Skip to main content
Log in

Bone Marrow Adipose Tissue: Regulation of Osteoblastic Niche, Hematopoiesis and Hematological Malignancies

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Bone marrow adipose tissue (BMAT) creates a specific microniche within multifunctional bone marrow (BM) ecosystem which imposes changes in surrounding cells and at systemic level. Moreover, BMAT contributes to spatial and temporal separation and metabolic compartmentalization of BM, thus regulating BM homeostasis and diseases. Recent findings have identified novel progenitor subsets of bone marrow adipocytes (BMAd)s recruited during the BM adipogenesis within different skeletal and hematopoietic stem cell niches. Potential of certain mesenchymal BM cells to differentiate into both osteogenic and adipogenic lineages, contributes to the complex interplay of BMAT with endosteal (osteoblastic) niche compartments as an important cellular player in bone tissue homeostasis. Targeting and ablation of BMAT cells at certain states might be an optional and promising strategy for improvement of bone health. Additionally, recent findings demonstrated spatial distribution of BMAds related to hematopoietic cells and pointed out important functional roles in the vital processes such as long-term hematopoiesis. BM adipogenesis appears to be an emergency phenomenon that follows the production of hematopoietic stem and progenitor cell niche factors, thus regulating physiological, stressed, and malignant hematopoiesis. Lipolytic and secretory activity of BMAds can influence survival and proliferation of hematopoietic cells at different maturation stages. Due to their different lipid status, constitutive and regulated BMAds are important determinants of normal and malignant hematopoietic cells. Further elucidation of cellular and molecular players involved in BMAT expansion and crosstalk with malignant cells is of paramount importance for conceiving the new therapies for improvement of BM health.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data and conclusions generated during this review are included in this published article.

Code Availability

N/A

Abbreviations

BMAT:

AdipoQ: adiponectin

ALL:

Acute lymphobastic leukemia

AML:

Acute myeloid leukemia

Arg 1:

Arginase 1

AT:

Adipose tissue

ATGL:

Adipose triglyceride lipase

BM:

Bone marrow

BMAd:

Bone marrow adipocyte

BMAT:

Bone marrow adipose tissue

BMI1:

Polycomb group protein

BMSC:

BM mesenchymal stromal cell

cBMAd:

Constitutive bone marrow adipocytes

Cebp-ɑ:

CCAAT/enhancer-binding protein a

CFU-GM:

Colony-forming unit-granulocyte–macrophage

CLP:

common lymphoid progenitor

CMP:

Common myeloid progenitor

CR:

Caloric restriction

CXCL12:

C-X-C Motif Chemokine Ligand 12

DTR:

Diphtheria toxin receptor

EPO:

Erythropoietin

FA:

Fatty acids

Fabp4:

Fatty acid binding protein 4

FOXC1:

Forkhead box C1

G-CSF:

Granulocyte colony stimulating factor

HFD:

High fat diet

HSC:

Hematopoietic stem cell

HSL:

Hormon-sensitive lipase

HSPC:

Hematopoietic stem and progenitor cell

IGF-1:

Insulin-like growth factor 1

IL-6:

Interleukin-6

iNOS:

Inducible NO synthase

lcnRNA:

Long non-coding RNA

LT-HSC:

Long term hematopoietic stem cell

MALP:

Marrow adipogenic lineage precursor

MCP-1:

Monocyte chemoattractant protein-1

MDS:

Myelodisplastic syndrome

MM:

Multiple myeloma

OPG:

Osteoprotegerin

PET/CT:

Positron emission tomography–computed tomography

PI3K:

Phosphatidylinositol 3-kinase

Plin1:

Perilipin 1

Pparγ:

Peroxisome proliferator- activated receptor

PRDM1:

PR/SET domain 1

PTH:

Parathyroid hormone

RANK:

Receptor activator of nuclear factor kappa-Β

RANKL:

Receptor activator of nuclear factor kappa-Β ligand

rBMAd:

Regulated bone marrow adipocytes

Runx2:

Runt-related transcription factor 2

sc:

Single cell

SCF:

Stem cell growth factor

SDF-1:

Stromal cell-derived factor 1

T-ALL:

T cells Acute Lymphobastic leukemia

T2DM:

Type 2 diabetes mellitus

TNF-α:

Tumor necrosis factor ɑ

WAT:

White adipose tissue

References

  1. Scheller, E. L., Doucette, C. R., Learman, B. S., Cawthorn, W. P., Khandaker, S., Schell, B., Wu, B., Ding, S. Y., Bredella, M. A., Fazeli, P. K., Khoury, B., Jepsen, K. J., Pilch, P. F., Klibanski, A., Rosen, C. J., & MacDougald, O. A. (2015). Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nature Communications, 6, 7808. https://doi.org/10.1038/ncomms8808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Veldhuis-Vlug, A. G., & Rosen, C. J. (2017). Mechanisms of marrow adiposity and its implications for skeletal health. Metabolism: clinical and experimental, 67, 106–114. https://doi.org/10.1016/j.metabol.2016.11.013.

  3. Trivanovic, D., Harder, J., Leucht, M., Kreuzahler, T., Schlierf, B., Holzapfel, B. M., Rudert, M., Jakob, F., & Herrmann, M. (2022). Immune and stem cell compartments of acetabular and femoral bone marrow in hip osteoarthritis patients. Osteoarthritis and Cartilage, 30(8), 1116–1129. https://doi.org/10.1016/j.joca.2022.05.001

    Article  CAS  PubMed  Google Scholar 

  4. Lucas, S., Tencerova, M., von der Weid, B., Andersen, T. L., Attané, C., Behler-Janbeck, F., Cawthorn, W. P., Ivaska, K. K., Naveiras, O., Podgorski, I., Reagan, M. R., & van der Eerden, B. (2021). Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology12, 744527. https://doi.org/10.3389/fendo.2021.744527.

  5. Harms, M. J., Li, Q., Lee, S., Zhang, C., Kull, B., Hallen, S., Thorell, A., Alexandersson, I., Hagberg, C. E., Peng, X. R., Mardinoglu, A., Spalding, K. L., & Boucher, J. (2019). Mature Human White Adipocytes Cultured under Membranes Maintain Identity, Function, and Can Transdifferentiate into Brown-like Adipocytes. Cell Reports, 27(1), 213-225.e5. https://doi.org/10.1016/j.celrep.2019.03.026

    Article  CAS  PubMed  Google Scholar 

  6. Suchacki, K. J., Tavares, A., Mattiucci, D., Scheller, E. L., Papanastasiou, G., Gray, C., Sinton, M. C., Ramage, L. E., McDougald, W. A., Lovdel, A., Sulston, R. J., Thomas, B. J., Nicholson, B. M., Drake, A. J., Alcaide-Corral, C. J., Said, D., Poloni, A., Cinti, S., Macpherson, G. J., Dweck, M. R., … Cawthorn, W. P. (2020). Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications11(1), 3097. https://doi.org/10.1038/s41467-020-16878-2.

  7. Mattiucci, D., Maurizi, G., Izzi, V., Cenci, L., Ciarlantini, M., Mancini, S., Mensà, E., Pascarella, R., Vivarelli, M., Olivieri, A., Leoni, P., & Poloni, A. (2018). Bone marrow adipocytes support hematopoietic stem cell survival. Journal of Cellular Physiology, 233(2), 1500–1511. https://doi.org/10.1002/jcp.26037

    Article  CAS  PubMed  Google Scholar 

  8. de Paula, F. J. A., & Rosen, C. J. (2020). Marrow Adipocytes: Origin, Structure, and Function. Annual Review of Physiology, 82, 461–484. https://doi.org/10.1146/annurev-physiol-021119-034513

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X., Robles, H., Magee, K. L., Lorenz, M. R., Wang, Z., Harris, C. A., Craft, C. S., & Scheller, E. L. (2021). A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. eLife10, e66275. https://doi.org/10.7554/eLife.66275.

  10. Attané, C., Estève, D., Chaoui, K., Iacovoni, J. S., Corre, J., Moutahir, M., Valet, P., Schiltz, O., Reina, N., & Muller, C. (2020). Human Bone Marrow Is Comprised of Adipocytes with Specific Lipid Metabolism. Cell Reports, 30(4), 949-958.e6. https://doi.org/10.1016/j.celrep.2019.12.089

    Article  CAS  PubMed  Google Scholar 

  11. Li, Z., Bowers, E., Zhu, J., Yu, H., Hardij, J., Bagchi, D. P., Mori, H., Lewis, K. T., Granger, K., Schill, R. L., Romanelli, S. M., Abrishami, S., Hankenson, K. D., Singer, K., Rosen, C. J., & MacDougald, O. A. (2022). Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. eLife11, e78496. https://doi.org/10.7554/eLife.78496.

  12. Ambrosi, T. H., Scialdone, A., Graja, A., Gohlke, S., Jank, A. M., Bocian, C., Woelk, L., Fan, H., Logan, D. W., Schürmann, A., Saraiva, L. R., & Schulz, T. J. (2017). Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell, 20(6), 771-784.e6. https://doi.org/10.1016/j.stem.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G., & Morrison, S. J. (2014). Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell, 15(2), 154–168. https://doi.org/10.1016/j.stem.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mizoguchi, T., Pinho, S., Ahmed, J., Kunisaki, Y., Hanoun, M., Mendelson, A., Ono, N., Kronenberg, H. M., & Frenette, P. S. (2014). Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Developmental Cell, 29(3), 340–349. https://doi.org/10.1016/j.devcel.2014.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., Scadden, D. T., Ma’ayan, A., Enikolopov, G. N., & Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trivanović, D., Vignjević Petrinović, S., Okić Djordjević, I., Kukolj, T., Bugarski, D., & Jauković, A. (2020). Adipogenesis in Different Body Depots and Tumor Development. Frontiers in Cell and Developmental Biology8, 571648. https://doi.org/10.3389/fcell.2020.571648.

  17. Hu, Y., Li, X., Zhi, X., Cong, W., Huang, B., Chen, H., Wang, Y., Li, Y., Wang, L., Fang, C., Guo, J., Liu, Y., Cui, J., Cao, L., Weng, W., Zhou, Q., Wang, S., Chen, X., & Su, J. (2021). RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Reports22(7), e52481. https://doi.org/10.15252/embr.202152481.

  18. Takeshita, S., Fumoto, T., Naoe, Y., & Ikeda, K. (2014). Age-related marrow adipogenesis is linked to increased expression of RANKL. The Journal of Biological Chemistry, 289(24), 16699–16710. https://doi.org/10.1074/jbc.M114.547919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robles, H., Park, S., Joens, M. S., Fitzpatrick, J., Craft, C. S., & Scheller, E. L. (2019). Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone, 118, 89–98. https://doi.org/10.1016/j.bone.2018.01.020

    Article  PubMed  Google Scholar 

  20. Tencerova, M., Frost, M., Figeac, F., Nielsen, T. K., Ali, D., Lauterlein, J. L., Andersen, T. L., Haakonsson, A. K., Rauch, A., Madsen, J. S., Ejersted, C., Højlund, K., & Kassem, M. (2019). Obesity-Associated Hypermetabolism and Accelerated Senescence of Bone Marrow Stromal Stem Cells Suggest a Potential Mechanism for Bone Fragility. Cell Reports, 27(7), 2050-2062.e6. https://doi.org/10.1016/j.celrep.2019.04.066

    Article  CAS  PubMed  Google Scholar 

  21. Tencerova, M., Okla, M., & Kassem, M. (2019). Insulin Signaling in Bone Marrow Adipocytes. Current Osteoporosis Reports, 17(6), 446–454. https://doi.org/10.1007/s11914-019-00552-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tintut, Y., & Demer, L. L. (2014). Effects of bioactive lipids and lipoproteins on bone. Trends in Endocrinology and Metabolism: TEM, 25(2), 53–59. https://doi.org/10.1016/j.tem.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  23. Cawthorn, W. P., Scheller, E. L., Parlee, S. D., Pham, H. A., Learman, B. S., Redshaw, C. M., Sulston, R. J., Burr, A. A., Das, A. K., Simon, B. R., Mori, H., Bree, A. J., Schell, B., Krishnan, V., & MacDougald, O. A. (2016). Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology, 157(2), 508–521. https://doi.org/10.1210/en.2015-1477

    Article  CAS  PubMed  Google Scholar 

  24. Rendina-Ruedy, E., & Rosen, C. J. (2020). Lipids in the Bone Marrow: An Evolving Perspective. Cell Metabolism, 31(2), 219–231. https://doi.org/10.1016/j.cmet.2019.09.015

    Article  CAS  PubMed  Google Scholar 

  25. Devlin, M. J., & Rosen, C. J. (2015). The bone-fat interface: Basic and clinical implications of marrow adiposity. The Lancet. Diabetes & Endocrinology, 3(2), 141–147. https://doi.org/10.1016/S2213-8587(14)70007-5

    Article  CAS  Google Scholar 

  26. Lee, J. Y., Yang, J. Y., & Kim, S. W. (2021). Bone Lining Cells Could Be Sources of Bone Marrow Adipocytes. Frontiers in Endocrinology12, 766254. https://doi.org/10.3389/fendo.2021.766254.

  27. Ge, C., Zhao, G., Li, B., Li, Y., Cawthorn, W. P., MacDougald, O. A., & Franceschi, R. T. (2018). Genetic inhibition of PPARγ S112 phosphorylation reduces bone formation and stimulates marrow adipogenesis. Bone, 107, 1–9. https://doi.org/10.1016/j.bone.2017.10.023

    Article  CAS  PubMed  Google Scholar 

  28. Goto, H., Hozumi, A., Osaki, M., Fukushima, T., Sakamoto, K., Yonekura, A., Tomita, M., Furukawa, K., Shindo, H., & Baba, H. (2011). Primary human bone marrow adipocytes support TNF-α-induced osteoclast differentiation and function through RANKL expression. Cytokine, 56(3), 662–668. https://doi.org/10.1016/j.cyto.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  29. Clabaut, A., Grare, C., Rolland-Valognes, G., Letarouilly, J. G., Bourrier, C., Andersen, T. L., Sikjær, T., Rejnmark, L., Ejersted, C., Pastoureau, P., Hardouin, P., Sabatini, M., & Broux, O. (2021). Adipocyte-induced transdifferentiation of osteoblasts and its potential role in age-related bone loss. PLoS ONE16(1), e0245014. https://doi.org/10.1371/journal.pone.0245014.

  30. Aaron, N., Kraakman, M. J., Zhou, Q., Liu, Q., Costa, S., Yang, J., Liu, L., Yu, L., Wang, L., He, Y., Fan, L., Hirakawa, H., Ding, L., Lo, J., Wang, W., Zhao, B., Guo, E., Sun, L., Rosen, C. J., & Qiang, L. (2021). Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. eLife, 10, e69209. https://doi.org/10.7554/eLife.69209.

  31. Li, Z., Bagchi, D. P., Zhu, J., Bowers, E., Yu, H., Hardij, J., Mori, H., Granger, K., Skjaerlund, J., Mandair, G., Abrishami, S., Singer, K., Hankenson, K. D., Rosen, C. J., & MacDougald, O. A. (2022). Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight, 7(21), e160915. https://doi.org/10.1172/jci.insight.160915.

  32. Palmisano, B., Labella, R., Donsante, S., Remoli, C., Spica, E., Coletta, I., Farinacci, G., Dello Spedale Venti, M., Saggio, I., Serafini, M., Robey, P. G., Corsi, A., & Riminucci, M. (2022). GsαR201C and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells. Bone Research, 10(1), 50. https://doi.org/10.1038/s41413-022-00220-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, W., Zhong, L., Yao, L., Wei, Y., Gui, T., Li, Z., Kim, H., Holdreith, N., Jiang, X., Tong, W., Dyment, N., Liu, X. S., Yang, S., Choi, Y., Ahn, J., & Qin, L. (2021). Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. The Journal of Clinical Investigation131(2), e140214. https://doi.org/10.1172/JCI140214.

  34. Reagan, M. R., & Rosen, C. J. (2016). Navigating the bone marrow niche: Translational insights and cancer-driven dysfunction. Nature Reviews. Rheumatology, 12(3), 154–168. https://doi.org/10.1038/nrrheum.2015.160

    Article  CAS  PubMed  Google Scholar 

  35. Zou, W., Rohatgi, N., Brestoff, J. R., Li, Y., Barve, R. A., Tycksen, E., Kim, Y., Silva, M. J., & Teitelbaum, S. L. (2020). Ablation of Fat Cells in Adult Mice Induces Massive Bone Gain. Cell Metabolism, 32(5), 801-813.e6. https://doi.org/10.1016/j.cmet.2020.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, G., Xu, Z., Hou, L., Li, X., Li, X., Yuan, W., Polat, M., & Chang, S. (2016). Differential effects of bisphenol A diglicydyl ether on bone quality and marrow adiposity in ovary-intact and ovariectomized rats. American Journal of Physiology. Endocrinology and metabolism311(6), E922–E927. https://doi.org/10.1152/ajpendo.00267.2016.

  37. Fan, Y., Hanai, J. I., Le, P. T., Bi, R., Maridas, D., DeMambro, V., Figueroa, C. A., Kir, S., Zhou, X., Mannstadt, M., Baron, R., Bronson, R. T., Horowitz, M. C., Wu, J. Y., Bilezikian, J. P., Dempster, D. W., Rosen, C. J., & Lanske, B. (2017). Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metabolism, 25(3), 661–672. https://doi.org/10.1016/j.cmet.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maridas, D. E., Rendina-Ruedy, E., Helderman, R. C., DeMambro, V. E., Brooks, D., Guntur, A. R., Lanske, B., Bouxsein, M. L., & Rosen, C. J. (2019). Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB Journal : Official publication of the Federation of American Societies for Experimental Biology, 33(2), 2885–2898. https://doi.org/10.1096/fj.201800948RR

    Article  CAS  PubMed  Google Scholar 

  39. Cho, S. W., Pirih, F. Q., Koh, A. J., Michalski, M., Eber, M. R., Ritchie, K., Sinder, B., Oh, S., Al-Dujaili, S. A., Lee, J., Kozloff, K., Danciu, T., Wronski, T. J., & McCauley, L. K. (2013). The soluble interleukin-6 receptor is a mediator of hematopoietic and skeletal actions of parathyroid hormone. The Journal of Biological Chemistry, 288(10), 6814–6825. https://doi.org/10.1074/jbc.M112.393363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tratwal, J., Rojas-Sutterlin, S., Bataclan, C., Blum, S., Naveiras, O. (2021). Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment. Best Practice & Research Clinical Endocrinology & Metabolism, 35(4), 101564. https://doi.org/10.1016/j.beem.2021.101564.

  41. Tavassoli M. (1976). Marrow adipose cells. Histochemical identification of labile and stable components. Archives of Pathology & Laboratory Medicine100(1), 16–18.

  42. Tavassoli, M., Houchin, D. N., & Jacobs, P. (1977). Fatty acid composition of adipose cells in red and yellow marrow: A possible determinant of haematopoietic potential. Scandinavian Journal of Haematology, 18(1), 47–53. https://doi.org/10.1111/j.1600-0609.1977.tb01476.x

    Article  CAS  PubMed  Google Scholar 

  43. Bathija, A., Davis, S., & Trubowitz, S. (1978). Marrow adipose tissue: response to erythropoiesis. (“Marrow adipose tissue: response to erythropoiesis”). American Journal of Hematology5(4), 315–321. https://doi.org/10.1002/ajh.2830050406.

  44. Bigelow, C. L., & Tavassoli, M. (1984). Studies on conversion of yellow marrow to red marrow by using ectopic bone marrow implants. Experimental Hematology, 12(7), 581–585.

    CAS  PubMed  Google Scholar 

  45. Pernes, G., Flynn, M. C., Lancaster, G. I., & Murphy, A. J. (2019). Fat for fuel: lipid metabolism in haematopoiesis. Clinical & Translational Immunology8(12), e1098. https://doi.org/10.1002/cti2.1098.

  46. Maryanovich, M., & Ito, K. (2022). CD36-Mediated Fatty Acid Oxidation in Hematopoietic Stem Cells Is a Novel Mechanism of Emergency Hematopoiesis in Response to Infection. Immunometabolism4(2), e220008. https://doi.org/10.20900/immunometab20220008.

  47. Robino, J. J., Pamir, N., Rosario, S., Crawford, L. B., Burwitz, B. J., Roberts, C. T., Jr, Kurre, P., & Varlamov, O. (2020). Spatial and biochemical interactions between bone marrow adipose tissue and hematopoietic stem and progenitor cells in rhesus macaques. Bone133, 115248. https://doi.org/10.1016/j.bone.2020.115248.

  48. Tuljapurkar, S. R., McGuire, T. R., Brusnahan, S. K., Jackson, J. D., Garvin, K. L., Kessinger, M. A., Lane, J. T., O' Kane, B. J., & Sharp, J. G. (2011). Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. Journal of Anatomy219(5), 574–581.https://doi.org/10.1111/j.1469-7580.2011.01423.x.

  49. Naveiras, O., Nardi, V., Wenzel, P. L., Hauschka, P. V., Fahey, F., & Daley, G. Q. (2009). Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature, 460(7252), 259–263. https://doi.org/10.1038/nature08099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu, T., Kitano, A., Luu, V., Dawson, B., Hoegenauer, K. A., Lee, B. H., & Nakada, D. (2019). Bmi1 Suppresses Adipogenesis in the Hematopoietic Stem Cell Niche. Stem Cell Reports, 13(3), 545–558. https://doi.org/10.1016/j.stemcr.2019.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oguro, H., Ding, L., & Morrison, S. J. (2013). SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell, 13(1), 102–116. https://doi.org/10.1016/j.stem.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, B. O., Yu, H., Yue, R., Zhao, Z., Rios, J. J., Naveiras, O., & Morrison, S. J. (2017). Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nature Cell Biology, 19(8), 891–903. https://doi.org/10.1038/ncb3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DiMascio, L., Voermans, C., Uqoezwa, M., Duncan, A., Lu, D., Wu, J., Sankar, U., & Reya, T. (2007). Identification of adiponectin as a novel hemopoietic stem cell growth factor. Journal of Immunology (Baltimore, Md. : 1950)178(6), 3511–3520. https://doi.org/10.4049/jimmunol.178.6.3511.

  54. Poloni, A., Maurizi, G., Serrani, F., Mancini, S., Zingaretti, M. C., Frontini, A., Cinti, S., Olivieri, A., & Leoni, P. (2013). Molecular and functional characterization of human bone marrow adipocytes. Experimental Hematology, 41(6), 558-566.e2. https://doi.org/10.1016/j.exphem.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  55. Ferland-McCollough, D., Maselli, D., Spinetti, G., Sambataro, M., Sullivan, N., Blom, A., & Madeddu, P. (2018). MCP-1 Feedback Loop Between Adipocytes and Mesenchymal Stromal Cells Causes Fat Accumulation and Contributes to Hematopoietic Stem Cell Rarefaction in the Bone Marrow of Patients With Diabetes. Diabetes, 67(7), 1380–1394. https://doi.org/10.2337/db18-0044

    Article  CAS  PubMed  Google Scholar 

  56. van den Berg, S. M., Seijkens, T. T., Kusters, P. J., Beckers, L., den Toom, M., Smeets, E., Levels, J., de Winther, M. P., & Lutgens, E. (2016). Diet-induced obesity in mice diminishes hematopoietic stem and progenitor cells in the bone marrow. FASEB Journal : Official publication of the Federation of American Societies for Experimental Biology, 30(5), 1779–1788. https://doi.org/10.1096/fj.201500175

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Z., Huang, Z., Ong, B., Sahu, C., Zeng, H., & Ruan, H. B. (2019). Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica, 104(9), 1731–1743. https://doi.org/10.3324/haematol.2018.205856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Valet, C., Batut, A., Vauclard, A., Dortignac, A., Bellio, M., Payrastre, B., Valet, P., & Severin, S. (2020). Adipocyte Fatty Acid Transfer Supports Megakaryocyte Maturation. Cell Reports32(1), 107875. https://doi.org/10.1016/j.celrep.2020.107875.

  59. Luo, Y., Chen, G. L., Hannemann, N., Ipseiz, N., Krönke, G., Bäuerle, T., Munos, L., Wirtz, S., Schett, G., & Bozec, A. (2015). Microbiota from Obese Mice Regulate Hematopoietic Stem Cell Differentiation by Altering the Bone Niche. Cell Metabolism, 22(5), 886–894. https://doi.org/10.1016/j.cmet.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  60. Wang, H., Leng, Y., & Gong, Y. (2018). Bone Marrow Fat and Hematopoiesis. Frontiers in Endocrinology, 9, 694. https://doi.org/10.3389/fendo.2018.00694

    Article  PubMed  PubMed Central  Google Scholar 

  61. Suresh, S., de Castro, L. F., Dey, S., Robey, P. G., & Noguchi, C. T. (2019). Erythropoietin modulates bone marrow stromal cell differentiation. Bone Research, 7, 21. https://doi.org/10.1038/s41413-019-0060-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vauclard, A., Bellio, M., Valet, C., Borret, M., Payrastre, B., & Severin, S. (2022). Obesity: Effects on bone marrow homeostasis and platelet activation. Thrombosis Research. https://doi.org/10.1016/j.thromres.2022.10.008

    Article  Google Scholar 

  63. do Carmo, L. S., Rogero, M. M., Paredes-Gamero, E. J., Nogueira-Pedro, A., Xavier, J. G., Cortez, M., Borges, M. C., Fujii, T. M., Borelli, P., & Fock, R. A. (2013). A high-fat diet increases interleukin-3 and granulocyte colony-stimulating factor production by bone marrow cells and triggers bone marrow hyperplasia and neutrophilia in Wistar rats. Experimental Biology and Medicine (Maywood, N.J.)238(4), 375–384. https://doi.org/10.1177/1535370213477976.

  64. Nakamura, M., Harigaya, K., & Watanabe, Y. (1985). Correlation between production of colony-stimulating activity (CSA) and adipose conversion in a murine marrow-derived preadipocyte line (H-1/A). Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)179(3), 283–287. https://doi.org/10.3181/00379727-179-42097.

  65. Belaid-Choucair, Z., Lepelletier, Y., Poncin, G., Thiry, A., Humblet, C., Maachi, M., Beaulieu, A., Schneider, E., Briquet, A., Mineur, P., Lambert, C., Mendes-Da-Cruz, D., Ahui, M. L., Asnafi, V., Dy, M., Boniver, J., Nusgens, B. V., Hermine, O., & Defresne, M. P. (2008). Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells (Dayton, Ohio), 26(6), 1556–1564. https://doi.org/10.1634/stemcells.2008-0068

    Article  CAS  PubMed  Google Scholar 

  66. Masamoto, Y., Arai, S., Sato, T., Yoshimi, A., Kubota, N., Takamoto, I., Iwakura, Y., Yoshimura, A., Kadowaki, T., & Kurokawa, M. (2016). Adiponectin Enhances Antibacterial Activity of Hematopoietic Cells by Suppressing Bone Marrow Inflammation. Immunity, 44(6), 1422–1433. https://doi.org/10.1016/j.immuni.2016.05.010

    Article  CAS  PubMed  Google Scholar 

  67. Zlotoff, D. A., Zhang, S. L., De Obaldia, M. E., Hess, P. R., Todd, S. P., Logan, T. D., & Bhandoola, A. (2011). Delivery of progenitors to the thymus limits T-lineage reconstitution after bone marrow transplantation. Blood, 118(7), 1962–1970. https://doi.org/10.1182/blood-2010-12-324954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perry, S. S., Welner, R. S., Kouro, T., Kincade, P. W., & Sun, X. H. (2006). Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential. Journal of Immunology (Baltimore, Md. : 1950)177(5), 2880–2887. https://doi.org/10.4049/jimmunol.177.5.2880.

  69. Trottier, M. D., Naaz, A., Li, Y., & Fraker, P. J. (2012). Enhancement of hematopoiesis and lymphopoiesis in diet-induced obese mice. Proceedings of the National Academy of Sciences of the United States of America, 109(20), 7622–7629. https://doi.org/10.1073/pnas.1205129109

    Article  PubMed  PubMed Central  Google Scholar 

  70. Karlsson, E. A., Sheridan, P. A., & Beck, M. A. (2010). Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells. The Journal of Nutrition, 140(9), 1691–1697. https://doi.org/10.3945/jn.110.123653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peng, H., Hu, B., Xie, L. Q., Su, T., Li, C. J., Liu, Y., Yang, M., Xiao, Y., Feng, X., Zhou, R., Guo, Q., Zhou, H. Y., Huang, Y., Jiang, T. J., & Luo, X. H. (2022). A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metabolism, 34(8), 1168-1182.e6. https://doi.org/10.1016/j.cmet.2022.05.009

    Article  CAS  PubMed  Google Scholar 

  72. Adler, B. J., Green, D. E., Pagnotti, G. M., Chan, M. E., & Rubin, C. T. (2014). High fat diet rapidly suppresses B lymphopoiesis by disrupting the supportive capacity of the bone marrow niche. PLoS ONE9(3), e90639. https://doi.org/10.1371/journal.pone.0090639.

  73. Liu, A., Chen, M., Kumar, R., Stefanovic-Racic, M., O’Doherty, R. M., Ding, Y., Jahnen-Dechent, W., & Borghesi, L. (2018). Bone marrow lympho-myeloid malfunction in obesity requires precursor cell-autonomous TLR4. Nature Communications, 9(1), 708. https://doi.org/10.1038/s41467-018-03145-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Singer, K., DelProposto, J., Morris, D. L., Zamarron, B., Mergian, T., Maley, N., Cho, K. W., Geletka, L., Subbaiah, P., Muir, L., Martinez-Santibanez, G., & Lumeng, C. N. (2014). Diet-induced obesity promotes myelopoiesis in hematopoietic stem cells. Molecular Metabolism, 3(6), 664–675. https://doi.org/10.1016/j.molmet.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kennedy, D. E., & Knight, K. L. (2015). Inhibition of B Lymphopoiesis by Adipocytes and IL-1-Producing Myeloid-Derived Suppressor Cells. Journal of Immunology (Baltimore, Md. : 1950)195(6), 2666–2674. https://doi.org/10.4049/jimmunol.1500957.

  76. Bilwani, F. A., & Knight, K. L. (2012). Adipocyte-derived soluble factor(s) inhibits early stages of B lymphopoiesis. Journal of Immunology (Baltimore, Md. : 1950)189(9), 4379–4386. https://doi.org/10.4049/jimmunol.1201176.

  77. Yokota, T., Meka, C. S., Kouro, T., Medina, K. L., Igarashi, H., Takahashi, M., Oritani, K., Funahashi, T., Tomiyama, Y., Matsuzawa, Y., & Kincade, P. W. (2003). Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells. Journal of Immunology (Baltimore, Md. : 1950)171(10), 5091–5099. https://doi.org/10.4049/jimmunol.171.10.5091.

  78. Zioni, N., Bercovich, A., Chapal Ilani, N., Solomon, A., Kopitman, E., Sacma M., Hartmut, G., Scheller, M., Müller-Tidow C., Lipka, D., Shlush, E, Minden, M., Kaushansky, N, Shlush, L. I. Inflammatory signals from fatty bone marrow supports the early stages of DNMT3a driven clonal hematopoiesis. bioRxiv. https://doi.org/10.1101/2022.01.13.476218

  79. Raaijmakers, M. H., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., Ebert, B. L., Al-Shahrour, F., Hasserjian, R. P., Scadden, E. O., Aung, Z., Matza, M., Merkenschlager, M., Lin, C., Rommens, J. M., & Scadden, D. T. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290), 852–857. https://doi.org/10.1038/nature08851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kode, A., Manavalan, J. S., Mosialou, I., Bhagat, G., Rathinam, C. V., Luo, N., Khiabanian, H., Lee, A., Murty, V. V., Friedman, R., Brum, A., Park, D., Galili, N., Mukherjee, S., Teruya-Feldstein, J., Raza, A., Rabadan, R., Berman, E., & Kousteni, S. (2014). Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature, 506(7487), 240–244. https://doi.org/10.1038/nature12883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Galán-Díez, M., Borot, F., Ali, A. M., Zhao, J., Gil-Iturbe, E., Shan, X., Luo, N., Liu, Y., Huang, X. P., Bisikirska, B., Labella, R., Kurland, I., Roth, B. L., Quick, M., Mukherjee, S., Rabadán, R., Carroll, M., Raza, A., & Kousteni, S. (2022). Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer discovery, 12(4), 1106–1127. https://doi.org/10.1158/2159-8290.CD-21-0692

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chen, Y., Hoffmeister, L. M., Zaun, Y., Arnold, L., Schmid, K. W., Giebel, B., Klein-Hitpass, L., Hanenberg, H., Squire, A., Reinhardt, H. C., Dührsen, U., Bertram, S., & Hanoun, M. (2020). Acute myeloid leukemia-induced remodeling of the human bone marrow niche predicts clinical outcome. Blood Advances, 4(20), 5257–5268. https://doi.org/10.1182/bloodadvances.2020001808

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lu, W., Weng, W., Zhu, Q., Zhai, Y., Wan, Y., Liu, H., Yang, S., Yu, Y., Wei, Y., & Shi, J. (2018). Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia. Haematologica, 103(1), e21–e24. https://doi.org/10.3324/haematol.2017.173492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shafat, M. S., Oellerich, T., Mohr, S., Robinson, S. D., Edwards, D. R., Marlein, C. R., Piddock, R. E., Fenech, M., Zaitseva, L., Abdul-Aziz, A., Turner, J., Watkins, J. A., Lawes, M., Bowles, K. M., & Rushworth, S. A. (2017). Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood, 129(10), 1320–1332. https://doi.org/10.1182/blood-2016-08-734798

    Article  CAS  PubMed  Google Scholar 

  85. Boyd, A. L., Reid, J. C., Salci, K. R., Aslostovar, L., Benoit, Y. D., Shapovalova, Z., Nakanishi, M., Porras, D. P., Almakadi, M., Campbell, C., Jackson, M. F., Ross, C. A., Foley, R., Leber, B., Allan, D. S., Sabloff, M., Xenocostas, A., Collins, T. J., & Bhatia, M. (2017). Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nature Cell Biology, 19(11), 1336–1347. https://doi.org/10.1038/ncb3625

    Article  CAS  PubMed  Google Scholar 

  86. Heydt, Q., Xintaropoulou, C., Clear, A., Austin, M., Pislariu, I., Miraki-Moud, F., Cutillas, P., Korfi, K., Calaminici, M., Cawthorn, W., Suchacki, K., Nagano, A., Gribben, J. G., Smith, M., Cavenagh, J. D., Oakervee, H., Castleton, A., Taussig, D., Peck, B., Wilczynska, A., … Patel, B. (2021). Adipocytes disrupt the translational programme of acute lymphoblastic leukaemia to favour tumour survival and persistence. Nature Communications12(1), 5507. https://doi.org/10.1038/s41467-021-25540-4.

  87. Tucci, J., Chen, T., Margulis, K., Orgel, E., Paszkiewicz, R. L., Cohen, M. D., Oberley, M. J., Wahhab, R., Jones, A. E., Divakaruni, A. S., Hsu, C. C., Noll, S. E., Sheng, X., Zare, R. N., & Mittelman, S. D. (2021). Adipocytes Provide Fatty Acids to Acute Lymphoblastic Leukemia Cells. Frontiers in Oncology11, 665763. https://doi.org/10.3389/fonc.2021.665763.

  88. Cahu, X., Calvo, J., Poglio, S., Prade, N., Colsch, B., Arcangeli, M. L., Leblanc, T., Petit, A., Baleydier, F., Baruchel, A., Landman-Parker, J., Junot, C., Larghero, J., Ballerini, P., Delabesse, E., Uzan, B., & Pflumio, F. (2017). Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Advances, 1(20), 1760–1772. https://doi.org/10.1182/bloodadvances.2017004960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bredella, M. A., Fazeli, P. K., Miller, K. K., Misra, M., Torriani, M., Thomas, B. J., Ghomi, R. H., Rosen, C. J., & Klibanski, A. (2009). Increased bone marrow fat in anorexia nervosa. The Journal of Clinical Endocrinology and Metabolism, 94(6), 2129–2136. https://doi.org/10.1210/jc.2008-2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nowak, D., Stewart, D., & Koeffler, H. P. (2009). Differentiation therapy of leukemia: 3 decades of development. Blood, 113(16), 3655–3665. https://doi.org/10.1182/blood-2009-01-198911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, Z., Xie, J., Wu, G., Shen, J., Collins, R., Chen, W., Kang, X., Luo, M., Zou, Y., Huang, L. J., Amatruda, J. F., Slone, T., Winick, N., Scherer, P. E., & Zhang, C. C. (2017). Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nature Medicine, 23(1), 79–90. https://doi.org/10.1038/nm.4252

    Article  CAS  PubMed  Google Scholar 

  92. Marinac, C. R., Suppan, C. A., Giovannucci, E., Song, M., Kværner, A. S., Townsend, M. K., Rosner, B. A., Rebbeck, T. R., Colditz, G. A., & Birmann, B. M. (2019). Elucidating Under-Studied Aspects of the Link Between Obesity and Multiple Myeloma: Weight Pattern, Body Shape Trajectory, and Body Fat Distribution. JNCI Cancer Spectrum3(3), pkz044. https://doi.org/10.1093/jncics/pkz044.

  93. Fairfield, H., Costa, S., Falank, C., Farrell, M., Murphy, C. S., D'Amico, A., Driscoll, H., & Reagan, M. R. (2021). Multiple Myeloma Cells Alter Adipogenesis, Increase Senescence-Related and Inflammatory Gene Transcript Expression, and Alter Metabolism in Preadipocytes. Frontiers in Oncology10, 584683. https://doi.org/10.3389/fonc.2020.584683.

  94. Trotter, T. N., Gibson, J. T., Sherpa, T. L., Gowda, P. S., Peker, D., & Yang, Y. (2016). Adipocyte-Lineage Cells Support Growth and Dissemination of Multiple Myeloma in Bone. The American Journal of Pathology, 186(11), 3054–3063. https://doi.org/10.1016/j.ajpath.2016.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bullwinkle, E. M., Parker, M. D., Bonan, N. F., Falkenberg, L. G., Davison, S. P., & DeCicco-Skinner, K. L. (2016). Adipocytes contribute to the growth and progression of multiple myeloma: Unraveling obesity related differences in adipocyte signaling. Cancer Letters, 380(1), 114–121. https://doi.org/10.1016/j.canlet.2016.06.010

    Article  CAS  PubMed  Google Scholar 

  96. Caers, J., Deleu, S., Belaid, Z., De Raeve, H., Van Valckenborgh, E., De Bruyne, E., Defresne, M. P., Van Riet, I., Van Camp, B., & Vanderkerken, K. (2007). Neighboring adipocytes participate in the bone marrow microenvironment of multiple myeloma cells. Leukemia, 21(7), 1580–1584. https://doi.org/10.1038/sj.leu.2404658

    Article  CAS  PubMed  Google Scholar 

  97. Liu, Z., Xu, J., He, J., Liu, H., Lin, P., Wan, X., Navone, N. M., Tong, Q., Kwak, L. W., Orlowski, R. Z., & Yang, J. (2015). Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget6(33), 34329–34341. https://doi.org/10.18632/oncotarget.6020.

  98. Liu, H., He, J., Koh, S. P., Zhong, Y., Liu, Z., Wang, Z., Zhang, Y., Li, Z., Tam, B. T., Lin, P., Xiao, M., Young, K. H., Amini, B., Starbuck, M. W., Lee, H. C., Navone, N. M., Davis, R. E., Tong, Q., Bergsagel, P. L., Hou, J., … Yang, J. (2019). Reprogrammed marrow adipocytes contribute to myeloma-induced bone disease. Science Translational Medicine11(494), eaau9087. https://doi.org/10.1126/scitranslmed.aau9087.

  99. Reagan, M. R., Mishima, Y., Glavey, S. V., Zhang, Y., Manier, S., Lu, Z. N., Memarzadeh, M., Zhang, Y., Sacco, A., Aljawai, Y., Shi, J., Tai, Y. T., Ready, J. E., Kaplan, D. L., Roccaro, A. M., & Ghobrial, I. M. (2014). Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood, 124(22), 3250–3259. https://doi.org/10.1182/blood-2014-02-558007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Corre, J., Mahtouk, K., Attal, M., Gadelorge, M., Huynh, A., Fleury-Cappellesso, S., Danho, C., Laharrague, P., Klein, B., Rème, T., & Bourin, P. (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 21(5), 1079–1088. https://doi.org/10.1038/sj.leu.2404621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roodman, G. D. (2004). Mechanisms of bone metastasis. The New England Journal of Medicine, 350(16), 1655–1664. https://doi.org/10.1056/NEJMra030831

    Article  CAS  PubMed  Google Scholar 

  102. Morris, E. V., Suchacki, K. J., Hocking, J., Cartwright, R., Sowman, A., Gamez, B., Lea, R., Drake, M. T., Cawthorn, W. P., & Edwards, C. M. (2020). Myeloma Cells Down-Regulate Adiponectin in Bone Marrow Adipocytes Via TNF-Alpha. Journal of Bone and Mineral Research : The official journal of the American Society for Bone and Mineral Research, 35(5), 942–955. https://doi.org/10.1002/jbmr.3951

    Article  CAS  PubMed  Google Scholar 

  103. Kumar, B., Garcia, M., Weng, L., Jung, X., Murakami, J. L., Hu, X., McDonald, T., Lin, A., Kumar, A. R., DiGiusto, D. L., Stein, A. S., Pullarkat, V. A., Hui, S. K., Carlesso, N., Kuo, Y. H., Bhatia, R., Marcucci, G., & Chen, C. C. (2018). Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia, 32(3), 575–587. https://doi.org/10.1038/leu.2017.259

    Article  CAS  PubMed  Google Scholar 

  104. Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science (New York, N.Y.)367(6478), eaau6977. https://doi.org/10.1126/science.aau6977.

  105. Wang, Z., He, J., Bach, D. H., Huang, Y. H., Li, Z., Liu, H., Lin, P., & Yang, J. (2022). Induction of m6A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. Journal of Experimental & Clinical Cancer Research : CR, 41(1), 4. https://doi.org/10.1186/s13046-021-02209-w

    Article  CAS  PubMed Central  Google Scholar 

  106. Sun, Z., Yang, S., Zhou, Q., Wang, G., Song, J., Li, Z., Zhang, Z., Xu, J., Xia, K., Chang, Y., Liu, J., & Yuan, W. (2018). Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment. Molecular Cancer, 17(1), 82. https://doi.org/10.1186/s12943-018-0831-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Illustration has been created using smart.servier.com.

Funding

DT work is supported by the Ministry of Education, Science and Technological Development of Republic of Serbia [contract number 451–03-68/2022–14/200015 with Institute for Medical Research University of Belgrade, National Institute of Republic of Serbia] and the returning expert program by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ).

Author information

Authors and Affiliations

Authors

Contributions

DT conceived the topic. RL, DT and MV wrote the manuscript. DT and RL revised and edited the article. All authors gave final approval.

Corresponding author

Correspondence to Drenka Trivanović.

Ethics declarations

Ethics Approval

N/A

Consent to Participate

N/A

Consent for Publication

N/A

Conflicts of Interest/Competing Interests

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labella, R., Vujačić, M. & Trivanović, D. Bone Marrow Adipose Tissue: Regulation of Osteoblastic Niche, Hematopoiesis and Hematological Malignancies. Stem Cell Rev and Rep 19, 1135–1151 (2023). https://doi.org/10.1007/s12015-023-10531-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10531-3

Keywords

Navigation