Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.
Graphical abstract
Similar content being viewed by others
Data Availability
Not applicable.
References
Chen, Y., Shu, Z., Qian, K., Wang, J., & Zhu, H. (2019). Harnessing the Properties of Biomaterial to enhance the immunomodulation of mesenchymal stem cells. Tissue Engineering Part B: Reviews, 25, 492–499. https://doi.org/10.1089/ten.teb.2019.0131.
Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., Hua, D., Shao, C., & Shi, Y. (2022). The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Sig Transduct Target Ther, 7, https://doi.org/10.1038/s41392-022-00932-0.
Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells, 28, 585–596. https://doi.org/10.1002/stem.269.
Lin, Z., Wu, Y., Xu, Y., Li, G., Li, Z., & Liu, T. (2022). Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Molecular Cancer, 21, 179. https://doi.org/10.1186/s12943-022-01650-5.
Fajardo-Orduna, G. R., Mayani, H., & Montesinos, J. J. (2015). Hematopoietic support capacity of mesenchymal stem cells: Biology and clinical potential. Archives of Medical Research, 46, 589–596. https://doi.org/10.1016/j.arcmed.2015.10.001.
Santamaria, G., Brandi, E., Vitola, P. L., Grandi, F., Ferrara, G., Pischiutta, F., Vegliante, G., Zanier, E. R., Re, F., Uccelli, A (2021). Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer’s mice. Cell Death & Differentiation 28, 203–218. https://doi.org/10.1038/s41418-020-0592-2.
Marfy-Smith, S. J., & Clarkin, C. E. (2016). Are mesenchymal stem cells so bloody great after all? Stem cells translational medicine. Stem Cells Transl Med, 6, 3–6. https://doi.org/10.5966/sctm2016-0026.
Ryu, J., Jeong, E., Kim, J., Park, S., Ju, W., Kim, C., Kim, J., & Choo, Y. (2020). Application of mesenchymal stem cells in Inflammatory and Fibrotic Diseases. International Journal of Molecular Sciences, 21, 8366. https://doi.org/10.3390/ijms21218366.
Plouffe, B., Murthy, S., & Lewis, L. H. (2015). Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Reports on Progress in Physics, 78, https://doi.org/10.1088/0034-4885/78/1/016601.
Li, H., & Fu, X. (2012). Mechanisms of action of mesenchymal stem cells in cutaneous wound repair and regeneration. Cell and Tissue Research, 348, 371–377. https://doi.org/10.1007/s00441-012-1393-9.
Han, Y., Li, X., Zhang, Y., Han, Y., Chang, F., & Ding, J. (2019). Mesenchymal stem cells for Regenerative Medicine. Cells, 8, 886. https://doi.org/10.3390/cells8080886.
Zhang, L., Ma, X. J. N., Fei, Y. Y., Han, H. T., Xu, J., Cheng, L., & Li, X. (2022). Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacology & Therapeutics, 232, 108004. https://doi.org/10.1016/j.pharmthera.2021.108004.
Čamernik, K., & Zupan, J. (2018). Surface Antigen-Based identification of in vitro expanded skeletal muscle-derived mesenchymal Stromal/Stem cells using Flow Cytometry. In K. Turksen (Ed.), Stem cells and aging methods in Molecular Biology (pp. 225–233). Springer New York. https://doi.org/10.1007/7651_2018_198.
McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104, USA, McLeod, C., & Mauck, R. (2017). On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. eCM 34, 217–231. https://doi.org/10.22203/eCM.v034a14.
Zhang, P., Li, X., Pan, C., Zheng, X., Hu, B., Xie, R., Hu, J., Shang, X., & Yang, H. (2022). Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Research & Therapy, 13, https://doi.org/10.1186/s13287-022-02718-1.
Liu, X., Xiang, Q., Xu, F., Huang, J., Yu, N., Zhang, Q., Long, X., & Zhou, Z. (2019). Single-cell RNA-seq of cultured human adipose-derived mesenchymal stem cells. Sci Data, 6, 190031. https://doi.org/10.1038/sdata.2019.31.
Wang, Z., Li, X., Yang, J., Gong, Y., Zhang, H., Qiu, X., Liu, Y., Zhou, C., Chen, Y., Greenbaum, J., et al. (2021). Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells. International Journal of Biological Sciences, 17, 4192–4206. https://doi.org/10.7150/ijbs.61950.
Zhang, S., Wang, J. Y., Li, B., Yin, F., & Liu, H. (2021). Single-cell transcriptome analysis of uncultured human umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy, 12, 25. https://doi.org/10.1186/s13287-020-02055-1.
Barrett, A. N., Fong, C. Y., Subramanian, A., Liu, W., Feng, Y., Choolani, M., Biswas, A., Rajapakse, J. C., & Bongso, A. (2019). Human Wharton’s Jelly Mesenchymal stem cells show Unique Gene expression compared with bone marrow mesenchymal stem cells using single-cell RNA-Sequencing. Stem Cells and Development, 28, 196–211. https://doi.org/10.1089/scd.2018.0132.
Naeem, A., Gupta, N., Naeem, U., Khan, M. J., Elrayess, M. A., Cui, W., & Albanese, C. (2022). A comparison of isolation and culture protocols for human amniotic mesenchymal stem cells. Cell Cycle, 21, 1543–1556. https://doi.org/10.1080/15384101.2022.2060641.
Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J., & Prockop, D. J. (2002). Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality. STEM CELLS, 20, 530–541. https://doi.org/10.1634/stemcells.20-6-530.
Li, Q., Zhang, X., Peng, Y., Chai, H., Xu, Y., Wei, J., Ren, X., Wang, X., Liu, W., Chen, M., et al. (2013). Comparison of the sorting efficiency and influence on cell function between the sterile flow cytometry and immunomagnetic bead purification methods. Preparative Biochemistry and Biotechnology, 43, 197–206. https://doi.org/10.1080/10826068.2012.719846.
Fei, C., Nie, L., Zhang, J., & Chen, J. (2021). Potential applications of fluorescence-activated cell sorting (FACS) and droplet-based Microfluidics in promoting the Discovery of specific antibodies for characterizations of Fish Immune cells. Frontiers in Immunology, 12, 771231. https://doi.org/10.3389/fimmu.2021.771231.
Robinson, J. P., Ostafe, R., Iyengar, S. N., Rajwa, B., & Fischer, R. (2023). Flow Cytometry: The Next Revolution. Cells, 12, 1875. https://doi.org/10.3390/cells12141875.
Johnson, K. W., Dooner, M., & Quesenberry, P. J. (2007). Fluorescence Activated Cell Sorting: A Window on the Stem Cell. CPB 8, 133–139. https://doi.org/10.2174/138920107780906487.
Cai, Y., Wang, J., & Zou, K. (2020). The progresses of spermatogonial stem cells sorting using fluorescence-activated cell sorting. Stem Cell Reviews and Reports, 16, 94–102. https://doi.org/10.1007/s12015-019-09929-9.
Yu, B., Zhang, J., Zeng, Y., Li, L., & Wang, X. (Eds.). (2020). Single-cell Sequencing and Methylation: Methods and Clinical Applications (Springer Singapore) https://doi.org/10.1007/978-981-15-4494-1.
Deng, H., Lei, Q., Wang, C., Wang, Z., Chen, H., Wang, G., Yang, N., Huang, D., Yu, Q., Yao, M., et al. (2022). A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations. Nature Communications, 13, https://doi.org/10.1038/s41467-022-34627-5.
Voskamp, C., van de Peppel, J., Gasparini, S., Giannoni, P., van Leeuwen, J. P. T. M., van Osch, G. J. V. M., & Narcisi, R. (2020). Sorting living mesenchymal stem cells using a TWIST1 RNA-based probe depends on incubation time & uptake capacity. Cytotechnology, 72, 37–45. https://doi.org/10.1007/s10616-019-00355-w.
Johnson, M. B., Wang, P. P., Atabay, K. D., Murphy, E. A., Doan, R. N., Hecht, J., & Walsh, C. A. (2017). Single cell analysis reveals transcriptional heterogeneity of neural progenitors in the human cortex. Nature Neuroscience, 18, 637–646. https://doi.org/10.1038/nn.3980.
Miltenyi, S., Müller, W., Weichel, W., & Radbruch, A. (1990). High gradient magnetic cell separation with MACS. Cytometry 11, 231–238. https://doi.org/10.1002/cyto.990110203.
Welzel, G., Seitz, D., & Schuster, S. (2015). Magnetic-activated cell sorting (MACS) can be used as a large-scale method for establishing zebrafish neuronal cell cultures. Scientific Reports, 5, 7959. https://doi.org/10.1038/srep07959.
Gagné, A., Lacouture, S., Broes, A., D’Allaire, S., & Gottschalk, M. (1998). Development of an Immunomagnetic Method for selective isolation of Actinobacillus pleuropneumoniae serotype 1 from Tonsils. Journal of Clinical Microbiology, 36, 251–254. https://doi.org/10.1128/JCM.36.1.251-254.1998.
Tsujisaka, Y., Hatani, T., Okubo, C., Ito, R., Kimura, A., Narita, M., Chonabayashi, K., Funakoshi, S., Lucena-Cacace, A., Toyoda, T., et al. (2022). Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Reports, 17, 1772–1785. https://doi.org/10.1016/j.stemcr.2022.05.003.
Reinhardt, M., Bader, A., & Giri, S. (2015). Devices for stem cell isolation and delivery: Current need for drug discovery and cell therapy. Expert Review of Medical Devices, 12, 353–364. https://doi.org/10.1586/17434440.2015.995094.
Sutermaster, B. A., & Darling, E. M. (2019). Considerations for high-yield, high-throughput cell enrichment: Fluorescence versus magnetic sorting. Scientific Reports, 9, https://doi.org/10.1038/s41598-018-36698-1.
Dieterle, M. P., Gross, T., Steinberg, T., Tomakidi, P., Becker, K., Vach, K., Kremer, K., & Proksch, S. (2022). Characterization of a Stemness-Optimized Purification Method for Human Dental-Pulp Stem Cells: An Approach to Standardization. Cells 11, 3204. https://doi.org/10.3390/cells11203204.
Pan, J., & Wan, J. (2020). Methodological comparison of FACS and MACS isolation of enriched microglia and astrocytes from mouse brain. Journal of Immunological Methods, 486, 112834. https://doi.org/10.1016/j.jim.2020.112834.
Geens, M., Van de Velde, H., De Block, G., Goossens, E., Van Steirteghem, A., & Tournaye, H. (2007). The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Human Reproduction, 22, 733–742. https://doi.org/10.1093/humrep/del418.
Zha, K., Li, X., Tian, G., Yang, Z., Sun, Z., Yang, Y., Wei, F., Huang, B., Jiang, S., Li, H., et al. (2021). Evaluation of CD49f as a novel surface marker to identify functional adipose-derived mesenchymal stem cell subset. Cell Proliferation, 54, https://doi.org/10.1111/cpr.13017.
Najar, M., Crompot, E., van Grunsven, L. A., Dollé, L., & Lagneaux, L. (2018). Foreskin-derived mesenchymal stromal cells with aldehyde dehydrogenase activity: Isolation and gene profiling. Bmc Cell Biology, 19, https://doi.org/10.1186/s12860-018-0157-0.
Costa, L. A., Eiro, N., Fraile, M., Gonzalez, L. O., Saá, J., Garcia-Portabella, P., Vega, B., Schneider, J., & Vizoso, F. J. (2021). Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: Implications for further clinical uses. Cellular and Molecular Life Sciences, 78, 447–467. https://doi.org/10.1007/s00018-020-03600-0.
Colter, D. C., Sekiya, I., & Prockop, D. J. (2001). Identification of a subpopulation of rapidly self-renewing & multipotential adult stem cells in colonies of human marrow stromal cells. Proc. Natl. Acad. Sci. U.S.A. 98, 7841–7845. https://doi.org/10.1073/pnas.141221698.
Kim, M., Bae, Y. K., Um, S., Kwon, J. H., Kim, G. H., Choi, S. J., Oh, W., & Jin, H. J. (2020). A Small-Sized Population of Human umbilical cord blood-derived mesenchymal stem cells shows high Stemness Properties and Therapeutic Benefit. Stem Cells International, 2020, 1–17. https://doi.org/10.1155/2020/5924983.
Smith, J. R., Pochampally, R., Perry, A., Hsu, S., & Prockop, D. J. (2004). Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. STEM CELLS, 22, 823–831. https://doi.org/10.1634/stemcells.22-5-823.
Agarwal, A. (2020). A review of FACS: Fluorescence activated cell sorting system. Biosci Biotech Res Comm, 13, 436–439. https://doi.org/10.21786/bbrc/13.14/98.
Lattuada, D., Roda, B., Pignatari, C., Magni, R., Colombo, F., Cattaneo, A., Zattoni, A., Cetin, I., Reschiglian, P., & Bolis, G. (2013). A tag-less method for direct isolation of human umbilical vein endothelial cells by gravitational field-flow fractionation. Analytical and Bioanalytical Chemistry, 405, 977–984. https://doi.org/10.1007/s00216-012-6337-4.
Hwang, J. Y., Youn, S., & Yang, I. H. (2019). Gravitational field flow fractionation: Enhancing the resolution power by using an acoustic force field. Analytica Chimica Acta, 1047, 238–247. https://doi.org/10.1016/j.aca.2018.09.056.
Roda, B., Reschiglian, P., Alviano, F., Lanzoni, G., Bagnara, G. P., Ricci, F., Buzzi, M., Tazzari, P. L., Pagliaro, P., Michelini, E., et al. (2009). Gravitational field-flow fractionation of human hemopoietic stem cells. Journal of Chromatography A, 1216, 9081–9087. https://doi.org/10.1016/j.chroma.2009.07.024.
Roda, B., Reschiglian, P., Zattoni, A., Alviano, F., Lanzoni, G., Costa, R., Carlo, A. D., Marchionni, C., Franchina, M., Bonsi, L., et al. (2009). A tag-less method of sorting stem cells from clinical specimens and separating mesenchymal from epithelial progenitor cells. Cytometry Part B: Clinical Cytometry, 76B, 285–290. https://doi.org/10.1002/cyto.b.20472.
Radtke, C. L., Nino-Fong, R., Rodriguez-Lecompte, J. C., Gonzalez, B. P. E., Stryhn, H., & McDuffee, L. A. (2015). Osteogenic potential of sorted equine mesenchymal stem cell subpopulations. Canadian Journal of Veterinary Research, 79, 101–108.
Radtke, C. L., Nino-Fong, R., Gonzalez, B. P. E., & McDuffee, L. A. (2014). Application of a novel sorting system for equine mesenchymal stem cells (MSCs). Canadian Journal of Veterinary Research, 78, 290–296.
Zia, S., Cavallo, C., Vigliotta, I., Parisi, V., Grigolo, B., Buda, R., Marrazzo, P., Alviano, F., Bonsi, L., Zattoni, A. (2022). Effective Label-Free Sorting of Multipotent Mesenchymal Stem Cells from Clinical Bone Marrow Samples. Bioengineering 9, 49. https://doi.org/10.3390/bioengineering9020049.
Casciaro, F., Zia, S., Forcato, M., Zavatti, M., Beretti, F., Bertucci, E. (2021). Unravelling Heterogeneity of Amplified Human Amniotic Fluid Stem Cells Sub-Populations. Cells 10, 158. https://doi.org/10.3390/cells10010158.
Roda, B., Cioffi, N., Ditaranto, N., Zattoni, A., Casolari, S., Melucci, D., Reschiglian, P., Sabbatini, L., Valentini, A., & Zambonin, P. G. (2005). Biocompatible channels for field-flow fractionation of biological samples: Correlation between surface composition and operating performance. Analytical and Bioanalytical Chemistry, 381, 639–646. https://doi.org/10.1007/s00216-004-2860-2.
Stone, N. E., Voigt, A. P., Mullins, R. F., Sulchek, T., & Tucker, B. A. (2021). Microfluidic processing of stem cells for autologous cell replacement. Stem Cells Transl Med, 10, 1384–1393. https://doi.org/10.1002/sctm.21-0080.
El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442, 403–411. https://doi.org/10.1038/nature05063.
Hettiarachchi, S., Cha, H., Ouyang, L., Mudugamuwa, A., An, H., Kijanka, G., Kashaninejad, N., Nguyen, N. T., & Zhang, J. (2023). Recent microfluidic advances in submicron to nanoparticle manipulation and separation. Lab on a Chip, 23, 982–1010. https://doi.org/10.1039/d2lc00793b.
Wyatt Shields, I. V., Reyes, C., C.D., & López, G. P. (2015). Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab on a Chip, 15, 1230–1249. https://doi.org/10.1039/C4LC01246A.
Fallahi, H., Yadav, S., Phan, H. P., Ta, H., Zhang, J., & Nguyen, N. T. (2021). Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Lab on a Chip, 21, 2008–2018. https://doi.org/10.1039/d1lc00082a.
Zhou, J., Mukherjee, P., Gao, H., Luan, Q., & Papautsky, I. (2019). Label-free microfluidic sorting of microparticles. APL Bioengineering, 3, 041504. https://doi.org/10.1063/1.5120501.
Yin, L., Yang, Z., Wu, Y., Denslin, V., Yu, C. C., Tee, C. A., Lim, C. T., Han, J., & Lee, E. H. (2020). Label-free separation of mesenchymal stem cell subpopulations with distinct differentiation potencies and paracrine effects. Biomaterials, 240, 119881. https://doi.org/10.1016/j.biomaterials.2020.119881.
Liu, Z., Screven, R., Yu, D., Boxer, L., Myers, M. J., Han, J., & Devireddy, L. R. (2021). Microfluidic separation of Canine adipose-derived mesenchymal stromal cells. Tissue Engineering Part C: Methods, 27, 445–461. https://doi.org/10.1089/ten.tec.2021.0082.
Poon, Z., Lee, W. C., Guan, G., Nyan, L. M., Lim, C. T., Han, J., & Van Vliet, K. J. (2015). Bone marrow regeneration promoted by Biophysically Sorted Osteoprogenitors from mesenchymal stromal cells. Stem Cells Translational Medicine, 4, 56–65. https://doi.org/10.5966/sctm.2014-0154.
Xavier, M., Oreffo, R. O. C., & Morgan, H. (2016). Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques. Biotechnology Advances, 34, 908–923. https://doi.org/10.1016/j.biotechadv.2016.05.008.
Ozawa, R., Iwadate, H., Toyoda, H., Yamada, M., & Seki, M. (2019). A numbering-up strategy of hydrodynamic microfluidic filters for continuous-flow high-throughput cell sorting. Lab on a Chip, 19, 1828–1837. https://doi.org/10.1039/c9lc00053d.
Jung, H., Chun, M. S., & Chang, M. S. (2015). Sorting of human mesenchymal stem cells by applying optimally designed microfluidic chip filtration. The Analyst, 140, 1265–1274. https://doi.org/10.1039/C4AN01430H.
Yamada, M., Kano, K., Tsuda, Y., Kobayashi, J., Yamato, M., Seki, M., & Okano, T. (2007). Microfluidic devices for size-dependent separation of liver cells. Biomedical Microdevices, 9, 637–645. https://doi.org/10.1007/s10544-007-9055-5.
Yamada, M., & Seki, M. (2005). Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab on a Chip, 5, 1233. https://doi.org/10.1039/b509386d.
Aoki, R., Yamada, M., Yasuda, M., & Seki, M. (2009). In-channel focusing of flowing microparticles utilizing hydrodynamic filtration. Microfluidics and Nanofluidics, 6, 571–576. https://doi.org/10.1007/s10404-008-0334-0.
Cantu, D. A., Hematti, P., & Kao, W. J. (2012). Cell encapsulating Biomaterial regulates mesenchymal Stromal/Stem cell differentiation and macrophage immunophenotype. Stem Cells Transl Med, 1, 740–749. https://doi.org/10.5966/sctm.2012-0061.
Kang, E. S., Kim, D. S., Suhito, I. R., Lee, W., Song, I., & Kim, T. H. (2018). Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res, 22, 10. https://doi.org/10.1186/s40824-018-0120-3.
Yeh, H. Y., & Lin, J. C. (2012). Surface phosphorylation for Polyelectrolyte Complex of Chitosan and its Sulfonated Derivative: Surface Analysis, blood compatibility and adipose derived Stem Cell Contact Properties. J Biomater Sci -Polym Ed, 23, 233–250. https://doi.org/10.1163/092050610X547001.
Barbosa, J. N., Amaral, I. F., Aguas, A. P., & Barbosa, M. A. (2010). Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. J Biomed Mater Res Part A, 93A, 20–28. https://doi.org/10.1002/jbm.a.32499.
Moutzouri, A. G., & Athanassiou, G. M. (2011). Attachment, spreading, and adhesion strength of human bone marrow cells on Chitosan. Annals of Biomedical Engineering, 39, 730–741. https://doi.org/10.1007/s10439-010-0188-y.
Chiu, H. Y., Tsay, Y. G., & Hung, S. C. (2017). Involvement of mTOR-autophagy in the selection of primitive mesenchymal stem cells in chitosan film 3-dimensional culture. Scientific Reports, 7, 10113. https://doi.org/10.1038/s41598-017-10708-0.
Huang, G. S., Tseng, T. C., Dai, N. T., Fu, K. Y., Dai, L. G., & Hsu, S. (2015). Fast isolation and expansion of multipotent cells from adipose tissue based on chitosan-selected primary culture. Biomaterials, 65, 154–162. https://doi.org/10.1016/j.biomaterials.2015.07.003.
van Strien, M. E., Sluijs, J. A., Reynolds, B. A., Steindler, D. A., Aronica, E., & Hol, E. M. (2014). Isolation of neural progenitor cells from the human adult Subventricular Zone based on expression of the cell surface marker CD271. Stem Cells Transl Med, 3, 470–480. https://doi.org/10.5966/sctm.2013-0038.
Truzzi, F., Saltari, A., Palazzo, E., Lotti, R., Petrachi, T., Dallaglio, K., Gemelli, C., Grisendi, G., Dominici, M., Pincelli, C., et al. (2015). CD271 mediates stem cells to early progeny transition in human epidermis. Journal of Investigative Dermatology, 135, 786–795. https://doi.org/10.1038/jid.2014.454.
Hsu, S., Huang, G. S., & Feng, F. (2012). Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes. Biomaterials, 33, 2642–2655. https://doi.org/10.1016/j.biomaterials.2011.12.032.
Pochampally, R. R., Smith, J. R., Ylostalo, J., & Prockop, D. J. (2004). Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood, 103, 1647–1652. https://doi.org/10.1182/blood-2003-06-1967.
Liu, G., Iwata, K., Ogasawara, T., Watanabe, J., Fukazawa, K., Ishihara, K., Asawa, Y., Fujihara, Y., Chung, U. L., Moro, T., et al. (2009). Selection of highly osteogenic and chondrogenic cells from bone marrow stromal cells in biocompatible polymer-coated plates. Journal of Biomedical Materials Research, 9999A, https://doi.org/10.1002/jbm.a.32460. NA-NA.
Lee, B. C., Kang, I., & Yu, K. R. (2021). Therapeutic features and updated clinical trials of mesenchymal stem cell (MSC)-Derived exosomes. J Clin Med, 10, 711. https://doi.org/10.3390/jcm10040711.
Rossello-Gelabert, M., Gonzalez-Pujana, A., Igartua, M., Santos-Vizcaino, E., & Hernandez, R. M. (2022). Clinical progress in MSC-based therapies for the management of severe COVID-19. Cytokine & Growth Factor Reviews. https://doi.org/10.1016/j.cytogfr.2022.07.002.
Renesme, L., Cobey, K. D., Le, M., Lalu, M. M., & Thebaud, B. (2021). Establishment of a consensus definition for mesenchymal stromal cells (MSC) and reporting guidelines for clinical trials of MSC therapy: A modified Delphi study protocol. British Medical Journal Open, 11, e054740. https://doi.org/10.1136/bmjopen-2021-054740.
Wang, L., Li, P., Tian, Y., Li, Z., Lian, C., Ou, Q., Jin, C., Gao, F., Xu, J. Y., Wang, J. (2018). Human Umbilical Cord Mesenchymal Stem Cells: Subpopulations and Their Difference in Cell Biology and Effects on Retinal Degeneration in RCS Rats. CMM 17. https://doi.org/10.2174/1566524018666171205140806.
Jiang, L., Ma, A., Song, L., Hu, Y., Dun, H., Daloze, P., Yu, Y., Jiang, J., Zafarullah, M., & Chen, H. (2014). Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. Journal of Tissue Engineering and Regenerative Medicine, 8, 896–905. https://doi.org/10.1002/term.1676.
de Rutte, J., Dimatteo, R., Zhu, S., Archang, M. M., & Di Carlo, D. (2022). Sorting single-cell microcarriers using commercial flow cytometers. Slas Technol, 27, 150–159. https://doi.org/10.1016/j.slast.2021.10.004.
Grégori, G., Patsekin, V., Rajwa, B., Jones, J., Ragheb, K., Holdman, C., & Robinson, J. P. (2012). Hyperspectral Cytometry at the single-cell level using a 32-Channel Photodetector. Cytometry. Part A, 81, 35–44. https://doi.org/10.1002/cyto.a.21120.
Radcliff, G., & Jaroszeski, M. J. (1998). Basics of Flow Cytometry. Flow Cytometry Protocols, 91, 1–24. https://doi.org/10.1385/0-89603-354-6:1.
Bacon, K., Lavoie, A., Rao, B. M., Daniele, M., & Menegatti, S. (2020). Past, Present, and Future of Affinity-based cell separation Technologies. Acta Biomaterialia, 112, 25–29. https://doi.org/10.1016/j.actbio.2020.05.004.
Schriebl, K., Lim, S., Choo, A., Tscheliessnig, A., & Jungbauer, A. (2010). Stem cell separation: A bottleneck in stem cell therapy. Biotechnology Journal, 5, 50–61. https://doi.org/10.1002/biot.200900115.
Zhu, B., & Murthy, S. K. (2013). Stem cell separation technologies. Curr Opin Chem Eng, 2, 3–7. https://doi.org/10.1016/j.coche.2012.11.002.
Khetani, S., Mohammadi, M., & Nezhad, A. S. (2018). Filter-based isolation, enrichment, and characterization of circulating tumor cells. Biotechnology and Bioengineering, 115, 2504–2529. https://doi.org/10.1002/bit.26787.
Roda, B., Zattoni, A., Reschiglian, P., Moon, M. H., Mirasoli, M., Michelini, E., & Roda, A. (2009). Field-flow fractionation in bioanalysis: A review of recent trends. Analytica Chimica Acta, 635, 132–143. https://doi.org/10.1016/j.aca.2009.01.015.
Chen, H., Sun, J., Wolvetang, E., & Cooper-White, J. (2015). High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices. Lab on a Chip, 15, 1072–1083. https://doi.org/10.1039/c4lc01176g.
Tang, W., Jiang, D., Li, Z., Zhu, L., Shi, J., Yang, J., & Xiang, N. (2019). Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles. Electrophoresis, 40, 930–954. https://doi.org/10.1002/elps.201800361.
Niculescu, A. G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci. 22, 2011. https://doi.org/10.3390/ijms22042011.
de Rutte, J., Dimatteo, R., Archang, M. M., van Zee, M., Koo, D., Lee, S., Sharrow, A. C., Krohl, P. J., Mellody, M., Zhu, S., et al. (2022). Suspendable hydrogel nanovials for massively parallel single-cell functional analysis and sorting. Acs Nano, 16, 7242–7257. https://doi.org/10.1021/acsnano.1c11420.
Mushahary, D., Spittler, A., Kasper, C., et al. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry. Part A, 93, 19–31. https://doi.org/10.1002/cyto.a.23242.
Giduthuri, A. T., Theodossiou, S. K., Schiele, N. R., & Srivastava, S. K. (2021). Dielectrophoretic characterization of Tenogenically differentiating mesenchymal stem cells. Biosensors, 11, 50. https://doi.org/10.3390/bios11020050.
Chen, P. (2008). Microfluidic chips for cell sorting. Frontiers in Bioscience: A Journal and Virtual Library, 13, 2464. https://doi.org/10.2741/2859.
Chen, Z., Luo, X., Zhao, X., Yang, M., & Wen, C. (2019). Label-free cell sorting strategies via biophysical and biochemical gradients. Journal of Orthopaedic Translation, 17, 55–63. https://doi.org/10.1016/j.jot.2019.01.005.
Lee, W. C., Shi, H., Poon, Z., Nyan, L. M., Kaushik, T., Shivashankar, G. V., Chan, J. K. Y., Lim, C. T., Han, J., & Van Vliet, K. J. (2014). Multivariate biophysical markers predictive of mesenchymal stromal cell multipotency. Proc. Natl. Acad. Sci. U.S.A. 111. https://doi.org/10.1073/pnas.1402306111.
Piyasena, M. E., & Graves, S. W. (2014). The intersection of flow cytometry with microfluidics and microfabrication. Lab on a Chip, 14, 1044–1059. https://doi.org/10.1039/C3LC51152A.
Funding
This study was funded by the National Natural Science Foundation of China (Grant No.81772104, No.81701929, No.81971889, No.81902013, No.82003085, No.82202468), the Natural Science Foundation of Guangdong Province (Grant No.2017A030310120, Grant No.2019A1515012170). The Foundation of Guangzhou Municipal Science and Technology Bureau (SL2022A04J02027). Nanfang Hospital Distinguished Young cultivation program (2022J003).
Author information
Authors and Affiliations
Contributions
Xinyi Feng: Original draft preparation, Manuscript revision. Fangfang Qi: Literature review and Editing, Manuscript revision. Hailin Wang: Review-specifically critical review. Wenzhen Li: Manuscript revision. Yuyang Gan: Review-commentary. Caiyu Qi: Editing-format layout. Zhen Lin: Review and revise manuscripts. Lu Chen: Visualization-data presentation. Piao Wang: Development of methodology. Zhiqi Hu: Oversight and leadership responsibility for the group. Yong Miao: Supervisor.
Corresponding authors
Ethics declarations
Ethics Approval
Not applicable.
Consent to Participate
Not applicable.
Consent to Publish
Not applicable.
Competing Interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Feng, X., Qi, F., Wang, H. et al. Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source. Stem Cell Rev and Rep 20, 524–537 (2024). https://doi.org/10.1007/s12015-023-10635-w
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12015-023-10635-w