    Article  CAS  PubMed  Google Scholar 

  25. Barker, N., van Es, J. H., Kuipers, J., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449, 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  26. de Poel, E., Lefferts, J. W., & Beekman, J. M. (2020). Intestinal organoids for cystic fibrosis research. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, 19(Suppl 1), S60-s64.

    Article  PubMed  Google Scholar 

  27. Lee, C., Hong, S. N., Kim, E. R., et al. (2021). Epithelial regeneration ability of Crohn's disease assessed using patient-derived intestinal organoids. International Journal of Molecular Sciences, 22, 6013.

  28. Szvicsek, Z., Oszvald, Á., Szabó, L., et al. (2019). Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cellular and Molecular Life Sciences: CMLS, 76, 2463–2476.

    Article  CAS  PubMed  Google Scholar 

  29. Tsuruta, S., Uchida, H., & Akutsu, H. (2020). Intestinal organoids generated from human pluripotent stem cells. JMA Journal, 3, 9–19.

    PubMed  Google Scholar 

  30. Middendorp, S., Schneeberger, K., Wiegerinck, C. L., et al. (2014). Adult stem cells in the small intestine are intrinsically programmed with their location-specific function. Stem Cells (Dayton, Ohio), 32, 1083–1091.

    Article  CAS  PubMed  Google Scholar 

  31. Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: modeling development and disease using organoid technologies. Science (New York, N.Y.), 345, 1247125.

    Article  PubMed  Google Scholar 

  32. Rezakhani, S., Gjorevski, N., & Lutolf, M. P. (2021). Extracellular matrix requirements for gastrointestinal organoid cultures. Biomaterials, 276, 121020.

    Article  CAS  PubMed  Google Scholar 

  33. Almeqdadi, M., Mana, M. D., Roper, J., et al. (2019). Gut organoids: Mini-tissues in culture to study intestinal physiology and disease. American Journal of Physiology. Cell Physiology, 317, C405-c419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Artegiani, B., & Clevers, H. (2018). Use and application of 3D-organoid technology. Human Molecular Genetics, 27, R99-r107.

    Article  CAS  PubMed  Google Scholar 

  35. Kriz, V, & Korinek, V. (2018). Wnt, RSPO and Hippo signalling in the intestine and intestinal stem cells. Genes (Basel), 9, 20.

  36. Fujii, M., Matano, M., Nanki, K., et al. (2015). Efficient genetic engineering of human intestinal organoids using electroporation. Nature Protocols, 10, 1474–1485.

    Article  CAS  PubMed  Google Scholar 

  37. Sato, T., Stange, D. E., Ferrante, M., et al. (2011). Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 141, 1762–1772.

    Article  CAS  PubMed  Google Scholar 

  38. Fujii, M., Matano, M., Toshimitsu, K., et al. (2018). Human intestinal organoids maintain self-renewal capacity and cellular diversity in niche-inspired culture condition. Cell Stem Cell, 23, 787-793.e786.

    Article  CAS  PubMed  Google Scholar 

  39. Yui, S., Nakamura, T., Sato, T., et al. (2012). Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nature Medicine, 18, 618–623.

    Article  CAS  PubMed  Google Scholar 

  40. Leushacke, M., & Barker, N. (2014). Ex vivo culture of the intestinal epithelium: Strategies and applications. Gut, 63, 1345–1354.

    Article  CAS  PubMed  Google Scholar 

  41. Merker, S. R., Weitz, J., & Stange, D. E. (2016). Gastrointestinal organoids: How they gut it out. Developmental Biology, 420, 239–250.

    Article  CAS  PubMed  Google Scholar 

  42. Mahe, M. M., Sundaram, N., Watson, C. L., et al. (2015). Establishment of human epithelial enteroids and colonoids from whole tissue and biopsy. Journal of Visualized Experiments: JoVE, e52483.

  43. Tsakmaki, A., Fonseca Pedro, P., & Bewick, G. A. (2017). 3D intestinal organoids in metabolic research: Virtual reality in a dish. Current Opinion in Pharmacology, 37, 51–58.

    Article  CAS  PubMed  Google Scholar 

  44. Zachos, N. C., Kovbasnjuk, O., Foulke-Abel, J., et al. (2016). Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. The Journal of Biological Chemistry, 291, 3759–3766.

    Article  CAS  PubMed  Google Scholar 

  45. Spence, J. R., Mayhew, C. N., Rankin, S. A., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470, 105–109.

    Article  PubMed  Google Scholar 

  46. McCracken, K. W., Howell, J. C., Wells, J. M., et al. (2011). Generating human intestinal tissue from pluripotent stem cells in vitro. Nature Protocols, 6, 1920–1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wells, J. M., & Spence, J. R. (2014). How to make an intestine. Development (Cambridge, England), 141, 752–760.

    Article  CAS  PubMed  Google Scholar 

  48. Hynds, R. E., Bonfanti, P., & Janes, S. M. (2018). Regenerating human epithelia with cultured stem cells: Feeder cells, organoids and beyond. EMBO Molecular Medicine, 10, 139–150.

    Article  CAS  PubMed  Google Scholar 

  49. Dedhia, P. H., Bertaux-Skeirik, N., Zavros, Y., et al. (2016). Organoid models of human gastrointestinal development and disease. Gastroenterology, 150, 1098–1112.

    Article  PubMed  Google Scholar 

  50. Foulke-Abel, J., In, J., Kovbasnjuk, O., et al. (2014). Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Experimental Biology and Medicine (Maywood, N.J.), 239, 1124–1134.

    Article  PubMed  Google Scholar 

  51. Zietek, T., Rath, E., Haller, D., et al. (2015). Intestinal organoids for assessing nutrient transport, sensing and incretin secretion. Scientific Reports, 5, 16831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jung, P., Sato, T., Merlos-Suárez, A., et al. (2011). Isolation and in vitro expansion of human colonic stem cells. Nature Medicine, 17, 1225–1227.

    Article  CAS  PubMed  Google Scholar 

  53. Watson, C. L., Mahe, M. M., Munera, J., et al. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine, 20, 1310–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Finkbeiner, S. R., Hill, D. R., Altheim, C. H., et al. (2015). Transcriptome-wide analysis reveals hallmarks of human intestine development and maturation in vitro and in vivo. Stem Cell Reports, 4, 1140–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Finkbeiner, S. R., Freeman, J. J., Wieck, M. M., et al. (2015). Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biology Open, 4, 1462–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cruz-Acuña, R., Quirós, M., Farkas, A. E., et al. (2017). Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nature Cell Biology, 19, 1326–1335.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Workman, M. J., Mahe, M. M., Trisno, S., et al. (2017). Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nature Medicine, 23, 49–59.

    Article  CAS  PubMed  Google Scholar 

  58. Tsai, Y. H., Nattiv, R., Dedhia, P. H., et al. (2017). In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development (Cambridge, England), 144, 1045–1055.

    CAS  PubMed  Google Scholar 

  59. Sugimoto, S., Kobayashi, E., Fujii, M., et al. (2021). An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature, 592, 99–104.

    CAS  PubMed  Google Scholar 

  60. Kozuka, K., He, Y., Koo-McCoy, S., et al. (2017). Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Reports, 9, 1976–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Du, Y., Li, X., Niu, Q., et al. (2020). Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. Journal of Molecular Cell Biology, 12, 630–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Norkin, M., Ordóñez-Morán, P., & Huelsken, J. (2021). High-content, targeted RNA-seq screening in organoids for drug discovery in colorectal cancer. Cell Reports, 35, 109026.

    Article  CAS  PubMed  Google Scholar 

  63. Hirokawa, Y., Clarke, J., Palmieri, M., et al. (2021). Low-viscosity matrix suspension culture enables scalable analysis of patient-derived organoids and tumoroids from the large intestine. Communications Biology, 4, 1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weeber, F., van de Wetering, M., Hoogstraat, M., et al. (2015). Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proceedings of the National Academy of Sciences of the United States of America, 112, 13308–13311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van de Wetering, M., Francies, H. E., Francis, J. M., et al. (2015). Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 161, 933–945.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhao, Q., Guan, J., & Wang, X. (2020). Intestinal stem cells and intestinal organoids. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 47, 289–299.

    Article  PubMed  Google Scholar 

  67. Schwank, G., Koo, B. K., Sasselli, V., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13, 653–658.

    Article  CAS  PubMed  Google Scholar 

  68. Matano, M., Date, S., Shimokawa, M., et al. (2015). Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nature Medicine, 21, 256–262.

    Article  CAS  PubMed  Google Scholar 

  69. Ettayebi, K., Crawford, S. E., Murakami, K., et al. (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science (New York, N.Y.), 353, 1387–1393.

    Article  PubMed  Google Scholar 

  70. Finkbeiner, S. R., Zeng, X. L., Utama, B., et al. (2012). Stem cell-derived human intestinal organoids as an infection model for rotaviruses. mBio, 3, e00159-00112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Engevik, M. A., Yacyshyn, M. B., Engevik, K. A., et al. (2015). Human Clostridium difficile infection: altered mucus production and composition. American Journal of Physiology. Gastrointestinal and Liver Physiology, 308, G510-524.

    Article  CAS  PubMed  Google Scholar 

  72. Wilson, S. S., Tocchi, A., Holly, M. K., et al. (2015). A small intestinal organoid model of non-invasive enteric pathogen-epithelial cell interactions. Mucosal Immunology, 8, 352–361.

    Article  CAS  PubMed  Google Scholar 

  73. Fujii, M., & Sato, T. (2021). Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nature Materials, 20, 156–169.

    Article  CAS  PubMed  Google Scholar 

  74. Schirbel, A., & Fiocchi, C. (2010). Inflammatory bowel disease: Established and evolving considerations on its etiopathogenesis and therapy. Journal of Digestive Diseases, 11, 266–276.

    Article  PubMed  Google Scholar 

  75. Scaldaferri, F., & Fiocchi, C. (2007). Inflammatory bowel disease: Progress and current concepts of etiopathogenesis. Journal of Digestive Diseases, 8, 171–178.

    Article  CAS  PubMed  Google Scholar 

  76. Graham, D. B., & Xavier, R. J. (2020). Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature, 578, 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pastorelli, L., De Salvo, C., Mercado, J. R., et al. (2013). Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: Lessons learned from animal models and human genetics. Frontiers in Immunology, 4, 280.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sturm, A., & Dignass, A. U. (2008). Epithelial restitution and wound healing in inflammatory bowel disease. World Journal of Gastroenterology, 14, 348–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sinha, A., Nightingale, J., West, K. P., et al. (2003). Epidermal growth factor enemas with oral mesalamine for mild-to-moderate left-sided ulcerative colitis or proctitis. The New England Journal of Medicine, 349, 350–357.

    Article  CAS  PubMed  Google Scholar 

  80. Numata, M., Ido, A., Moriuchi, A., et al. (2005). Hepatocyte growth factor facilitates the repair of large colonic ulcers in 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats. Inflammatory Bowel Diseases, 11, 551–558.

    Article  PubMed  Google Scholar 

  81. Buchman, A. L., Katz, S., Fang, J. C., et al. (2010). Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn’s disease. Inflammatory Bowel Diseases, 16, 962–973.

    Article  PubMed  Google Scholar 

  82. Pickert, G., Neufert, C., Leppkes, M., et al. (2009). STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. The Journal of Experimental Medicine, 206, 1465–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pelczar, P., Witkowski, M., Perez, L. G., et al. (2016). A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science (New York, N.Y.), 354, 358–362.

    Article  CAS  PubMed  Google Scholar 

  84. Kong, J., Zhang, Z., Musch, M. W., et al. (2008). Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology, 294, G208-216.

    Article  CAS  PubMed  Google Scholar 

  85. Braniste, V., Leveque, M., Buisson-Brenac, C., et al. (2009). Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. The Journal of Physiology, 587, 3317–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen, L., Wang, J., You, Q., et al. (2018). Activating AMPK to restore tight junction assembly in intestinal epithelium and to attenuate experimental colitis by metformin. Frontiers in Pharmacology, 9, 761.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews. Immunology, 14, 141–153.

    Article  CAS  PubMed  Google Scholar 

  88. Tytgat, K. M., van der Wal, J. W., Einerhand, A. W., et al. (1996). Quantitative analysis of MUC2 synthesis in ulcerative colitis. Biochemical and Biophysical Research Communications, 224, 397–405.

    Article  CAS  PubMed  Google Scholar 

  89. Van der Sluis, M., De Koning, B. A., De Bruijn, A. C., et al. (2006). Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology, 131, 117–129.

    Article  PubMed  Google Scholar 

  90. Mashimo, H., Wu, D. C., Podolsky, D. K., et al. (1996). Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science (New York, N.Y.), 274, 262–265.

    Article  CAS  PubMed  Google Scholar 

  91. Taupin, D., & Podolsky, D. K. (2003). Trefoil factors: Initiators of mucosal healing. Nature Reviews. Molecular Cell Biology, 4, 721–732.

    Article  CAS  PubMed  Google Scholar 

  92. Yu, K., Lujan, R., Marmorstein, A., et al. (2010). Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. The Journal of Clinical Investigation, 120, 1722–1735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ito, G., Okamoto, R., Murano, T., et al. (2013). Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells. PLoS ONE, 8, e79693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vaishnava, S., Yamamoto, M., Severson, K. M., et al. (2011). The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science (New York, N.Y.), 334, 255–258.

    Article  CAS  PubMed  Google Scholar 

  95. Salzman, N. H., Underwood, M. A., & Bevins, C. L. (2007). Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Seminars in Immunology, 19, 70–83.

    Article  CAS  PubMed  Google Scholar 

  96. Clevers, H. C., & Bevins, C. L. (2013). Paneth cells: Maestros of the small intestinal crypts. Annual Review of Physiology, 75, 289–311.

    Article  CAS  PubMed  Google Scholar 

  97. Cadwell, K., Liu, J. Y., Brown, S. L., et al. (2008). A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature, 456, 259–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wehkamp, J., Harder, J., Weichenthal, M., et al. (2004). NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut, 53, 1658–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Adolph, T. E., Tomczak, M. F., Niederreiter, L., et al. (2013). Paneth cells as a site of origin for intestinal inflammation. Nature, 503, 272–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stremmel, W., Hanemann, A., Ehehalt, R., et al. (2010). Phosphatidylcholine (lecithin) and the mucus layer: Evidence of therapeutic efficacy in ulcerative colitis? Digestive Diseases (Basel, Switzerland), 28, 490–496.

    Article  PubMed  Google Scholar 

  101. López-Cauce, B., Puerto, M., García, J. J., et al. (2023). Akkermansia deficiency and mucin depletion are implicated in intestinal barrier dysfunction as earlier event in the development of inflammation in interleukin-10-deficient mice. Frontiers in Microbiology, 13, 1083884.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Herrera-deGuise, C., Varela, E., Sarrabayrouse, G., et al. (2023). Gut microbiota composition in long-remission ulcerative colitis is close to a healthy gut microbiota. Inflammatory Bowel Diseases, 29, 1362–1369.

    Article  PubMed  Google Scholar 

  103. Otte, J. M., Cario, E., & Podolsky, D. K. (2004). Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology, 126, 1054–1070.

    Article  CAS  PubMed  Google Scholar 

  104. Yoshimatsu, Y., Mikami, Y., & Kanai, T. (2021). Bacteriotherapy for inflammatory bowel disease. Inflammation and Regeneration, 41, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chang, J. T. (2020). Pathophysiology of inflammatory bowel diseases. The New England Journal of Medicine, 383, 2652–2664.

    Article  CAS  PubMed  Google Scholar 

  106. Roda, G., Sartini, A., Zambon, E., et al. (2010). Intestinal epithelial cells in inflammatory bowel diseases. World Journal of Gastroenterology, 16, 4264–4271.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Dotan, I., Allez, M., Nakazawa, A., et al. (2007). Intestinal epithelial cells from inflammatory bowel disease patients preferentially stimulate CD4+ T cells to proliferate and secrete interferon-gamma. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292, G1630-1640.

    Article  CAS  PubMed  Google Scholar 

  108. Kollmann, C., Buerkert, H., Meir, M., et al. (2023). Human organoids are superior to cell culture models for intestinal barrier research. Frontiers in Cell and Developmental Biology, 11, 1223032.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Matsuzawa-Ishimoto, Y., Shono, Y., Gomez, L. E., et al. (2017). Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. The Journal of Experimental Medicine, 214, 3687–3705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Burger, E., Araujo, A., López-Yglesias, A., et al. (2018). Loss of paneth cell autophagy causes acute susceptibility to toxoplasma gondii-mediated inflammation. Cell Host & Microbe, 23, 177-190.e174.

    Article  CAS  Google Scholar 

  111. Avitzur, Y., Guo, C., Mastropaolo, L. A., et al. (2014). Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology, 146, 1028–1039.

    Article  CAS  PubMed  Google Scholar 

  112. Li, Q., Lee, C. H., Peters, L. A., et al. (2016). Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology, 150, 1196–1207.

    Article  CAS  PubMed  Google Scholar 

  113. Blaydon, D. C., Biancheri, P., Di, W. L., et al. (2011). Inflammatory skin and bowel disease linked to ADAM17 deletion. The New England Journal of Medicine, 365, 1502–1508.

    Article  CAS  PubMed  Google Scholar 

  114. Howell, K. J., Kraiczy, J., Nayak, K. M., et al. (2018). DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology, 154, 585–598.

    Article  CAS  PubMed  Google Scholar 

  115. Fujii, M., Clevers, H., & Sato, T. (2019). Modeling human digestive diseases with CRISPR-Cas9-modified organoids. Gastroenterology, 156, 562–576.

    Article  CAS  PubMed  Google Scholar 

  116. Boye, T. L., Steenholdt, C., Jensen, K. B., et al. (2022). Molecular manipulations and intestinal stem cell-derived organoids in inflammatory bowel disease. Stem Cells (Dayton, Ohio), 40, 447–457.

    Article  PubMed  Google Scholar 

  117. Farin, H. F., Karthaus, W. R., Kujala, P., et al. (2014). Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-γ. The Journal of Experimental Medicine, 211, 1393–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grabinger, T., Luks, L., Kostadinova, F., et al. (2014). Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death & Disease, 5, e1228.

    Article  CAS  Google Scholar 

  119. In, J., Foulke-Abel, J., Zachos, N. C., et al. (2016). Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cellular and Molecular Gastroenterology and Hepatology, 2, 48-62.e43.

    Article  PubMed  Google Scholar 

  120. Martinez-Medina, M., & Garcia-Gil, L. J. (2014). Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity. World Journal of Gastrointestinal Pathophysiology, 5, 213–227.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Ho, N. K., Crandall, I., & Sherman, P. M. (2012). Identifying mechanisms by which Escherichia coli O157:H7 subverts interferon-γ mediated signal transducer and activator of transcription-1 activation. PLoS ONE, 7, e30145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Giri, R., Hoedt, E. C., Khushi, S., et al. (2022). Secreted NF-κB suppressive microbial metabolites modulate gut inflammation. Cell Reports, 39, 110646.

    Article  CAS  PubMed  Google Scholar 

  123. Lindemans, C. A., Calafiore, M., Mertelsmann, A. M., et al. (2015). Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 528, 560–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yui, S., Azzolin, L., Maimets, M., et al. (2018). YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell, 22, 35-49.e37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Seno, H., Miyoshi, H., Brown, S. L., et al. (2009). Efficient colonic mucosal wound repair requires Trem2 signaling. Proceedings of the National Academy of Sciences of the United States of America, 106, 256–261.

    Article  CAS  PubMed  Google Scholar 

  126. Miyoshi, H., VanDussen, K. L., Malvin, N. P., et al. (2017). Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. The EMBO Journal, 36, 5–24.

    Article  CAS  PubMed  Google Scholar 

  127. Mao, R., Kurada, S., Gordon, I. O., et al. (2019). The mesenteric fat and intestinal muscle interface: Creeping fat influencing stricture formation in Crohn’s disease. Inflammatory Bowel Diseases, 25, 421–426.

    Article  PubMed  Google Scholar 

  128. Takahashi, Y., Sato, S., Kurashima, Y., et al. (2017). Reciprocal inflammatory signaling between intestinal epithelial cells and adipocytes in the absence of immune cells. eBioMedicine, 23, 34–45.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Westphalen, C. B., Asfaha, S., Hayakawa, Y., et al. (2014). Long-lived intestinal tuft cells serve as colon cancer-initiating cells. The Journal of Clinical Investigation, 124, 1283–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hughes, C. S., Postovit, L. M., & Lajoie, G. A. (2010). Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics, 10, 1886–1890.

    Article  CAS  PubMed  Google Scholar 

  131. Noben, M., Vanhove, W., Arnauts, K., et al. (2017). Human intestinal epithelium in a dish: Current models for research into gastrointestinal pathophysiology. United European Gastroenterology Journal, 5, 1073–1081.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jalili-Firoozinezhad, S., Gazzaniga, F. S., Calamari, E. L., et al. (2019). A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nature Biomedical Engineering, 3, 520–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Sciences Foundation of China (32070138; 82060105), Talent Introduction Plan of the Lanzhou University Second Hospital (yjrckyqdj-2022–01; yjrckyqdj-2021–03), the Central University Excellent Youth Team Project (537000–561223001), and Cuiying Scientific and Technological Innovation Program of the Lanzhou University Second Hospital (CY2021-MS-A05).

Author information

Authors and Affiliations

Authors

Contributions

Wenxiu Liu: writing original draft; Qian Wang, Yanrui Bai, Han Xiao, Zhunduo Li, Yan Wang: participate in the discussion; Qi Wang, Jing Yang, Hui Sun provided advice and revised the manuscript.

Corresponding authors

Correspondence to Qi Wang, Jing Yang or Hui Sun.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal participants performed by any of the authors.

Consent to Participate

None declared.

Consent to Publish

None declared.

Conflicts of Interest

The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, Q., Bai, Y. et al. Potential Application of Intestinal Organoids in Intestinal Diseases. Stem Cell Rev and Rep 20, 124–137 (2024). https://doi.org/10.1007/s12015-023-10651-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10651-w

Keywords

Navigation