Skip to main content

Advertisement

Log in

Research Progress on the Osteogenesis-Related Regulatory Mechanisms of Human Umbilical Cord Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

In recent years, research on human umbilical cord mesenchymal stem cells (hUCMSCs) derived from human umbilical cord tissue has accelerated and entered clinical application research. Compared with mesenchymal stem cells (MSCs) from other sources, hUCMSCs can be extracted from different parts of umbilical cord or from the whole umbilical cord. It has the characteristics of less ethical controversy, high differentiation potential, strong proliferation ability, efficient expansion in vitro, avoiding immune rejection and immune privilege, and avoids the limitations of lack of embryonic stem cells, heterogeneity, ethical and moral constraints. hUCMSCs avoid the need for embryonic stem cell sources, heterogeneity, and ethical and moral constraints. Bone defects are very common in clinical practice, but completely effective bone tissue regeneration treatment is challenging. Currently, autologous bone transplantation and allogeneic bone transplantation are main treatment approaches in clinical work, but each has different shortcomings, such as limited sources, invasiveness, immune rejection and insufficient osteogenic ability. Therefore, to solve the bottleneck of bone tissue regeneration and repair, a great amount of research has been carried out to explore the clinical advantages of hUCMSCs as seed cells to promote osteogenesis.

However, the regulation of osteogenic differentiation of hUCMSCs is an extremely complex process. Although a large number of studies have demonstrated that the role of hUCMSCs in enhancing local bone regeneration and repair through osteogenic differentiation and transplantation into the body involves multiple signaling pathways, there is no relevant article that summarize the findings. This article discusses the osteogenesis-related regulatory mechanisms of hUCMSCs, summarizes the currently known related mechanisms, and speculates on the possible signals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Kobayashi, K., & Suzuki, K. (2018). Mesenchymal stem/stromal cell-based therapy for heart failure - What is the best source? Circulation Journal, 82(9), 2222–2232.

    CAS  PubMed  Google Scholar 

  2. Nagamura-Inoue, T., & He, H. (2014). Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World Journal of Stem Cells, 6(2), 195–202.

    PubMed  PubMed Central  Google Scholar 

  3. Arutyunyan, I., Elchaninov, A., Makarov, A., & Fatkhudinov, T. (2016). Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells International, 2016, 6901286.

    PubMed  PubMed Central  Google Scholar 

  4. Guan, Y. T., Xie, Y., Li, D. S., Zhu, Y. Y., Zhang, X. L., et al. (2019). Comparison of biological characteristics of mesenchymal stem cells derived from the human umbilical cord and decidua parietalis. Molecular Medicine Reports, 20(1), 633–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Q., Zhao, G., Xing, Z., Zhan, J., & Ma, J. (2019). Comparative evaluation of the osteogenic capacity of human mesenchymal stem cells from bone marrow and umbilical cord tissue. Experimental and Therapeutic Medicine, 17(1), 764–772.

    CAS  PubMed  Google Scholar 

  6. Li, W., Yang, X., Feng, S., Yang, S., Zeng, R., et al. (2018). The fabrication of biomineralized fiber-aligned PLGA scaffolds and their effect on enhancing osteogenic differentiation of UCMSC cells. Journal of Materials Science. Materials in Medicine, 29(8), 117.

    PubMed  Google Scholar 

  7. Sun, X. C., Wang, H., Li, J. H., Zhang, D., Yin, L. Q., et al. (2020). Repair of alveolar cleft bone defects by bone collagen particles combined with human umbilical cord mesenchymal stem cells in rabbit. Biomedical Engineering Online, 19(1), 62.

    PubMed  PubMed Central  Google Scholar 

  8. Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., et al. (2014). Bone substitutes in orthopaedic surgery: From basic science to clinical practice. Journal of Materials Science. Materials in Medicine, 25(10), 2445–2461.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang, Y., Luan, X., & Liu, X. (2020). Recent advances in periodontal regeneration: A biomaterial perspective. Bioactive Materials, 5(2), 297–308.

    PubMed  PubMed Central  Google Scholar 

  10. Wang, F., Yang, G., Xiao, Y., He, C., Cai, G., et al. (2019). Effect of SDF-1 with biphasic ceramic-like bone graft on the repair of rabbit radial defect. Journal of Orthopaedic Surgery and Research, 14(1), 231.

    PubMed  PubMed Central  Google Scholar 

  11. Wang, X., Wang, Y., Gou, W., Lu, Q., Peng, J., et al. (2013). Role of mesenchymal stem cells in bone regeneration and fracture repair: A review. International Orthopaedics, 37(12), 2491–2498.

    PubMed  PubMed Central  Google Scholar 

  12. Lin, H., Sohn, J., Shen, H., Langhans, M. T., & Tuan, R. S. (2019). Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials, 203, 96–110.

    CAS  PubMed  Google Scholar 

  13. Shen, C., Yang, C., Xu, S., & Zhao, H. (2019). Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell & Bioscience, 9, 17.

    Google Scholar 

  14. Araújo, A. B., Salton, G. D., Furlan, J. M., Schneider, N., Angeli, M. H., et al. (2017). Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord. Cytotherapy, 19(5), 577–585.

    PubMed  Google Scholar 

  15. Ahani-Nahayati, M., Niazi, V., Moradi, A., Pourjabbar, B., Roozafzoon, R., et al. (2022). Umbilical cord mesenchymal stem/stromal cells potential to treat organ disorders; An emerging strategy. Current Stem Cell Research & Therapy, 17(2), 126–146.

    CAS  Google Scholar 

  16. Bartolucci, J., Verdugo, F. J., González, P. L., Larrea, R. E., Abarzua, E., et al. (2017). Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A phase 1/2 randomized controlled trial (RIMECARD trial [Randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circulation Research, 121(10), 1192–1204.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, C., Zhou, G., Chen, Y., Liu, S., Chen, F., et al. (2018). Human umbilical cord mesenchymal stem cells alleviate interstitial fibrosis and cardiac dysfunction in a dilated cardiomyopathy rat model by inhibiting TNF-α and TGF-β1/ERK1/2 signaling pathways. Molecular Medicine Reports, 17(1), 71–78.

    CAS  PubMed  Google Scholar 

  18. Corrao, S., La Rocca, G., Lo Iacono, M., Zummo, G., Gerbino, A., et al. (2013). New frontiers in regenerative medicine in cardiology: The potential of Wharton’s jelly mesenchymal stem cells. Current Stem Cell Research & Therapy, 8(1), 39–45.

    CAS  Google Scholar 

  19. Kim, J. H., Jo, C. H., Kim, H. R., & Hwang, Y. I. (2018). Comparison of immunological characteristics of mesenchymal stem cells from the periodontal ligament, umbilical cord, and adipose tissue. Stem Cells International, 2018, 8429042.

    PubMed  PubMed Central  Google Scholar 

  20. Qi, L., Wang, R., Shi, Q., Yuan, M., Jin, M., et al. (2019). Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose. Journal of Bone and Mineral Metabolism, 37(3), 455–466.

    CAS  PubMed  Google Scholar 

  21. Liu, S. J., Meng, M. Y., Han, S., Gao, H., Zhao, Y. Y., et al. (2021). Umbilical cord mesenchymal stem cell-derived exosomes ameliorate HaCaT cell photo-aging. Rejuvenation Research, 24(4), 283–293.

    CAS  PubMed  Google Scholar 

  22. Li, J., Xu, S. Q., Zhao, Y. M., Yu, S., Ge, L. H., et al. (2018). Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord. Molecular Medicine Reports, 18(6), 4969–4977.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hendrijantini, N., Kusumaningsih, T., Rostiny, R., Mulawardhana, P., Danudiningrat, C. P., et al. (2018). A potential therapy of human umbilical cord mesenchymal stem cells for bone regeneration on osteoporotic mandibular bone. European Journal of Dentistry, 12(3), 358–362.

    PubMed  PubMed Central  Google Scholar 

  24. Yang, D. Z., Luo, H. L., Yi, W. H., Wang, E. T., Wang, M., et al. (2012). Osteogenic potential of bone morphogenetic proteins-2-transfected human umbilical cord mesenchymal stem cells in vitro and in vivo. Chinese Journal of Experimental Surgery, 08, 1580–1583. (in Chinese).

    Google Scholar 

  25. Zhu, X. W., Li, Y. K., Han, J. L., Qiu, S. Q., Luan, F. H., et al. (2016). Effect of human umbilical cord mesenchymal stem cells in vitro osteogenesis differentiation on the expression of BMP - 2 in the fracture location. Orthopedic Journal of China, 24(04), 362–367. (in Chinese).

    CAS  Google Scholar 

  26. Yang, Z. L., Cheng, M. H., Ye, H. Y., & Dai, G. F. (2017). The effect observation of human umbilical cord mesenchymal stem cells applications in the dental periodontal tissue repairment in mice after transplantion. Journal of Clinical and Experimental Medicine, 16(18), 1790–1794. (in Chinese).

    Google Scholar 

  27. E, L., Lu, R., Sun, J., Li, H., Xu, W., et al. (2021). Microenvironment influences on human umbilical cord mesenchymal stem cell-based bone regeneration. Stem Cells International, 2021, 4465022.

    PubMed  PubMed Central  Google Scholar 

  28. Zheng, Y., Yao, H., & Yang, K. (2018). SFRP5 inhibits BMP9-induced human umbilical cord mesenchymal stem cells experimental study of osteogenic differentiation. China Biotechnology, 38(07), 7–13. (in Chinese).

    Google Scholar 

  29. Wei, Y., Liu, S. W., Duan, R. X., Zhao, Y. X., Li, N., et al. (2022). Effects and mechanism of human umbilical cord mesenchymal stem cells on osteoporosis rats by regulating the ratio of osteoprotegerin/receptor activator of nuclear factor-κB ligand. Journal of Chongqing Medical University, 47(05), 503–510. (in Chinese).

    CAS  Google Scholar 

  30. Liu, Y., Fang, J., Zhang, Q., Zhang, X., Cao, Y., et al. (2020). Wnt10b-overexpressing umbilical cord mesenchymal stem cells promote critical size rat calvarial defect healing by enhanced osteogenesis and VEGF-mediated angiogenesis. Journal of Orthopaedic Translation, 23, 29–37.

    PubMed  PubMed Central  Google Scholar 

  31. Jiang, Y., Li, S., Zhou, Q., Liu, S., Liu, X., et al. (2021). PDCD4 negatively regulated osteogenic differentiation and bone defect repair of mesenchymal stem cells through GSK-3β/β-Catenin pathway. Stem Cells Dev, 30(16), 806–815.

    CAS  PubMed  Google Scholar 

  32. Zhang, M., He, Y., Zhang, X., Gan, S., Xie, X., et al. (2022) Engineered cell-overexpression of circular RNA hybrid hydrogels promotes healing of calvarial defects. Biomaterials Science.

  33. Hu, Z. L. (2021). Human umbilical cord mesenchymal stem cells prevent and treat steroid induced avascular necrosis of femoral head in rats [Master], Shanxi Medical University.

  34. Li, P., Liu, W. J., Zhou, B., Zha, L. L., Liu, Y. L., et al. (2020). Role of TGFBI gene in regulating osteoblastic differentiation of human umbilical cord⁃derived mesenchymal stem cells. Military Medical Sciences, 44(01), 21–28. (in Chinese).

    CAS  Google Scholar 

  35. Xue, Z. L., Meng, Y. L., & Ge, J. H. (2018). Upregulation of miR-132 attenuates osteoblast differentiation of UC-MSCs. European Review for Medical and Pharmacological Sciences, 22(6), 1580–1587.

    PubMed  Google Scholar 

  36. Zhang, Y., Yan, B. H., Xu, C., Gu, D. L., Wang, Y., et al. (2016). miR-92b-3p osteogenesis of humans umbilical promotes cord mesenchymal stem cells. Basic & Clinical Medicine, 36(05), 598–603.

    Google Scholar 

  37. Huang, M., Qing, Y., Shi, Q., Cao, Y., & Song, K. (2017). miR-342-3p elevates osteogenic differentiation of umbilical cord mesenchymal stem cells via inhibiting Sufu in vitro. Biochemical and Biophysical Research Communications, 491(3), 571–577.

    CAS  PubMed  Google Scholar 

  38. Qing, Y., Huang, M., Cao, Y., Du, T., & Song, K. (2019). Effects of miRNA-342-3p in modulating Hedgehog signaling pathway of human umbilical cord mesenchymal stem cells by down-regulating Sufu. Oral Diseases, 25(4), 1147–1157.

    PubMed  Google Scholar 

  39. Zheng, X., Gan, S., Su, C., Zheng, Z., Liao, Y., et al. (2022). Screening and preliminary identification of long non-coding RNAs critical for osteogenic differentiation of human umbilical cord mesenchymal stem cells. Bioengineered, 13(3), 6880–6894.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, L., Bin, Z., Hui, S., Rong, L., You, B., et al. (2019). The role of CDR1as in proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells. Stem Cells International, 2019, 2316834.

    PubMed  PubMed Central  Google Scholar 

  41. Su, C., Zheng, X., He, Y., Long, L., & Chen, W. (2021). Transcriptomic profiling and functional prediction reveal aberrant expression of circular RNAs during osteogenic differentiation in human umbilical cord mesenchymal stromal cells. Science and Reports, 11(1), 19881.

    CAS  Google Scholar 

  42. Hou, T., Xu, J., Wu, X., Xie, Z., Luo, F., et al. (2009). Umbilical cord Wharton’s jelly: A new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Engineering Part A, 15(9), 2325–2334.

    CAS  PubMed  Google Scholar 

  43. Marupanthorn, K., Tantrawatpan, C., Tantikanlayaporn, D., Kheolamai, P., & Manochantr, S. (2015). The effects of TNF-α on osteogenic differentiation of umbilical cord derived mesenchymal stem cells. Journal of the Medical Association of Thailand, 98(Suppl 3), S34-40.

    PubMed  Google Scholar 

  44. Bai, H. T., Liu, W. J., Yuan, F. L., Li, X., Wang, Y., et al. (2022). Guanylate binding protein 2 regulates osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells. Chinese Journal of Biologicals, 35(07), 822–828+835. in Chinese.

    Google Scholar 

  45. Kong, N., Zhou, Y. L., Zhang, L., Shi, L., Shi, Y., et al. (2020). Effect of oncostatin Monproliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells. Journal of Jilin University (Medicine Edition), 46(04), 699–706. in Chinese.

    Google Scholar 

  46. Liu, X. Z., Meng, H. Y., Zhao, J. J., Wang, P., Ling, W. C., et al. (2022). Effects of denosumab on proliferation and osteogenic differentiation of human umbilical cord mesenchymal stem cells. Academic Journal of Chinese Pla Medical School, 43(04), 449–454. in Chinese.

    Google Scholar 

  47. Gao, Z., Wu, Q., Guo, J. F., Li, Y., Chen, X. D., et al. (2018). Effects of calcitonin gene-related peptide on osteogenic differentiation of human umbilical cord mesenchymal stem cells. Journal of Third Military Medical University, 40(06), 479–486. in Chinese.

    Google Scholar 

  48. Li, W., Wang, F., Dong, F., Zhang, Z., Song, P., et al. (2021). CGF membrane promotes periodontal tissue regeneration mediated by hUCMSCs through upregulating TAZ and osteogenic differentiation genes. Stem Cells Int, 2021, 6644366.

    PubMed  PubMed Central  Google Scholar 

  49. Lei, T., Deng, S., Chen, P., Xiao, Z., Cai, S., et al. (2021). Metformin enhances the osteogenesis and angiogenesis of human umbilical cord mesenchymal stem cells for tissue regeneration engineering. International Journal of Biochemistry & Cell Biology, 141, 106086.

    CAS  Google Scholar 

  50. Shen, M., Yu, H., Jin, Y., Mo, J., Sui, J., et al. (2022). Metformin facilitates osteoblastic differentiation and M2 macrophage polarization by PI3K/AKT/mTOR pathway in human umbilical cord mesenchymal stem cells. Stem Cells International, 2022, 9498876.

    PubMed  PubMed Central  Google Scholar 

  51. Zheng, S. H., Ha, C. Z., Yang, X., Wang, Y. H., Tian, S. Q., et al. (2016). Insulin promotes the osteogenic differentiation of umbilical cord mesenchymal stem cells. Chinese Journal of Tissue Engineering Research, 20(06), 807–813. in Chinese.

    CAS  Google Scholar 

  52. Li, X. Y. (2022). Effect of hemin on osteogenic differentiation of human umbilical cord mesenchymal stem cells and its mechanism [Master], Gansu University Of Chinese Medicine.

  53. Qiao, Y., Xu, Z., Yu, Y., Hou, S., Geng, J., et al. (2020). Single cell derived spheres of umbilical cord mesenchymal stem cells enhance cell stemness properties, survival ability and therapeutic potential on liver failure. Biomaterials, 227, 119573.

    CAS  PubMed  Google Scholar 

  54. Bi, Y. K., Huang, M. R., Zhou, L., Wu, Q., Shi, X., et al. (2019). Silver nanoparticcles promote osteogenic differentiation of human umbilical cord mesenchymal stem cells at non-cytotoxic concentratiom. International Journal of Orthopaedics, 40(03), 178–186. in Chinese.

    Google Scholar 

  55. Li, C. S., Zheng, Z., Su, X. X., Wang, F., Ling, M., et al. (2016). Activation of the extracellular signal-regulated kinase signaling is critical for human umbilical cord mesenchymal stem cell osteogenic differentiation. BioMed Research International, 2016, 3764372.

    PubMed  PubMed Central  Google Scholar 

  56. Choi, J., Bae, T., Byambasuren, N., Park, S. H., Jo, C. H., et al. (2020). CRISPR-Cpf1 activation of endogenous BMP4 gene for osteogenic differentiation of umbilical-cord-derived mesenchymal stem cells. Mol Ther Methods Clin Dev, 17, 309–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Volarevic, V., Gazdic, M., Simovic Markovic, B., Jovicic, N., Djonov, V., et al. (2017). Mesenchymal stem cell-derived factors: Immuno-modulatory effects and therapeutic potential. BioFactors, 43(5), 633–644.

    CAS  PubMed  Google Scholar 

  58. Zhao, W., Phinney, D. G., Bonnet, D., Dominici, M., & Krampera, M. (2014). Mesenchymal stem cell biodistribution, migration, and homing in vivo. Stem Cells Int, 2014, 292109.

    PubMed  PubMed Central  Google Scholar 

  59. Karp, J. M., & Leng Teo, G. S. (2009). Mesenchymal stem cell homing: The devil is in the details. Cell Stem Cell, 4(3), 206–216.

    CAS  PubMed  Google Scholar 

  60. Chai, N. L., Zhang, X. B., Chen, S. W., Fan, K. X., & Linghu, E. Q. (2016). Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats. World Journal of Gastroenterology, 22(26), 6036–6048.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu, Z., Zhang, X., Hao, H., Xu, H., Shu, J., et al. (2022). Exosomes derived from umbilical cord mesenchymal stem cells treat cutaneous nerve damage and promote wound healing. Frontiers in Cellular Neuroscience, 16, 913009.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiang, E., Han, B., Zhang, Q., Rao, W., Wang, Z., et al. (2020). Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Research & Therapy, 11(1), 336.

    CAS  Google Scholar 

  63. Lauzon, M. A., Drevelle, O., Daviau, A., & Faucheux, N. (2016). Effects of BMP-9 and BMP-2 on the PI3K/Akt pathway in MC3T3-E1 preosteoblasts. Tissue Engineering Part A, 22(17–18), 1075–1085.

    CAS  PubMed  Google Scholar 

  64. Aquino-Martínez, R., Artigas, N., Gámez, B., Rosa, J. L., & Ventura, F. (2017). Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS ONE, 12(5), e0178158.

    PubMed  PubMed Central  Google Scholar 

  65. Yang, J., Ye, L., Hui, T. Q., Yang, D. M., Huang, D. M., et al. (2015). Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway. International Journal of Oral Science, 7(2), 95–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Li, H., Yan, F., Lei, L., Li, Y., & Xiao, Y. (2009). Application of autologous cryopreserved bone marrow mesenchymal stem cells for periodontal regeneration in dogs. Cells, Tissues, Organs, 190(2), 94–101.

    PubMed  Google Scholar 

  67. Nagahara, T., Yoshimatsu, S., Shiba, H., Kawaguchi, H., Takeda, K., et al. (2015). Introduction of a mixture of β-tricalcium phosphate into a complex of bone marrow mesenchymal stem cells and type I collagen can augment the volume of alveolar bone without impairing cementum regeneration. Journal of Periodontology, 86(3), 456–464.

    PubMed  Google Scholar 

  68. Singh, D., Wang, S. B., Xia, T., Tainsh, L., Ghiassi-Nejad, M., et al. (2018). A biodegradable scaffold enhances differentiation of embryonic stem cells into a thick sheet of retinal cells. Biomaterials, 154, 158–168.

    CAS  PubMed  Google Scholar 

  69. Sung, H. J., Meredith, C., Johnson, C., & Galis, Z. S. (2004). The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials, 25(26), 5735–5742.

    CAS  PubMed  Google Scholar 

  70. Ronneberger, B., Kao, W. J., Anderson, J. M., & Kissel, T. (1996). In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks. Journal of Biomedical Materials Research, 30(1), 31–40.

    CAS  PubMed  Google Scholar 

  71. Kelm, J. M., & Fussenegger, M. (2010). Scaffold-free cell delivery for use in regenerative medicine. Advanced Drug Delivery Reviews, 62(7–8), 753–764.

    CAS  PubMed  Google Scholar 

  72. Okano, T., Yamada, N., Sakai, H., & Sakurai, Y. (1993). A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). Journal of Biomedical Materials Research, 27(10), 1243–1251.

    CAS  PubMed  Google Scholar 

  73. Takeuchi, R., Kuruma, Y., Sekine, H., Dobashi, I., Yamato, M., et al. (2016). In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension. Journal of Tissue Engineering and Regenerative Medicine, 10(8), 700–710.

    CAS  PubMed  Google Scholar 

  74. Fu, X., Yang, H., Zhang, H., Wang, G., Liu, K., et al. (2016). Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium. Stem Cell Research & Therapy, 7(1), 138.

    Google Scholar 

  75. Bui, T. V. A., Hwang, J. W., Lee, J. H., Park, H. J., & Ban, K. (2021). Challenges and limitations of strategies to promote therapeutic potential of human mesenchymal stem cells for cell-based cardiac repair. Korean Circ J, 51(2), 97–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nayerossadat, N., Maedeh, T., & Ali, P. A. (2012). Viral and nonviral delivery systems for gene delivery. Advanced Biomedical Research, 1, 27.

    PubMed  PubMed Central  Google Scholar 

  77. Park, J. S., Suryaprakash, S., Lao, Y. H., & Leong, K. W. (2015). Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods, 84, 3–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. García-Sánchez, D., Fernández, D., Rodríguez-Rey, J. C., & Pérez-Campo, F. M. (2019). Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World Journal of Stem Cells, 11(10), 748–763.

    PubMed  PubMed Central  Google Scholar 

  79. Baldari, S., Di Rocco, G., Piccoli, M., Pozzobon, M., Muraca, M., et al. (2017). Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. International Journal of Molecular Sciences, 18(10).

  80. Follin, B., Juhl, M., Cohen, S., Pedersen, A. E., Gad, M., et al. (2015). Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: Phenotypic and immunomodulatory evaluation. Cytotherapy, 17(8), 1104–1118.

    CAS  PubMed  Google Scholar 

  81. Hiew, V. V., Mohd Akhir, H., & Teoh, P. L. (2022). Gene expression profiles of human mesenchymal stromal cells derived from Wharton’s jelly and amniotic membrane before and after osteo-induction using nanostring platform. Current Issues in Molecular Biology, 44(9), 4240–4254.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dou, X. W., Park, W., Lee, S., Zhang, Q. Z., Carrasco, L. R., et al. (2017). Loss of Notch3 signaling enhances osteogenesis of mesenchymal stem cells from mandibular torus. Journal of Dental Research, 96(3), 347–354.

    CAS  PubMed  Google Scholar 

  83. Wang, H., Jiang, Z., Zhang, J., Xie, Z., Wang, Y., et al. (2017). Enhanced osteogenic differentiation of rat bone marrow mesenchymal stem cells on titanium substrates by inhibiting Notch3. Archives of Oral Biology, 80, 34–40.

    CAS  PubMed  Google Scholar 

  84. Wang, F., Wang, Q., Zhao, Y., Tian, Z., Chang, S., et al. (2023). Adipose-derived stem cells with miR-150-5p inhibition laden in hydroxyapatite/tricalcium phosphate ceramic powders promote osteogenesis via regulating Notch3 and activating FAK/ERK and RhoA. Acta Biomaterialia, 155, 644–653.

    CAS  PubMed  Google Scholar 

  85. Liu, Y., Wang, T., Yan, J., Jiagbogu, N., Heideman, D. A., et al. (2011). HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro. Atherosclerosis, 219(2), 440–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Na, T., Liu, J., Zhang, K., Ding, M., & Yuan, B. Z. (2015). The notch signaling regulates CD105 expression, osteogenic differentiation and immunomodulation of human umbilical cord mesenchymal stem cells. PLoS ONE, 10(2), e0118168.

    PubMed  PubMed Central  Google Scholar 

  87. Hu, C. H., Sui, B. D., Du, F. Y., Shuai, Y., Zheng, C. X., et al. (2017). miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice. Science and Reports, 7, 43191.

    Google Scholar 

  88. Saliminejad, K., Khorram Khorshid, H. R., Soleymani Fard, S., & Ghaffari, S. H. (2019). An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology, 234(5), 5451–5465.

    CAS  PubMed  Google Scholar 

  89. Zhou, P., Li, Y., Di, R., Yang, Y., Meng, S., et al. (2019). H19 and Foxc2 synergistically promotes osteogenic differentiation of BMSCs via Wnt-β-catenin pathway. Journal of Cellular Physiology, 234(8), 13799–13806.

    CAS  PubMed  Google Scholar 

  90. Li, Y., Sun, R. Y., Lv, M., & Wang, P. Y. (2021). Effects of HDAC2 transfection on differentiation of bone marrow mesenchymal stem cells into osteoblasts. Orthopedic Journal of China, 29(12), 1119–1123. in Chinese.

    CAS  Google Scholar 

  91. Huang, Y., Zheng, Y., Jia, L., & Li, W. (2015). Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells, 33(12), 3481–3492.

    CAS  PubMed  Google Scholar 

  92. Liang, W. C., Fu, W. M., Wang, Y. B., Sun, Y. X., Xu, L. L., et al. (2016). H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Science and Reports, 6, 20121.

    CAS  Google Scholar 

  93. Salazar, V. S., Gamer, L. W., & Rosen, V. (2016). BMP signalling in skeletal development, disease and repair. Nature Reviews. Endocrinology, 12(4), 203–221.

    CAS  PubMed  Google Scholar 

  94. Hess, K., Ushmorov, A., Fiedler, J., Brenner, R. E., & Wirth, T. (2009). TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone, 45(2), 367–376.

    CAS  PubMed  Google Scholar 

  95. Huang, H., Zhao, N., Xu, X., Xu, Y., Li, S., et al. (2011). Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Proliferation, 44(5), 420–427.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y. W., Xu, D. P., Liu, Y., Zhang, R., & Lu, L. (2015). The effect of tumor necrosis factor-α at different concentrations on osteogenetic differentiation of bone marrow mesenchymal stem cells. The Journal of Craniofacial Surgery, 26(7), 2081–2085.

    PubMed  Google Scholar 

  97. Sun, X. X., Lei, F. Z., Wang, R., Ling, T. Y., Wang, F., et al. (2020). The Influence of inflammatory micro-environment on regenerative capacity of PDLSCs and UCMSCs. Oral Biomedicine, 11(02), 71–75. in Chinese.

    Google Scholar 

  98. Maruhashi, T., Kaifu, T., Yabe, R., Seno, A., Chung, S. H., et al. (2015). DCIR maintains bone homeostasis by regulating IFN-γ production in T cells. The Journal of Immunology, 194(12), 5681–5691.

    CAS  PubMed  Google Scholar 

  99. Duque, G., Huang, D. C., Dion, N., Macoritto, M., Rivas, D., et al. (2011). Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice. Journal of Bone and Mineral Research, 26(7), 1472–1483.

    CAS  PubMed  Google Scholar 

  100. Halling Linder, C., Ek-Rylander, B., Krumpel, M., Norgård, M., Narisawa, S., et al. (2017). Bone alkaline phosphatase and tartrate-resistant acid phosphatase: Potential co-regulators of bone mineralization. Calcified Tissue International, 101(1), 92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Gao, X., Qin, W., Chen, L., Fan, W., Ma, T., et al. (2020). Effects of targeted delivery of metformin and dental pulp stem cells on osteogenesis via demineralized dentin matrix under high glucose conditions. ACS Biomaterials Science & Engineering, 6(4), 2346–2356.

    CAS  Google Scholar 

  102. Al Jofi, F. E., Ma, T., Guo, D., Schneider, M. P., Shu, Y., et al. (2018). Functional organic cation transporters mediate osteogenic response to metformin in human umbilical cord mesenchymal stromal cells. Cytotherapy, 20(5), 650–659.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gnecchi, M., Danieli, P., Malpasso, G., & Ciuffreda, M. C. (2016). Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods in Molecular Biology, 1416, 123–146.

    CAS  PubMed  Google Scholar 

  104. Chandravanshi, B., & Bhonde, R. R. (2018). Human umbilical cord-derived stem cells: Isolation, characterization, differentiation, and application in treating diabetes. Critical Reviews in Biomedical Engineering, 46(5), 399–412.

    PubMed  Google Scholar 

  105. Fang, S., Liu, Z., Wu, S., Chen, X., You, M., et al. (2022). Pro-angiognetic and pro-osteogenic effects of human umbilical cord mesenchymal stem cell-derived exosomal miR-21-5p in osteonecrosis of the femoral head. Cell Death Discovery, 8(1), 226.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu, C., Zhao, J., Li, Q., Hou, L., Wang, Y., et al. (2020). Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Research & Therapy, 11(1), 503.

    CAS  Google Scholar 

  107. Wang, Z., Gao, D., Wang, S., Lin, H., Wang, Y., et al. (2021). Exosomal microRNA-1246 from human umbilical cord mesenchymal stem cells potentiates myocardial angiogenesis in chronic heart failure. Cell Biology International, 45(11), 2211–2225.

    CAS  PubMed  Google Scholar 

  108. Chen, H. X., Liang, F. C., Gu, P., Xu, B. L., Xu, H. J., et al. (2020). Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death & Disease, 11(4), 288.

    CAS  Google Scholar 

  109. Cao, J. Y., Wang, B., Tang, T. T., Wen, Y., Li, Z. L., et al. (2021). Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics, 11(11), 5248–5266.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, L., Duan, C. M., Yuan, F. F., Wang, Y., Guo, X. M., et al. (2020). Human umbilical cord mesenchymal stem cells derived exosomes promote proliferation and differentiation of osteoblast progenitor cells. Medical Journal of the Chinese People’s Armed Police Forces, 31(04), 335–339. in Chinese.

    CAS  Google Scholar 

  111. Yang, S., Zhu, B., Tian, X. Y., Yu, H. Y., Qiao, B., et al. (2022). Exosomes derived from human umbilical cord mesenchymal stem cells enhance the osteoblastic differentiation of periodontal ligament stem cells under high glucose conditions through the PI3K/AKT signaling pathway. Biomedical and Environmental Sciences, 35(9), 811–820.

    CAS  PubMed  Google Scholar 

  112. Zhou, J., Liu, H. X., Li, S. H., Gong, Y. S., Zhou, M. W., et al. (2019). Effects of human umbilical cord mesenchymal stem cells-derived exosomes on fracture healing in rats through the Wnt signaling pathway. European Review for Medical and Pharmacological Sciences, 23(11), 4954–4960.

    CAS  PubMed  Google Scholar 

  113. Li, R., Chen, C., Zheng, R. Q., Zou, L., Hao, G. L., et al. (2019). Influences of hucMSC-exosomes on VEGF and BMP-2 expression in SNFH rats. European Review for Medical and Pharmacological Sciences, 23(7), 2935–2943.

    CAS  PubMed  Google Scholar 

  114. Wang, L., Wang, J., Zhou, X., Sun, J., Zhu, B., et al. (2020). A new self-healing hydrogel containing hucMSC-derived exosomes promotes bone regeneration. Frontiers in Bioengineering and Biotechnology, 8, 564731.

    PubMed  PubMed Central  Google Scholar 

  115. Hai, Y., Zhidong, C., & Wenyan, W. (2022). Human umbilical cord mesenchymal stromal cells promotes the proliferation and osteogenic differentiation of autologous bone marrow stem cells by secreting exosomes. Bioengineered, 13(4), 9901–9915.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Tian, R. H. (2022). Study on the role of exosomes derived from human umbilical cord mesenchymal stem cells in fracture repair in osteoporotic rats [Master]. Jining Medical University.

  117. Hu, Y., Zhang, Y., Ni, C. Y., Chen, C. Y., Rao, S. S., et al. (2020). Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics, 10(5), 2293–2308.

    PubMed  PubMed Central  Google Scholar 

  118. Jia, L., Gu, W., Zhang, Y., Ji, Y., Liang, J., et al. (2017). The crosstalk between HDPSCs and HUCMSCs on proliferation and osteogenic genes expression in coculture system. International Journal of Medical Sciences, 14(11), 1118–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yahao, G., & Xinjia, W. (2021). The role and mechanism of exosomes from umbilical cord mesenchymal stem cells in inducing osteogenesis and preventing osteoporosis. Cell Transplantation, 30, 9636897211057464.

    PubMed  Google Scholar 

  120. Kuang, M. J., Huang, Y., Zhao, X. G., Zhang, R., Ma, J. X., et al. (2019). Exosomes derived from Wharton’s jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway. International Journal of Biological Sciences, 15(9), 1861–1871.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang, B. C., Kuang, M. J., Kang, J. Y., Zhao, J., Ma, J. X., et al. (2020). Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis. Biochemical and Biophysical Research Communications, 524(4), 883–889.

    CAS  PubMed  Google Scholar 

  122. Riau, A. K., Ong, H. S., Yam, G. H. F., & Mehta, J. S. (2019). Sustained delivery system for stem cell-derived exosomes. Frontiers in Pharmacology, 10, 1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. McKelvey, K. J., Powell, K. L., Ashton, A. W., Morris, J. M., & McCracken, S. A. (2015). Exosomes: Mechanisms of uptake. Journal of Circulating Biomarkers, 4, 7.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank everyone on our team for assisting with the preparation of this manuscript.

Funding

The Science and Technology Fund of Guizhou Province, No. [2020]1Y328 (to YK); Guizhou Health Commission Science and Technology Fund Project (gzwkj2022-169) (to YK); Zunyi Science and Technology Plan Project (No. ZunKehua HZ (2021) 302) (to YK); Guizhou Key Medical Discipline Projection (NO. Qianweijianhan (2023) 2) (to YK).

Author information

Authors and Affiliations

Authors

Contributions

HZQ did most of the writing, assisted by JZL, MSZ, and LR.YK conceived the idea, revised and proofread the paper.

Corresponding author

Correspondence to Kun Yang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Jiang, Z., Meng, S. et al. Research Progress on the Osteogenesis-Related Regulatory Mechanisms of Human Umbilical Cord Mesenchymal Stem Cells. Stem Cell Rev and Rep 19, 1252–1267 (2023). https://doi.org/10.1007/s12015-023-10521-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10521-5

Keywords

Navigation