Skip to main content
Log in

Generation of Urine-Derived Induced Pluripotent Stem Cells and Cerebral Organoids for Modeling Down Syndrome

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Down syndrome (DS, or trisomy 21, T21), is the most common genetic cause of intellectual disability. Alterations in the complex process of cerebral cortex development contribute to the neurological deficits in DS, although the underlying molecular and cellular mechanisms are not completely understood. Human cerebral organoids (COs) derived from three-dimensional (3D) cultures of induced pluripotent stem cells (iPSCs) provide a new avenue for gaining a better understanding of DS neuropathology. In this study, we aimed to generate iPSCs from individuals with DS (T21-iPSCs) and euploid controls using urine-derived cells, which can be easily and noninvasively obtained from most individuals, and examine their ability to differentiate into neurons and astrocytes grown in monolayer cultures, as well as into 3D COs. We employed nonintegrating episomal vectors to generate urine-derived iPSC lines, and a simple-to-use system to produce COs with forebrain identity. We observed that both T21 and control urine-derived iPSC lines successfully differentiate into neurons and astrocytes in monolayer, as well as into COs that recapitulate early features of human cortical development, including organization of neural progenitor zones, programmed differentiation of excitatory and inhibitory neurons, and upper-and deep-layer cortical neurons as well as astrocytes. Our findings demonstrate for the first time the suitability of using urine-derived iPSC lines to produce COs for modeling DS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

All data generated or analyzed during this study are available from the corresponding author on request.

Code Availability

Not applicable.

References

  1. de Graaf, G., Buckley, F., & Skotko, B. G. (2015). Estimates of the live births, natural losses, and elective terminations with Down syndrome in the United States. American Journal of Medical Genetics. Part A, 167A(4), 756–767.

    Article  PubMed  Google Scholar 

  2. de Graaf, G., Buckley, F., & Skotko, B. G. (2020). Estimation of the number of people with Down syndrome in Europe. European Journal of Human Genetics, 29(3), 402–410.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Iulita, M. F., Garzón Chavez, D., Klitgaard Christensen, M., et al. (2022). Association of Alzheimer disease with life expectancy in people with Down syndrome. JAMA Network Open, 5(5), e2212910.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379.

    Article  CAS  PubMed  Google Scholar 

  5. Trujillo, C. A., Gao, R., Negraes, P. D., Gu, L., et al. (2019). Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell, 558–569, e7.

    Google Scholar 

  6. Camp, J. G., Badsha, F., Florio, M., Kanton, S., et al. (2015). Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15672–15677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Velasco, S., Kedaigle, A. J., Simmons, S. K., Nash, A., et al. (2019). Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature, 570(7762), 523–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanton, S., Boyle, M. J., He, Z., Santel, M., et al. (2019). Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 574(7778), 418–422.

    Article  CAS  PubMed  Google Scholar 

  9. Pollen, A. A., Bhaduri, A., Andrews, M. G., Nowakowski, T. J., et al. (2019). Establishing cerebral organoids as models of human-specific brain evolution. Cell, 176(4), 743-756.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, R., Brawner, A. T., Li, S., Liu, J. J., et al. (2019). OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-Based organoid and chimeric mouse models of Down syndrome. Cell Stem Cell, 24(6), 908-926.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foliaki, S. T., Schwarz, B., Groveman, B. R., Walters, R. O., et al. (2021). Neuronal excitatory-to-inhibitory balance is altered in cerebral organoid models of genetic neurological diseases. Molecular Brain, 14(1), 156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang, X. Y., Xu, L., Wang, J., & Hong, Y. (2021). DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. Journal of Clinical Investigation, 131(12), e135763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, L., Huo, H. Q., Lu, K. Q., & Tang, X. Y. (1868). (2022) Abnormal mitochondria in Down syndrome iPSC-derived GABAergic interneurons and organoids. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 6, 166388.

    Google Scholar 

  14. Gonzalez, C., Armijo, E., Bravo-Alegria, J., Becerra-Calixto, A., Mays, C. E., & Soto, C. (2018). Modeling amyloid beta and tau pathology in human cerebral organoids. Molecular Psychiatry, 23(12), 2363–2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alić, I., Goh, P. A., Murray, A., Portelius, E., et al. (2021). Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Molecular Psychiatry, 26(10), 5766–5788.

    Article  PubMed  Google Scholar 

  16. Lee, Y. M., Zampieri, B. L., Scott-McKean, J. J., Johnson, M. W., & Costa, A. C. S. (2017). Generation of integration-free induced pluripotent stem cells from urine-derived cells isolated from individuals with Down syndrome. Stem Cells Translational Medicine, 6(6), 1465–1476.

    Article  CAS  Google Scholar 

  17. Lin, V. J. T., Hu, J., Zolekar, A., Yan, L. J., & Wang, Y. C. (2020). Urine sample-derived cerebral organoids suitable for studying neurodevelopment and pharmacological responses. Frontiers in Cell and Developmental Biology, 8, 304. https://doi.org/10.3389/fcell.2020.00304

  18. Zhou, T., Benda, C., Dunzinger, S., Huang, Y., et al. (2012). Generation of human induced pluripotent stem cells from urine samples. Nature Protocols, 7(12), 2080–2089.

    Article  CAS  PubMed  Google Scholar 

  19. Shi, Y., Kirwan, P., & Livesey, F. J. (2012). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7(10), 1836–1846.

    Article  CAS  PubMed  Google Scholar 

  20. Hedegaard, A., Monzón-Sandoval, J., Newey, S. E., Whiteley, E. S., et al. (2020). Pro-maturational effects of human iPSC-derived cortical astrocytes upon iPSC-derived cortical neurons. Stem Cell Reports, 15(1), 38–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sloan, S. A., Andersen, J., Pașca, A. M., Birey, F., & Pașca, S. P. (2018). Generation and assembly of human brain region–specific three-dimensional cultures. Nature Protocols, 13(2018), 2062–2085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paşca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12(2015), 671–678.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Whittle, N., Sartori, S. B., Dierssen, M., Lubec, G., & Singewald, N. (2007). Fetal Down syndrome brains exhibit aberrant levels of neurotransmitters critical for normal brain development. Pediatrics, 120(6), e1465–e1471.

    Article  PubMed  Google Scholar 

  24. Rissman, R. A., & Mobley, W. C. (2011). Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer’s disease. Journal of Neurochemistry, 117(4), 613–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fernandez, F., Morishita, W., Zuniga, E., Nguyen, J., et al. (2007). Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nature Neuroscience, 10(4), 411–413.

    Article  CAS  PubMed  Google Scholar 

  26. Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., et al. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. Journal of Neuroscience, 24(37), 8153–8160.

    Article  CAS  PubMed  Google Scholar 

  27. Kleschevnikov, A. M., Belichenko, P. V., Faizi, M., Jacobs, L. F., et al. (2012). Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists. Journal of Neuroscience, 32(27), 9217–9227.

    Article  CAS  PubMed  Google Scholar 

  28. Wisniewski, K. E. (1990). Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. American Journal of Medical Genetics. Supplement, 7, 274–281.

    CAS  PubMed  Google Scholar 

  29. Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., et al. (1999). MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53(9), 2145–2150.

    Article  CAS  PubMed  Google Scholar 

  30. Chakrabarti, L., Galdzicki, Z., & Haydar, T. F. (2007). Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. Journal of Neuroscience, 27(43), 11483–11495.

    Article  CAS  PubMed  Google Scholar 

  31. Guidi, S., Bonasoni, P., Ceccarelli, C., Santini, D., et al. (2007). Neurogenesis impairment and increased cell death reduce total neuron number in the hippocampal region of fetuses with Down syndrome. Brain Pathology, 18(2), 180–197.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chung, W. S., Clarke, L. E., Wang, G. X., & Stafford, B. K. (2013). Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature, 504(7480), 394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clarke, L. E., & Barres, B. A. (2013). Emerging roles of astrocytes in neural circuit development. Nature Reviews Neuroscience, 14(5), 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, C., Jiang, P., Xue, H., Peterson, S. E., et al. (2020). Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nature Communications, 11(1), 1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Araujo, B. H. S., Kaid, C., De Souza, J. S., Gomes da Silva, S., et al. (2018). Down Syndrome iPSC-Derived Astrocytes Impair Neuronal Synaptogenesis and the mTOR Pathway In Vitro. Molecular Neurobiology, 55(7), 5962–5975.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all the individuals who participated in this work and their parents/legal guardians. We thank Raquel Vasconcelos Guimarães de Castro, Victor Fernandes Brugnera and Thiago Pinheiro Arrais Aloia for technical assistance. We thank Ana Claudia Pereira Sanguin and Rebeca Passos Costa for administrative assistance.

Funding

This research was funded by Sao Paulo Research Foundation (FAPESP) [A.L.S. grant numbers 2019/08655–2; 2021/14491–2. B.L.Z. grant number: 2018/15371–8]. B.L.Z. was supported by a Young Investigator Fellowship from FAPESP [2019/04859–2].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.L.S., B.L.Z.; methodology, A.L.T.S, B.Y.Y., B.L.Z.; formal analysis, A.L.T.S, B.Y.Y., B.L.Z.; writing—original draft preparation, A.L.T.S, B.Y.Y., A.L.S., B.L.Z.; writing—supervision, A.L.S., B.L.Z.; project administration, A.L.S., B.L.Z; funding acquisition, A.L.S., B.L.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Andrea Laurato Sertié or Bruna Lancia Zampieri.

Ethics declarations

Ethics Approval

The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board and Ethics Committee of Hospital Israelita Albert Einstein (CAEE: 06036919.8.0000.0071, 20/02/2019).

Consent to Participate

All individuals agreed to participate in the study.

Informed Consent Statement

Written informed consent was obtained from each participant and their parents/legal guardians.

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andrea L. Sertié and Bruna L. Zampieri jointly supervised this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teles e Silva, A.L., Yokota, B.Y., Sertié, A.L. et al. Generation of Urine-Derived Induced Pluripotent Stem Cells and Cerebral Organoids for Modeling Down Syndrome. Stem Cell Rev and Rep 19, 1116–1123 (2023). https://doi.org/10.1007/s12015-022-10497-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10497-8

Keywords

Navigation