Skip to main content
Log in

Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Chen, Y., Shu, Z., Qian, K., Wang, J., & Zhu, H. (2019). Harnessing the Properties of Biomaterial to enhance the immunomodulation of mesenchymal stem cells. Tissue Engineering Part B: Reviews, 25, 492–499. https://doi.org/10.1089/ten.teb.2019.0131.

    Article  PubMed  Google Scholar 

  2. Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., Hua, D., Shao, C., & Shi, Y. (2022). The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Sig Transduct Target Ther, 7, https://doi.org/10.1038/s41392-022-00932-0.

  3. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells, 28, 585–596. https://doi.org/10.1002/stem.269.

    Article  CAS  PubMed  Google Scholar 

  4. Lin, Z., Wu, Y., Xu, Y., Li, G., Li, Z., & Liu, T. (2022). Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Molecular Cancer, 21, 179. https://doi.org/10.1186/s12943-022-01650-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fajardo-Orduna, G. R., Mayani, H., & Montesinos, J. J. (2015). Hematopoietic support capacity of mesenchymal stem cells: Biology and clinical potential. Archives of Medical Research, 46, 589–596. https://doi.org/10.1016/j.arcmed.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  6. Santamaria, G., Brandi, E., Vitola, P. L., Grandi, F., Ferrara, G., Pischiutta, F., Vegliante, G., Zanier, E. R., Re, F., Uccelli, A (2021). Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice. Cell Death & Differentiation 28, 203–218. https://doi.org/10.1038/s41418-020-0592-2.

  7. Marfy-Smith, S. J., & Clarkin, C. E. (2016). Are mesenchymal stem cells so bloody great after all? Stem cells translational medicine. Stem Cells Transl Med, 6, 3–6. https://doi.org/10.5966/sctm2016-0026.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ryu, J., Jeong, E., Kim, J., Park, S., Ju, W., Kim, C., Kim, J., & Choo, Y. (2020). Application of mesenchymal stem cells in Inflammatory and Fibrotic Diseases. International Journal of Molecular Sciences, 21, 8366. https://doi.org/10.3390/ijms21218366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plouffe, B., Murthy, S., & Lewis, L. H. (2015). Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Reports on Progress in Physics, 78, https://doi.org/10.1088/0034-4885/78/1/016601.

  10. Li, H., & Fu, X. (2012). Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration. Cell and Tissue Research, 348, 371–377. https://doi.org/10.1007/s00441-012-1393-9.

    Article  PubMed  ADS  Google Scholar 

  11. Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F., & Ding, J. (2019). Mesenchymal stem cells for Regenerative Medicine. Cells, 8, 886. https://doi.org/10.3390/cells8080886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, L., Ma, X. J. N., Fei, Y. Y., Han, H. T., Xu, J., Cheng, L., & Li, X. (2022). Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacology & Therapeutics, 232, 108004. https://doi.org/10.1016/j.pharmthera.2021.108004.

    Article  CAS  Google Scholar 

  13. Čamernik, K., & Zupan, J. (2018). Surface Antigen-Based identification of in vitro expanded skeletal muscle-derived mesenchymal Stromal/Stem cells using Flow Cytometry. In K. Turksen (Ed.), Stem cells and aging methods in Molecular Biology (pp. 225–233). Springer New York. https://doi.org/10.1007/7651_2018_198.

  14. McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA, McLeod, C., & Mauck, R. (2017). On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. eCM 34, 217–231. https://doi.org/10.22203/eCM.v034a14.

  15. Zhang, P., Li, X., Pan, C., Zheng, X., Hu, B., Xie, R., Hu, J., Shang, X., & Yang, H. (2022). Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Research & Therapy, 13, https://doi.org/10.1186/s13287-022-02718-1.

  16. Liu, X., Xiang, Q., Xu, F., Huang, J., Yu, N., Zhang, Q., Long, X., & Zhou, Z. (2019). Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells. Sci Data, 6, 190031. https://doi.org/10.1038/sdata.2019.31.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang, Z., Li, X., Yang, J., Gong, Y., Zhang, H., Qiu, X., Liu, Y., Zhou, C., Chen, Y., Greenbaum, J., et al. (2021). Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells. International Journal of Biological Sciences, 17, 4192–4206. https://doi.org/10.7150/ijbs.61950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, S., Wang, J. Y., Li, B., Yin, F., & Liu, H. (2021). Single-cell transcriptome analysis of uncultured human umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy, 12, 25. https://doi.org/10.1186/s13287-020-02055-1.

    Article  CAS  Google Scholar 

  19. Barrett, A. N., Fong, C. Y., Subramanian, A., Liu, W., Feng, Y., Choolani, M., Biswas, A., Rajapakse, J. C., & Bongso, A. (2019). Human Wharton’s Jelly Mesenchymal stem cells show Unique Gene expression compared with bone marrow mesenchymal stem cells using single-cell RNA-Sequencing. Stem Cells and Development, 28, 196–211. https://doi.org/10.1089/scd.2018.0132.

    Article  CAS  PubMed  Google Scholar 

  20. Naeem, A., Gupta, N., Naeem, U., Khan, M. J., Elrayess, M. A., Cui, W., & Albanese, C. (2022). A comparison of isolation and culture protocols for human amniotic mesenchymal stem cells. Cell Cycle, 21, 1543–1556. https://doi.org/10.1080/15384101.2022.2060641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J., & Prockop, D. J. (2002). Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality. STEM CELLS, 20, 530–541. https://doi.org/10.1634/stemcells.20-6-530.

    Article  PubMed  Google Scholar 

  22. Li, Q., Zhang, X., Peng, Y., Chai, H., Xu, Y., Wei, J., Ren, X., Wang, X., Liu, W., Chen, M., et al. (2013). Comparison of the sorting efficiency and influence on cell function between the sterile flow cytometry and immunomagnetic bead purification methods. Preparative Biochemistry and Biotechnology, 43, 197–206. https://doi.org/10.1080/10826068.2012.719846.

    Article  CAS  PubMed  Google Scholar 

  23. Fei, C., Nie, L., Zhang, J., & Chen, J. (2021). Potential applications of fluorescence-activated cell sorting (FACS) and droplet-based Microfluidics in promoting the Discovery of specific antibodies for characterizations of Fish Immune cells. Frontiers in Immunology, 12, 771231. https://doi.org/10.3389/fimmu.2021.771231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson, J. P., Ostafe, R., Iyengar, S. N., Rajwa, B., & Fischer, R. (2023). Flow Cytometry: The Next Revolution. Cells, 12, 1875. https://doi.org/10.3390/cells12141875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson, K. W., Dooner, M., & Quesenberry, P. J. (2007). Fluorescence Activated Cell Sorting: A Window on the Stem Cell. CPB 8, 133–139. https://doi.org/10.2174/138920107780906487.

  26. Cai, Y., Wang, J., & Zou, K. (2020). The progresses of spermatogonial stem cells sorting using fluorescence-activated cell sorting. Stem Cell Reviews and Reports, 16, 94–102. https://doi.org/10.1007/s12015-019-09929-9.

    Article  PubMed  Google Scholar 

  27. Yu, B., Zhang, J., Zeng, Y., Li, L., & Wang, X. (Eds.). (2020). Single-cell Sequencing and Methylation: Methods and Clinical Applications (Springer Singapore) https://doi.org/10.1007/978-981-15-4494-1.

  28. Deng, H., Lei, Q., Wang, C., Wang, Z., Chen, H., Wang, G., Yang, N., Huang, D., Yu, Q., Yao, M., et al. (2022). A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations. Nature Communications, 13, https://doi.org/10.1038/s41467-022-34627-5.

  29. Voskamp, C., van de Peppel, J., Gasparini, S., Giannoni, P., van Leeuwen, J. P. T. M., van Osch, G. J. V. M., & Narcisi, R. (2020). Sorting living mesenchymal stem cells using a TWIST1 RNA-based probe depends on incubation time & uptake capacity. Cytotechnology, 72, 37–45. https://doi.org/10.1007/s10616-019-00355-w.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, M. B., Wang, P. P., Atabay, K. D., Murphy, E. A., Doan, R. N., Hecht, J., & Walsh, C. A. (2017). Single cell analysis reveals transcriptional heterogeneity of neural progenitors in the human cortex. Nature Neuroscience, 18, 637–646. https://doi.org/10.1038/nn.3980.

    Article  CAS  Google Scholar 

  31. Miltenyi, S., Müller, W., Weichel, W., & Radbruch, A. (1990). High gradient magnetic cell separation with MACS. Cytometry 11, 231–238. https://doi.org/10.1002/cyto.990110203.

  32. Welzel, G., Seitz, D., & Schuster, S. (2015). Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures. Scientific Reports, 5, 7959. https://doi.org/10.1038/srep07959.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Gagné, A., Lacouture, S., Broes, A., D’Allaire, S., & Gottschalk, M. (1998). Development of an Immunomagnetic Method for selective isolation of Actinobacillus pleuropneumoniae serotype 1 from Tonsils. Journal of Clinical Microbiology, 36, 251–254. https://doi.org/10.1128/JCM.36.1.251-254.1998.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tsujisaka, Y., Hatani, T., Okubo, C., Ito, R., Kimura, A., Narita, M., Chonabayashi, K., Funakoshi, S., Lucena-Cacace, A., Toyoda, T., et al. (2022). Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Reports, 17, 1772–1785. https://doi.org/10.1016/j.stemcr.2022.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reinhardt, M., Bader, A., & Giri, S. (2015). Devices for stem cell isolation and delivery: Current need for drug discovery and cell therapy. Expert Review of Medical Devices, 12, 353–364. https://doi.org/10.1586/17434440.2015.995094.

    Article  CAS  PubMed  Google Scholar 

  36. Sutermaster, B. A., & Darling, E. M. (2019). Considerations for high-yield, high-throughput cell enrichment: Fluorescence versus magnetic sorting. Scientific Reports, 9, https://doi.org/10.1038/s41598-018-36698-1.

  37. Dieterle, M. P., Gross, T., Steinberg, T., Tomakidi, P., Becker, K., Vach, K., Kremer, K., & Proksch, S. (2022). Characterization of a Stemness-Optimized Purification Method for Human Dental-Pulp Stem Cells: An Approach to Standardization. Cells 11, 3204. https://doi.org/10.3390/cells11203204.

  38. Pan, J., & Wan, J. (2020). Methodological comparison of FACS and MACS isolation of enriched microglia and astrocytes from mouse brain. Journal of Immunological Methods, 486, 112834. https://doi.org/10.1016/j.jim.2020.112834.

    Article  CAS  PubMed  Google Scholar 

  39. Geens, M., Van de Velde, H., De Block, G., Goossens, E., Van Steirteghem, A., & Tournaye, H. (2007). The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Human Reproduction, 22, 733–742. https://doi.org/10.1093/humrep/del418.

    Article  CAS  PubMed  Google Scholar 

  40. Zha, K., Li, X., Tian, G., Yang, Z., Sun, Z., Yang, Y., Wei, F., Huang, B., Jiang, S., Li, H., et al. (2021). Evaluation of CD49f as a novel surface marker to identify functional adipose-derived mesenchymal stem cell subset. Cell Proliferation, 54, https://doi.org/10.1111/cpr.13017.

  41. Najar, M., Crompot, E., van Grunsven, L. A., Dollé, L., & Lagneaux, L. (2018). Foreskin-derived mesenchymal stromal cells with aldehyde dehydrogenase activity: Isolation and gene profiling. Bmc Cell Biology, 19, https://doi.org/10.1186/s12860-018-0157-0.

  42. Costa, L. A., Eiro, N., Fraile, M., Gonzalez, L. O., Saá, J., Garcia-Portabella, P., Vega, B., Schneider, J., & Vizoso, F. J. (2021). Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: Implications for further clinical uses. Cellular and Molecular Life Sciences, 78, 447–467. https://doi.org/10.1007/s00018-020-03600-0.

    Article  CAS  PubMed  Google Scholar 

  43. Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing & multipotential adult stem cells in colonies of human marrow stromal cells. Proc. Natl. Acad. Sci. U.S.A. 98, 7841–7845. https://doi.org/10.1073/pnas.141221698.

  44. Kim, M., Bae, Y. K., Um, S., Kwon, J. H., Kim, G. H., Choi, S. J., Oh, W., & Jin, H. J. (2020). A Small-Sized Population of Human umbilical cord blood-derived mesenchymal stem cells shows high Stemness Properties and Therapeutic Benefit. Stem Cells International, 2020, 1–17. https://doi.org/10.1155/2020/5924983.

    Article  CAS  Google Scholar 

  45. Smith, J. R., Pochampally, R., Perry, A., Hsu, S., & Prockop, D. J. (2004). Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. STEM CELLS, 22, 823–831. https://doi.org/10.1634/stemcells.22-5-823.

    Article  PubMed  Google Scholar 

  46. Agarwal, A. (2020). A review of FACS: Fluorescence activated cell sorting system. Biosci Biotech Res Comm, 13, 436–439. https://doi.org/10.21786/bbrc/13.14/98.

    Article  Google Scholar 

  47. Lattuada, D., Roda, B., Pignatari, C., Magni, R., Colombo, F., Cattaneo, A., Zattoni, A., Cetin, I., Reschiglian, P., & Bolis, G. (2013). A tag-less method for direct isolation of human umbilical vein endothelial cells by gravitational field-flow fractionation. Analytical and Bioanalytical Chemistry, 405, 977–984. https://doi.org/10.1007/s00216-012-6337-4.

    Article  CAS  PubMed  Google Scholar 

  48. Hwang, J. Y., Youn, S., & Yang, I. H. (2019). Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field. Analytica Chimica Acta, 1047, 238–247. https://doi.org/10.1016/j.aca.2018.09.056.

    Article  CAS  PubMed  Google Scholar 

  49. Roda, B., Reschiglian, P., Alviano, F., Lanzoni, G., Bagnara, G. P., Ricci, F., Buzzi, M., Tazzari, P. L., Pagliaro, P., Michelini, E., et al. (2009). Gravitational field-flow fractionation of human hemopoietic stem cells. Journal of Chromatography A, 1216, 9081–9087. https://doi.org/10.1016/j.chroma.2009.07.024.

    Article  CAS  PubMed  Google Scholar 

  50. Roda, B., Reschiglian, P., Zattoni, A., Alviano, F., Lanzoni, G., Costa, R., Carlo, A. D., Marchionni, C., Franchina, M., Bonsi, L., et al. (2009). A tag-less method of sorting stem cells from clinical specimens and separating mesenchymal from epithelial progenitor cells. Cytometry Part B: Clinical Cytometry, 76B, 285–290. https://doi.org/10.1002/cyto.b.20472.

    Article  Google Scholar 

  51. Radtke, C. L., Nino-Fong, R., Rodriguez-Lecompte, J. C., Gonzalez, B. P. E., Stryhn, H., & McDuffee, L. A. (2015). Osteogenic potential of sorted equine mesenchymal stem cell subpopulations. Canadian Journal of Veterinary Research, 79, 101–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Radtke, C. L., Nino-Fong, R., Gonzalez, B. P. E., & McDuffee, L. A. (2014). Application of a novel sorting system for equine mesenchymal stem cells (MSCs). Canadian Journal of Veterinary Research, 78, 290–296.

    PubMed  PubMed Central  Google Scholar 

  53. Zia, S., Cavallo, C., Vigliotta, I., Parisi, V., Grigolo, B., Buda, R., Marrazzo, P., Alviano, F., Bonsi, L., Zattoni, A. (2022). Effective Label-Free Sorting of Multipotent Mesenchymal Stem Cells from Clinical Bone Marrow Samples. Bioengineering 9, 49. https://doi.org/10.3390/bioengineering9020049.

  54. Casciaro, F., Zia, S., Forcato, M., Zavatti, M., Beretti, F., Bertucci, E. (2021). Unravelling Heterogeneity of Amplified Human Amniotic Fluid Stem Cells Sub-Populations. Cells 10, 158. https://doi.org/10.3390/cells10010158.

  55. Roda, B., Cioffi, N., Ditaranto, N., Zattoni, A., Casolari, S., Melucci, D., Reschiglian, P., Sabbatini, L., Valentini, A., & Zambonin, P. G. (2005). Biocompatible channels for field-flow fractionation of biological samples: Correlation between surface composition and operating performance. Analytical and Bioanalytical Chemistry, 381, 639–646. https://doi.org/10.1007/s00216-004-2860-2.

    Article  CAS  PubMed  Google Scholar 

  56. Stone, N. E., Voigt, A. P., Mullins, R. F., Sulchek, T., & Tucker, B. A. (2021). Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med, 10, 1384–1393. https://doi.org/10.1002/sctm.21-0080.

    Article  PubMed  PubMed Central  Google Scholar 

  57. El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442, 403–411. https://doi.org/10.1038/nature05063.

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Hettiarachchi, S., Cha, H., Ouyang, L., Mudugamuwa, A., An, H., Kijanka, G., Kashaninejad, N., Nguyen, N. T., & Zhang, J. (2023). Recent microfluidic advances in submicron to nanoparticle manipulation and separation. Lab on a Chip, 23, 982–1010. https://doi.org/10.1039/d2lc00793b.

    Article  CAS  PubMed  Google Scholar 

  59. Wyatt Shields, I. V., Reyes, C., C.D., & López, G. P. (2015). Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab on a Chip, 15, 1230–1249. https://doi.org/10.1039/C4LC01246A.

    Article  CAS  PubMed  Google Scholar 

  60. Fallahi, H., Yadav, S., Phan, H. P., Ta, H., Zhang, J., & Nguyen, N. T. (2021). Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Lab on a Chip, 21, 2008–2018. https://doi.org/10.1039/d1lc00082a.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou, J., Mukherjee, P., Gao, H., Luan, Q., & Papautsky, I. (2019). Label-free microfluidic sorting of microparticles. APL Bioengineering, 3, 041504. https://doi.org/10.1063/1.5120501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yin, L., Yang, Z., Wu, Y., Denslin, V., Yu, C. C., Tee, C. A., Lim, C. T., Han, J., & Lee, E. H. (2020). Label-free separation of mesenchymal stem cell subpopulations with distinct differentiation potencies and paracrine effects. Biomaterials, 240, 119881. https://doi.org/10.1016/j.biomaterials.2020.119881.

    Article  CAS  PubMed  Google Scholar 

  63. Liu, Z., Screven, R., Yu, D., Boxer, L., Myers, M. J., Han, J., & Devireddy, L. R. (2021). Microfluidic separation of Canine adipose-derived mesenchymal stromal cells. Tissue Engineering Part C: Methods, 27, 445–461. https://doi.org/10.1089/ten.tec.2021.0082.

    Article  CAS  PubMed  Google Scholar 

  64. Poon, Z., Lee, W. C., Guan, G., Nyan, L. M., Lim, C. T., Han, J., & Van Vliet, K. J. (2015). Bone marrow regeneration promoted by Biophysically Sorted Osteoprogenitors from mesenchymal stromal cells. Stem Cells Translational Medicine, 4, 56–65. https://doi.org/10.5966/sctm.2014-0154.

    Article  CAS  PubMed  Google Scholar 

  65. Xavier, M., Oreffo, R. O. C., & Morgan, H. (2016). Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques. Biotechnology Advances, 34, 908–923. https://doi.org/10.1016/j.biotechadv.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

  66. Ozawa, R., Iwadate, H., Toyoda, H., Yamada, M., & Seki, M. (2019). A numbering-up strategy of hydrodynamic microfluidic filters for continuous-flow high-throughput cell sorting. Lab on a Chip, 19, 1828–1837. https://doi.org/10.1039/c9lc00053d.

    Article  CAS  PubMed  Google Scholar 

  67. Jung, H., Chun, M. S., & Chang, M. S. (2015). Sorting of human mesenchymal stem cells by applying optimally designed microfluidic chip filtration. The Analyst, 140, 1265–1274. https://doi.org/10.1039/C4AN01430H.

    Article  CAS  PubMed  ADS  Google Scholar 

  68. Yamada, M., Kano, K., Tsuda, Y., Kobayashi, J., Yamato, M., Seki, M., & Okano, T. (2007). Microfluidic devices for size-dependent separation of liver cells. Biomedical Microdevices, 9, 637–645. https://doi.org/10.1007/s10544-007-9055-5.

    Article  PubMed  Google Scholar 

  69. Yamada, M., & Seki, M. (2005). Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab on a Chip, 5, 1233. https://doi.org/10.1039/b509386d.

    Article  CAS  PubMed  Google Scholar 

  70. Aoki, R., Yamada, M., Yasuda, M., & Seki, M. (2009). In-channel focusing of flowing microparticles utilizing hydrodynamic filtration. Microfluidics and Nanofluidics, 6, 571–576. https://doi.org/10.1007/s10404-008-0334-0.

    Article  CAS  Google Scholar 

  71. Cantu, D. A., Hematti, P., & Kao, W. J. (2012). Cell encapsulating Biomaterial regulates mesenchymal Stromal/Stem cell differentiation and macrophage immunophenotype. Stem Cells Transl Med, 1, 740–749. https://doi.org/10.5966/sctm.2012-0061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kang, E. S., Kim, D. S., Suhito, I. R., Lee, W., Song, I., & Kim, T. H. (2018). Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res, 22, 10. https://doi.org/10.1186/s40824-018-0120-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yeh, H. Y., & Lin, J. C. (2012). Surface phosphorylation for Polyelectrolyte Complex of Chitosan and its Sulfonated Derivative: Surface Analysis, blood compatibility and adipose derived Stem Cell Contact Properties. J Biomater Sci -Polym Ed, 23, 233–250. https://doi.org/10.1163/092050610X547001.

    Article  CAS  PubMed  Google Scholar 

  74. Barbosa, J. N., Amaral, I. F., Aguas, A. P., & Barbosa, M. A. (2010). Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. J Biomed Mater Res Part A, 93A, 20–28. https://doi.org/10.1002/jbm.a.32499.

    Article  CAS  Google Scholar 

  75. Moutzouri, A. G., & Athanassiou, G. M. (2011). Attachment, spreading, and adhesion strength of human bone marrow cells on Chitosan. Annals of Biomedical Engineering, 39, 730–741. https://doi.org/10.1007/s10439-010-0188-y.

    Article  PubMed  Google Scholar 

  76. Chiu, H. Y., Tsay, Y. G., & Hung, S. C. (2017). Involvement of mTOR-autophagy in the selection of primitive mesenchymal stem cells in chitosan film 3-dimensional culture. Scientific Reports, 7, 10113. https://doi.org/10.1038/s41598-017-10708-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Huang, G. S., Tseng, T. C., Dai, N. T., Fu, K. Y., Dai, L. G., & Hsu, S. (2015). Fast isolation and expansion of multipotent cells from adipose tissue based on chitosan-selected primary culture. Biomaterials, 65, 154–162. https://doi.org/10.1016/j.biomaterials.2015.07.003.

    Article  CAS  PubMed  Google Scholar 

  78. van Strien, M. E., Sluijs, J. A., Reynolds, B. A., Steindler, D. A., Aronica, E., & Hol, E. M. (2014). Isolation of neural progenitor cells from the human adult Subventricular Zone based on expression of the cell surface marker CD271. Stem Cells Transl Med, 3, 470–480. https://doi.org/10.5966/sctm.2013-0038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Truzzi, F., Saltari, A., Palazzo, E., Lotti, R., Petrachi, T., Dallaglio, K., Gemelli, C., Grisendi, G., Dominici, M., Pincelli, C., et al. (2015). CD271 mediates stem cells to early progeny transition in human epidermis. Journal of Investigative Dermatology, 135, 786–795. https://doi.org/10.1038/jid.2014.454.

    Article  CAS  PubMed  Google Scholar 

  80. Hsu, S., Huang, G. S., & Feng, F. (2012). Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes. Biomaterials, 33, 2642–2655. https://doi.org/10.1016/j.biomaterials.2011.12.032.

    Article  CAS  PubMed  Google Scholar 

  81. Pochampally, R. R., Smith, J. R., Ylostalo, J., & Prockop, D. J. (2004). Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood, 103, 1647–1652. https://doi.org/10.1182/blood-2003-06-1967.

    Article  CAS  PubMed  Google Scholar 

  82. Liu, G., Iwata, K., Ogasawara, T., Watanabe, J., Fukazawa, K., Ishihara, K., Asawa, Y., Fujihara, Y., Chung, U. L., Moro, T., et al. (2009). Selection of highly osteogenic and chondrogenic cells from bone marrow stromal cells in biocompatible polymer-coated plates. Journal of Biomedical Materials Research, 9999A, https://doi.org/10.1002/jbm.a.32460. NA-NA.

  83. Lee, B. C., Kang, I., & Yu, K. R. (2021). Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-Derived exosomes. J Clin Med, 10, 711. https://doi.org/10.3390/jcm10040711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rossello-Gelabert, M., Gonzalez-Pujana, A., Igartua, M., Santos-Vizcaino, E., & Hernandez, R. M. (2022). Clinical progress in MSC-based therapies for the management of severe COVID-19. Cytokine & Growth Factor Reviews. https://doi.org/10.1016/j.cytogfr.2022.07.002.

    Article  Google Scholar 

  85. Renesme, L., Cobey, K. D., Le, M., Lalu, M. M., & Thebaud, B. (2021). Establishment of a consensus definition for mesenchymal stromal cells (MSC) and reporting guidelines for clinical trials of MSC therapy: A modified Delphi study protocol. British Medical Journal Open, 11, e054740. https://doi.org/10.1136/bmjopen-2021-054740.

    Article  Google Scholar 

  86. Wang, L., Li, P., Tian, Y., Li, Z., Lian, C., Ou, Q., Jin, C., Gao, F., Xu, J. Y., Wang, J. (2018). Human Umbilical Cord Mesenchymal Stem Cells: Subpopulations and Their Difference in Cell Biology and Effects on Retinal Degeneration in RCS Rats. CMM 17. https://doi.org/10.2174/1566524018666171205140806.

  87. Jiang, L., Ma, A., Song, L., Hu, Y., Dun, H., Daloze, P., Yu, Y., Jiang, J., Zafarullah, M., & Chen, H. (2014). Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. Journal of Tissue Engineering and Regenerative Medicine, 8, 896–905. https://doi.org/10.1002/term.1676.

    Article  CAS  PubMed  Google Scholar 

  88. de Rutte, J., Dimatteo, R., Zhu, S., Archang, M. M., & Di Carlo, D. (2022). Sorting single-cell microcarriers using commercial flow cytometers. Slas Technol, 27, 150–159. https://doi.org/10.1016/j.slast.2021.10.004.

    Article  CAS  PubMed  Google Scholar 

  89. Grégori, G., Patsekin, V., Rajwa, B., Jones, J., Ragheb, K., Holdman, C., & Robinson, J. P. (2012). Hyperspectral Cytometry at the single-cell level using a 32-Channel Photodetector. Cytometry. Part A, 81, 35–44. https://doi.org/10.1002/cyto.a.21120.

    Article  Google Scholar 

  90. Radcliff, G., & Jaroszeski, M. J. (1998). Basics of Flow Cytometry. Flow Cytometry Protocols, 91, 1–24. https://doi.org/10.1385/0-89603-354-6:1.

    Article  CAS  Google Scholar 

  91. Bacon, K., Lavoie, A., Rao, B. M., Daniele, M., & Menegatti, S. (2020). Past, Present, and Future of Affinity-based cell separation Technologies. Acta Biomaterialia, 112, 25–29. https://doi.org/10.1016/j.actbio.2020.05.004.

    Article  CAS  Google Scholar 

  92. Schriebl, K., Lim, S., Choo, A., Tscheliessnig, A., & Jungbauer, A. (2010). Stem cell separation: A bottleneck in stem cell therapy. Biotechnology Journal, 5, 50–61. https://doi.org/10.1002/biot.200900115.

    Article  CAS  PubMed  Google Scholar 

  93. Zhu, B., & Murthy, S. K. (2013). Stem cell separation technologies. Curr Opin Chem Eng, 2, 3–7. https://doi.org/10.1016/j.coche.2012.11.002.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Khetani, S., Mohammadi, M., & Nezhad, A. S. (2018). Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnology and Bioengineering, 115, 2504–2529. https://doi.org/10.1002/bit.26787.

    Article  CAS  PubMed  Google Scholar 

  95. Roda, B., Zattoni, A., Reschiglian, P., Moon, M. H., Mirasoli, M., Michelini, E., & Roda, A. (2009). Field-flow fractionation in bioanalysis: A review of recent trends. Analytica Chimica Acta, 635, 132–143. https://doi.org/10.1016/j.aca.2009.01.015.

    Article  CAS  PubMed  Google Scholar 

  96. Chen, H., Sun, J., Wolvetang, E., & Cooper-White, J. (2015). High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices. Lab on a Chip, 15, 1072–1083. https://doi.org/10.1039/c4lc01176g.

    Article  CAS  PubMed  Google Scholar 

  97. Tang, W., Jiang, D., Li, Z., Zhu, L., Shi, J., Yang, J., & Xiang, N. (2019). Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis, 40, 930–954. https://doi.org/10.1002/elps.201800361.

    Article  CAS  PubMed  Google Scholar 

  98. Niculescu, A. G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci. 22, 2011. https://doi.org/10.3390/ijms22042011.

  99. de Rutte, J., Dimatteo, R., Archang, M. M., van Zee, M., Koo, D., Lee, S., Sharrow, A. C., Krohl, P. J., Mellody, M., Zhu, S., et al. (2022). Suspendable hydrogel nanovials for massively parallel single-cell functional analysis and sorting. Acs Nano, 16, 7242–7257. https://doi.org/10.1021/acsnano.1c11420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mushahary, D., Spittler, A., Kasper, C., et al. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry. Part A, 93, 19–31. https://doi.org/10.1002/cyto.a.23242.

    Article  CAS  Google Scholar 

  101. Giduthuri, A. T., Theodossiou, S. K., Schiele, N. R., & Srivastava, S. K. (2021). Dielectrophoretic characterization of Tenogenically differentiating mesenchymal stem cells. Biosensors, 11, 50. https://doi.org/10.3390/bios11020050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, P. (2008). Microfluidic chips for cell sorting. Frontiers in Bioscience: A Journal and Virtual Library, 13, 2464. https://doi.org/10.2741/2859.

    Article  CAS  PubMed  Google Scholar 

  103. Chen, Z., Luo, X., Zhao, X., Yang, M., & Wen, C. (2019). Label-free cell sorting strategies via biophysical and biochemical gradients. Journal of Orthopaedic Translation, 17, 55–63. https://doi.org/10.1016/j.jot.2019.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lee, W. C., Shi, H., Poon, Z., Nyan, L. M., Kaushik, T., Shivashankar, G. V., Chan, J. K. Y., Lim, C. T., Han, J., & Van Vliet, K. J. (2014). Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. Proc. Natl. Acad. Sci. U.S.A. 111. https://doi.org/10.1073/pnas.1402306111.

  105. Piyasena, M. E., & Graves, S. W. (2014). The intersection of flow cytometry with microfluidics and microfabrication. Lab on a Chip, 14, 1044–1059. https://doi.org/10.1039/C3LC51152A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No.81772104, No.81701929, No.81971889, No.81902013, No.82003085, No.82202468), the Natural Science Foundation of Guangdong Province (Grant No.2017A030310120, Grant No.2019A1515012170). The Foundation of Guangzhou Municipal Science and Technology Bureau (SL2022A04J02027). Nanfang Hospital Distinguished Young cultivation program (2022J003).

Author information

Authors and Affiliations

Authors

Contributions

Xinyi Feng: Original draft preparation, Manuscript revision. Fangfang Qi: Literature review and Editing, Manuscript revision. Hailin Wang: Review-specifically critical review. Wenzhen Li: Manuscript revision. Yuyang Gan: Review-commentary. Caiyu Qi: Editing-format layout. Zhen Lin: Review and revise manuscripts. Lu Chen: Visualization-data presentation. Piao Wang: Development of methodology. Zhiqi Hu: Oversight and leadership responsibility for the group. Yong Miao: Supervisor.

Corresponding authors

Correspondence to Zhiqi Hu or Yong Miao.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Qi, F., Wang, H. et al. Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source. Stem Cell Rev and Rep 20, 524–537 (2024). https://doi.org/10.1007/s12015-023-10635-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10635-w

Keywords

Navigation