Skip to main content

Advertisement

Log in

Whole bone subcutaneous transplantation as a strategy to study precisely the bone marrow niche

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Hematopoietic stem cells are maintained in a specialized microenvironment, known as the ‘niche’, within the bone marrow. Understanding the contribution of cellular and molecular components within the bone marrow niche for the maintenance of hematopoietic stem cells is crucial for the success of therapeutic applications. So far, the roles of crucial mechanisms within the bone marrow niche have been explored in transgenic animals in which genetic modifications are ubiquitously introduced in the whole body. The lack of precise tools to explore genetic alterations exclusively within the bone marrow prevents our determination of whether the observed outcomes result from confounding effects from other organs. Here, we developed a new method – ‘whole bone subcutaneous transplantation’- to study the bone marrow niche in transgenic animals precisely. Using immunolabeling of CD45.1 (donor) vs. CD45.2 (recipient) hematopoeitic stem cells, we demonstrated that hematopoeitic stem cells from the host animals colonize the subcutaneously transplanted femurs after transplantation, while the hematopoietic stem cells from the donor disappear. Strikinlgy, the bone marrow niche of these subcutaneously transplanted femurs remain from the donor mice, enabling us to study specifically cells of the bone marrow niche using this model. We also showed that genetic ablation of peri-arteriolar cells specifically in donor femurs reduced the numbers of hematopoietic stem cells in these bones. This supports the use of this strategy as a model, in combination with genetic tools, to evaluate how bone marrow niche specific modifications may impact non-modified hematopoietic stem cells. Thus, this approach can be utilized for genetic manipulation in vivo of specific cell types only within the bone marrow. The combination of whole bone subcutaneous transplantation with rodent transgenic models will facilitate a more precise, complex and comprehensive understanding of existing problems in the study of the hematopoietic stem cell bone marrow niche.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

Abbreviations

BM:

Bone Marrow

BSA:

Bovine Serum Albumin

CAR:

Abundant Reticular Stromal cells

Cas9:

CRISPR-Associated protein 9

CD:

Cluster Differentiation

CEUA:

Ethics Animal Care and Use Committee

CRE-ER:

Cre-Estrogen Receptor (ER)

CRISPR:

Clustered Regularly Interspaced Short Palindromic Repeats

CXCL12:

Chemokine (C-X-C motif) Ligand 12

DMEM:

Dulbecco’s Modified Eagle Mediu

DT:

Diphtheria Toxin

FBS:

Fetal Bovine Serum

FSC-A:

Forward Scatter Area

FSC-H:

Forward Scatter Height

GFP:

Green Fluorescent Protein

HSC:

Hematopoietic Stem Cells

iDTR:

inducible Diphtheria Toxin Receptor

LKS:

Lineage (Lin) Sca-1+ c-Kit+

Myh11:

Myosin Heavy Chain 11

NK:

Natural Killer

NOD/SCID:

Nonobese Diabetic/Severe Combined Immunodeficiency

OCT:

Tissue-Tek

PBS:

Phosphate-Buffered Saline

PCR:

Polymerase Chain Reaction

PFA:

Paraformaldehyde

SEM:

Standard Error

TH:

Tyrosine Hydroxylase

UFMG:

Federal University of Minas Gerais

WT:

Wild-Type

References

  1. Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S. M., Reth, M., Hofer, T., & Rodewald, H. R. (2015). Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature, 518(7540), 542–546. https://doi.org/10.1038/nature14242

    Article  CAS  PubMed  Google Scholar 

  2. Naik, S. H., Perie, L., Swart, E., Gerlach, C., van Rooij, N., de Boer, R. J., & Schumacher, T. N. (2013). Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature, 496(7444), 229–232. https://doi.org/10.1038/nature12013

    Article  CAS  PubMed  Google Scholar 

  3. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25.

    CAS  PubMed  Google Scholar 

  4. Birbrair, A., & Frenette, P. S. (2016). Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences, 1370(1), 82–96. https://doi.org/10.1111/nyas.13016

    Article  PubMed  PubMed Central  Google Scholar 

  5. Isadora F.G., Sena Pedro H.D.M., Prazeres Gabryella S.P., Santos Isabella T., Borges Patrick O., Azevedo Julia P., Andreotti Viviani M., Almeida Ana E., Paiva Daniel A.P., Guerra Luiza, Lousado Luanny, Souto Akiva, Mintz Alexander, Birbrair (2017) Identity of Gli1+ cells in the bone marrow. Experimental Hematology 5412-16 S0301472X17306124 10.1016/j.exphem.2017.06.349

  6. Daniel A. P., Guerra Ana E., Paiva Isadora F. G., Sena Patrick O., Azevedo Miguel Luiz, Batista Akiva, Mintz Alexander, Birbrair (2018) Adipocytes role in the bone marrow niche. Cytometry Part A 93(2) 167-171 10.1002/cyto.a.23301

  7. Isadora F. G., Sena Isabella T., Borges Luiza, Lousado Patrick O., Azevedo Julia P., Andreotti Viviani M., Almeida Ana E., Paiva Gabryella S. P., Santos Daniel A. P., Guerra Pedro H. D. M., Prazeres Luanny, Souto Akiva, Mintz Alexander, Birbrair (2017) LepR+ cells dispute hegemony with Gli1+ cells in bone marrow fibrosis. Cell Cycle 16(21) 2018-2022 8 10.1080/15384101.2017.1367072

  8. Erika Costa, de Alvarenga Walison N., Silva Rebecca, Vasconcellos Edgar J., Paredes-Gamero Akiva, Mintz Alexander, Birbrair (2018) Promyelocytic leukemia protein in mesenchymal stem cells is essential for leukemia progression. Annals of Hematology 97(10) 1749-1755 10.1007/s00277-018-3463-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawai, C. M., Babovic, S., Upadhaya, S., Knapp, D., Lavin, Y., Lau, C. M., Goloborodko, A., Feng, J., Fujisaki, J., Ding, L., Mirny, L. A., Merad, M., Eaves, C. J., & Reizis, B. (2016). Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity, 45(3), 597–609. https://doi.org/10.1016/j.immuni.2016.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilkinson, A. C., Igarashi, K. J., & Nakauchi, H. (2020). Haematopoietic stem cell self-renewal in vivo and ex vivo. Nature Reviews Genetics, 21(9), 541–554. https://doi.org/10.1038/s41576-020-0241-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334. https://doi.org/10.1038/nature12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baccin, C., Al-Sabah, J., Velten, L., Helbling, P. M., Grünschläger, F., Hernández-Malmierca, P., Nombela-Arrieta, C., Steinmetz, L. M., Trumpp, A., & Haas, S. (2020). Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nature Cell Biology, 22(1), 38–48. https://doi.org/10.1038/s41556-019-0439-6

    Article  CAS  PubMed  Google Scholar 

  13. Wolock, S. L., Krishnan, I., Tenen, D. E., Matkins, V., Camacho, V., Patel, S., Agarwal, P., Bhatia, R., Tenen, D. G., Klein, A. M., & Welner, R. S. (2019). Mapping distinct bone marrow niche populations and their differentiation Paths. Cell Reports, 28(2), 302-311e305. https://doi.org/10.1016/j.celrep.2019.06.031

    Article  CAS  PubMed  Google Scholar 

  14. Khan, J. A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal-Estape, A., Pinho, S., Ciero, P., Nakahara, F., Ma’ayan, A., Bergman, A., Merad, M., & Frenette, P. S. (2016). Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 351(6269), 176–180. https://doi.org/10.1126/science.aad0084

    Article  CAS  PubMed  Google Scholar 

  15. Pinho, S., & Frenette, P. S. (2019). Haematopoietic stem cell activity and interactions with the niche. Nature Reviews Molecular Cell Biology, 20(5), 303–320. https://doi.org/10.1038/s41580-019-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sánchez-Lanzas, R., Kalampalika, F., & Ganuza, M. ‘Cell-ebrating’ diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. British Journal of Haematology. https://doi.org/10.1111/bjh.18355

  17. Asada, N., Kunisaki, Y., Pierce, H., Wang, Z., Fernandez Nicolas, F., Birbrair, A., Ma’ayan, A., & Frenette Paul, S. (2017). Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature Cell Biology, 19(3), 214–223. https://doi.org/10.1038/ncb3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miao, R., Chun, H., Feng, X., Gomes, A. C., Choi, J., & Pereira, J. P. (2022). Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size. Nature Communications, 13(1), 4611. https://doi.org/10.1038/s41467-022-32228-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Upadhaya, S., Krichevsky, O., Akhmetzyanova, I., Sawai, C. M., Fooksman, D. R., & Reizis, B. (2020). Intravital Imaging reveals motility of adult hematopoietic stem cells in the bone marrow niche. Cell Stem Cell, 27(2), 336-345e334. https://doi.org/10.1016/j.stem.2020.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tikhonova, A. N., Dolgalev, I., Hu, H., Sivaraj, K. K., Hoxha, E., Cuesta-Domínguez, Á, Pinho, S., Akhmetzyanova, I., Gao, J., Witkowski, M., Guillamot, M., Gutkin, M. C., Zhang, Y., Marier, C., Diefenbach, C., Kousteni, S., Heguy, A., Zhong, H., Fooksman, D. R., … Aifantis, I. (2019). The bone marrow microenvironment at single-cell resolution. Nature, 569(7755), 222–228. https://doi.org/10.1038/s41586-019-1104-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joseph, C., Quach Julie, M., Walkley Carl, R., Lane Steven, W., Lo Celso, C., & Purton Louise, E. (2013). Deciphering hematopoietic stem cells in their niches: a critical Appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell, 13(5), 520–533. https://doi.org/10.1016/j.stem.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  22. Nobre, A. R., Risson, E., Singh, D. K., Martino, J. D., Cheung, J. F., Wang, J., Johnson, J., Russnes, H. G., Bravo-Cordero, J. J., Birbrair, A., Naume, B., Azhar, M., Frenette, P. S., & JA, A.-G. (2021). Bone marrow NG2+/Nestin + mesenchymal stem cells drive DTC dormancy via TGFβ2. Nature Cancer, 2, 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paiva, A. E., Lousado, L., Guerra, D. A. P., Azevedo, P. O., Sena, I. F. G., Andreotti, J. P., Santos, G. S. P., Goncalves, R., Mintz, A., & Birbrair, A. (2018). Pericytes in the Premetastatic Niche. Cancer Research, 78(11), 2779–2786. https://doi.org/10.1158/0008-5472.CAN-17-3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Picoli, C. C., Goncalves, B. O. P., Santos, G. S. P., Rocha, B. G. S., Costa, A. C., Resende, R. R., & Birbrair, A. (2021). Pericytes cross-talks within the tumor microenvironment. Biochimica Et Biophysica Acta - Reviews on Cancer, 1876(2), 188608. https://doi.org/10.1016/j.bbcan.2021.188608

    Article  CAS  PubMed  Google Scholar 

  25. Picoli, C. C., Costa, A. C., Rocha, B. G. S., Silva, W. N., Santos, G. S. P., Prazeres, P., Costa, P. A. C., Oropeza, A., da Silva, R. A., Azevedo, V. A. C., Resende, R. R., Cunha, T. M., Mintz, A., & Birbrair, A. (2021). Sensory nerves in the spotlight of the stem cell niche. Stem Cells Translational Medicine, 10(3), 346–356. https://doi.org/10.1002/sctm.20-0284

    Article  PubMed  Google Scholar 

  26. McLellan, M. A., Rosenthal, N. A., & Pinto, A. R. (2017). Cre-loxp-mediated recombination: general principles and experimental considerations. Current Protocols in Mouse Biology, 7(1), 1–12. https://doi.org/10.1002/cpmo.22

    Article  PubMed  Google Scholar 

  27. Janssens, R., Struyf, S., & Proost, P. (2018). The unique structural and functional features of CXCL12. Cellular & Molecular Immunology, 15(4), 299–311. https://doi.org/10.1038/cmi.2017.107

    Article  CAS  Google Scholar 

  28. Turan, S., Galla, M., Ernst, E., Qiao, J., Voelkel, C., Schiedlmeier, B., Zehe, C., & Bode, J. (2011). Recombinase-mediated Cassette Exchange (RMCE): traditional concepts and current challenges. Journal of Molecular Biology, 407(2), 193–221. https://doi.org/10.1016/j.jmb.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  29. Madisen, L., Zwingman, T. A., Sunkin, S. M., Oh, S. W., Zariwala, H. A., Gu, H., Ng, L. L., Palmiter, R. D., Hawrylycz, M. J., Jones, A. R., Lein, E. S., & Zeng, H. (2010). A robust and high-throughput cre reporting and characterization system for the whole mouse brain. Nature Neuroscience, 13(1), 133–140. https://doi.org/10.1038/nn.2467

    Article  CAS  PubMed  Google Scholar 

  30. Prazeres, P., Leonel, C., Silva, W. N., Rocha, B. G. S., Santos, G. S. P., Costa, A. C., Picoli, C. C., Sena, I. F. G., Goncalves, W. A., Vieira, M. S., Costa, P. A. C., Campos, L., Lopes, M. T. P., Costa, M. R., Resende, R. R., Cunha, T. M., Mintz, A., & Birbrair, A. (2020). Ablation of sensory nerves favours melanoma progression. Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/jcmm.15381

    Article  PubMed  PubMed Central  Google Scholar 

  31. Costa, P. A. C., Silva, W. N., Prazeres, P., Picoli, C. C., Guardia, G. D. A., Costa, A. C., Oliveira, M. A., Guimaraes, P. P. G., Goncalves, R., Pinto, M. C. X., Amorim, J. H., Azevedo, V. A. C., Resende, R. R., Russo, R. C., Cunha, T. M., Galante, P. A. F., Mintz, A., & Birbrair, A. (2021). Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathologica Communications, 9(1), 183. https://doi.org/10.1186/s40478-021-01273-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tenza-Ferrer, H., Collodetti, M., Nicolau, E. S., Birbrair, A., Magno, L. A. V., & Romano-Silva, M. A. (2022). Transiently Nav1.8-expressing neurons are capable of sensing noxious stimuli in the brain. Frontiers in Cellular Neuroscience, 16, 933874. https://doi.org/10.3389/fncel.2022.933874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rocha, B. G. S., Picoli, C. C., Gonçalves, B. O. P., Silva, W. N., Costa, A. C., Moraes, M. M., Costa, P. A. C., Santos, G. S. P., Almeida, M. R., Silva, L. M., Singh, Y., Falchetti, M., Guardia, G. D. A., Guimaraes, P. P. G., Russo, R. C., Resende, R. R., Pinto, M. C. X., Amorim, J. H., Azevedo, V. A. C., … Birbrair, A. (2022). Tissue–resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis. In press. https://doi.org/10.1007/s10456-022-09858-1

  34. Buch, T., Heppner, F. L., Tertilt, C., Heinen, T. J., Kremer, M., Wunderlich, F. T., Jung, S., & Waisman, A. (2005). A cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nature Methods, 2(6), 419–426. https://doi.org/10.1038/nmeth762

    Article  CAS  PubMed  Google Scholar 

  35. Mercier, F. E., Sykes, D. B., & Scadden, D. T. (2016). Single targeted exon mutation creates a true congenic mouse for competitive hematopoietic stem cell transplantation: the C57BL/6-CD45.1(STEM) mouse. Stem Cell Reports, 6(6), 985–992. https://doi.org/10.1016/j.stemcr.2016.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K., & Nagasawa, T. J. I. (2003). Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. 19 (2):257–267

  37. Yahata, T., Ando, K., Sato, T., Miyatake, H., Nakamura, Y., Muguruma, Y., Kato, S., & Hotta, T. (2003). A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 101 (8):2905–2913. https://doi.org/10.1182/blood-2002-07-1995

  38. Herring, B. P., Hoggatt, A. M., Burlak, C., & Offermanns, S. (2014). Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. Vasc Cell, 6, 21. https://doi.org/10.1186/2045-824X-6-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nikolakopoulou, A. M., Montagne, A., Kisler, K., Dai, Z., Wang, Y., Huuskonen, M. T., Sagare, A. P., Lazic, D., Sweeney, M. D., Kong, P., Wang, M., Owens, N. C., Lawson, E. J., Xie, X., Zhao, Z., & Zlokovic, B. V. (2019). Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss. Nature Neuroscience, 22(7), 1089–1098. https://doi.org/10.1038/s41593-019-0434-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cha, J. H., Chang, M. Y., Richardson, J. A., & Eidels, L. (2003). Transgenic mice expressing the diphtheria toxin receptor are sensitive to the toxin. Molecular Microbiology, 49(1), 235–240. https://doi.org/10.1046/j.1365-2958.2003.03550.x

    Article  CAS  PubMed  Google Scholar 

  41. Hanoun, M., Zhang, D., Mizoguchi, T., Pinho, S., Pierce, H., Kunisaki, Y., Lacombe, J., Armstrong, S. A., Duhrsen, U., & Frenette, P. S. (2014). Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell, 15(3), 365–375. https://doi.org/10.1016/j.stem.2014.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Andrade, J., Ge, S., Symbatyan, G., Rosol, M. S., Olch, A. J., & Crooks, G. M. (2011). Effects of sublethal irradiation on patterns of engraftment after murine bone marrow transplantation. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 17 (5):608–619. https://doi.org/10.1016/j.bbmt.2010.12.697

  43. Sena, I. F. G., Rocha, B. G. S., Picoli, C. C., Santos, G. S. P., Costa, A. C., Goncalves, B. O. P., Garcia, A. P. V., Soltani-Asl, M., Coimbra-Campos, L. M. C., Silva, W. N., Costa, P. A. C., Pinto, M. C. X., Amorim, J. H., Azevedo, V. A. C., Resende, R. R., Heller, D., Cassali, G. D., Mintz, A., & Birbrair, A. (2021). C(3)1-TAg in C57BL/6 J background as a model to study mammary tumor development. Histochemistry And Cell Biology. https://doi.org/10.1007/s00418-021-01995-w

    Article  PubMed  Google Scholar 

  44. Gilson Sena, I. F., Fernandes, L. L., Lorandi, L. L., Santana, T. V., Cintra, L., Lima, I. F., Iwai, L. K., Kramer, J. M., Birbrair, A., & Heller, D. (2022). Identification of early biomarkers in saliva in genetically engineered mouse model C(3)1-TAg of breast cancer. Scientific Reports, 12(1), 11544. https://doi.org/10.1038/s41598-022-14514-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gomes, N. A., do Valle, I. B., Gleber-Netto, F. O., Silva, T. A., Oliveira, H. M. C., de Oliveira, R. F., Ferreira, L. A. Q., Castilho, L. S., Reis, P., Prazeres, P., Menezes, G. B., de Magalhaes, C. S., Mesquita, R. A., Marques, M. M., Birbrair, A., & Diniz, I. M. A. (2022). Nestin and NG2 transgenes reveal two populations of perivascular cells stimulated by photobiomodulation. Journal Of Cellular Physiology, 237(4), 2198–2210. https://doi.org/10.1002/jcp.30680

    Article  CAS  PubMed  Google Scholar 

  46. Coimbra-Campos, L. M. C., Silva, W. N., Baltazar, L. M., Costa, P. A. C., Prazeres, P., Picoli, C. C., Costa, A. C., Rocha, B. G. S., Santos, G. S. P., Oliveira, F. M. S., Pinto, M. C. X., Amorim, J. H., Azevedo, V. A. C., Souza, D. G., Russo, R. C., Resende, R. R., Mintz, A., & Birbrair, A. (2021). Circulating Nestin-GFP(+) cells participate in the pathogenesis of Paracoccidioides brasiliensis in the lungs. Stem Cell Rev Rep, 17(5), 1874–1888. https://doi.org/10.1007/s12015-021-10181-3

    Article  CAS  PubMed  Google Scholar 

  47. Birbrair, A., Sattiraju, A., Zhu, D., Zulato, G., Batista, I., Nguyen, V. T., Messi, M. L., Solingapuram Sai, K. K., Marini, F. C., Delbono, O., & Mintz, A. (2017). Novel peripherally derived neural-like Stem cells as therapeutic carriers for treating glioblastomas. Stem Cells Translational Medicine, 6(2), 471–481. https://doi.org/10.5966/sctm.2016-0007

    Article  CAS  PubMed  Google Scholar 

  48. Birbrair, A., Wang, Z. M., Messi, M. L., Enikolopov, G. N., & Delbono, O. (2011). Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS One1, 6(2), e16816. https://doi.org/10.1371/journal.pone.0016816

    Article  CAS  Google Scholar 

  49. Birbrair, A., Zhang, T., Files, D. C., Mannava, S., Smith, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Research & Therapy, 5(6), 122. https://doi.org/10.1186/scrt512

    Article  CAS  Google Scholar 

  50. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development, 22(16), 2298–2314. https://doi.org/10.1089/scd.2012.0647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res, 10(1), 67–84. https://doi.org/10.1016/j.scr.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  52. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Experimental Cell Research, 319(1), 45–63. https://doi.org/10.1016/j.yexcr.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  53. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2013). Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. American Journal of Physiology Cell Physiology, 305(11), C1098-1113. https://doi.org/10.1152/ajpcell.00171.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology Cell Physiology, 307(1), C25-38. https://doi.org/10.1152/ajpcell.00084.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawamoto, T. (2003). Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Archives of Histology and Cytology, 66(2), 123–143. https://doi.org/10.1679/aohc.66.123

    Article  PubMed  Google Scholar 

  56. Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., Mar, J. C., Bergman, A., & Frenette, P. S. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502(7473), 637–643. https://doi.org/10.1038/nature12612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Swamydas, M., & Lionakis, M. S. (2013). Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments. Journal of Visualized Experiments: JoVE, (77), e50586–e50586. https://doi.org/10.3791/50586.

  58. Pinho, S., Lacombe, J., Hanoun, M., Mizoguchi, T., Bruns, I., Kunisaki, Y., & Frenette, P. S. (2013). PDGFRalpha and CD51 mark human nestin + sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. Journal of Experimental Medicine, 210(7), 1351–1367. https://doi.org/10.1084/jem.20122252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hudson, W. A., Li, Q., Le, C., & Kersey, J. H. (1998). Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia, 12(12), 2029–2033. https://doi.org/10.1038/sj.leu.2401236

    Article  CAS  PubMed  Google Scholar 

  60. Danesh-Sani, S. A., Tarnow, D., Yip, J. K., & Mojaver, R. (2017). The influence of cortical bone perforation on guided bone regeneration in humans. International Journal of Oral and Maxillofacial Surgery, 46(2), 261–266. https://doi.org/10.1016/j.ijom.2016.10.017

    Article  CAS  PubMed  Google Scholar 

  61. Yuuki, H., Yoshikai, Y., Kishihara, K., Matsuzaki, G., Ayukawa, K., & Nomoto, K. (1989). The expression and sequences of T cell antigen receptor beta-chain genes in the thymus at an early stage after sublethal irradiation. The Journal of Immunology, 142(10), 3683–3691.

    Article  CAS  PubMed  Google Scholar 

  62. Xiao, S., Shterev, I. D., Zhang, W., Young, L., Shieh, J. H., Moore, M., van den Brink, M., Sempowski, G. D., & Manley, N. R. (2017). Sublethal total body irradiation causes long-term deficits in Thymus function by reducing lymphoid progenitors. The Journal of Immunology, 199(8), 2701–2712. https://doi.org/10.4049/jimmunol.1600934

    Article  CAS  PubMed  Google Scholar 

  63. Wang, Y., Schulte, B. A., LaRue, A. C., Ogawa, M., & Zhou, D. (2006). Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood, 107(1), 358–366. https://doi.org/10.1182/blood-2005-04-1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Agarwal, A., Morrone, K., Bartenstein, M., Zhao, Z. J., Verma, A., & Goel, S. (2016). Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-beta. Stem Cell Investig, 3, 5. https://doi.org/10.3978/j.issn.2306-9759.2016.02.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Borjesson, A. E., Windahl, S. H., Karimian, E., Eriksson, E. E., Lagerquist, M. K., Engdahl, C., Antal, M. C., Krust, A., Chambon, P., Savendahl, L., & Ohlsson, C. (2012). The role of estrogen receptor-alpha and its activation function-1 for growth plate closure in female mice. American Journal of Physiology. Endocrinology and Metabolism, 302(11), E1381-1389. https://doi.org/10.1152/ajpendo.00646.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhong, R. (1999). Organ transplantation in mice: current status and future prospects. Microsurgery, 19(2), 52–55. https://doi.org/10.1002/(sici)1098-2752(1999)19:2<52::aid-micr2>3.0.co;2-m

  67. Mawdsley, R., & Harrison, G. A. (1963). Environmental factors determining the growth and development of whole bone transplants. Journal of Embryology and Experimental Morphology, 11, 537–547.

    CAS  PubMed  Google Scholar 

  68. Felts, W. J. (1959). Transplantation studies of factors in skeletal organogenesis. I. The subcutaneously implanted immature long-bone of the rat and mouse. American Journal of Physical Anthropology, 17(3), 201–215. https://doi.org/10.1002/ajpa.1330170306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Alexander Birbrair is supported by a research productivity fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-PQ2), a grant from Instituto Serrapilheira/Serra-1708-15285, a grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016); a grant from Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG (Chamada N°01/2021 – Demanda Universal, APQ-01321-21); a grant from FAPEMIG [Rede Mineira de Pesquisa Translacional em Imunobiológicos e Biofármacos no Câncer (REMITRIBIC, RED-00031-21)]; a grant from FAPEMIG [Rede Mineira de Engenharia de Tecidos e Terapia Celular (REMETTEC, RED-00570-16)]; a grant from FAPEMIG [Rede De Pesquisa Em Doenças Infecciosas Humanas E Animais Do Estado De Minas Gerais (RED-00313-16)]; and a grant from MCTIC/CNPq Nº 28/2018 (Universal/Faixa A). Akiva Mintz is supported by the National Institute of Health (1R01CA179072-01A1) and by the American Cancer Society Mentored Research Scholar grant (124443-MRSG-13-121-01-CDD). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, as Thamires Righi was supported by a PrInt/CAPES fellowship. Caroline C. Picoli was supported by doctoral fellowships from CAPES. Patricia R. Martins was supported by a postdoctoral fellowship (PDJ) from CNPq. The authors also thank CAPI (UFMG) for microscopical technical support and Laboratory of Flow Cytometry at the Instituto de Ciências Biológicas/UFMG (http://labs.icb.ufmg.br/citometria/)” for providing the equipment and technical support for experiments involving flow cytometry.

Funding

Alexander Birbrair is supported by a research productivity fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-PQ2), a grant from Instituto Serrapilheira/Serra-1708-15285, a grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016); a grant from Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG (Chamada N°01/2021 – Demanda Universal, APQ-01321-21); a grant from FAPEMIG [Rede Mineira de Pesquisa Translacional em Imunobiológicos e Biofármacos no Câncer (REMITRIBIC, RED-00031-21)]; a grant from FAPEMIG [Rede Mineira de Engenharia de Tecidos e Terapia Celular (REMETTEC, RED-00570-16)]; a grant from FAPEMIG [Rede De Pesquisa Em Doenças Infecciosas Humanas E Animais Do Estado De Minas Gerais (RED-00313-16)]; and a grant from MCTIC/CNPq Nº 28/2018 (Universal/Faixa A). Akiva Mintz is supported by the National Institute of Health (1R01CA179072-01A1) and by the American Cancer Society Mentored Research Scholar grant (124443-MRSG-13-121-01-CDD). Caroline C. Picoli was supported by doctoral fellowships from CAPES. Patricia R. Martins was supported by a postdoctoral fellowship (PDJ) from CNPq. The authors also thank CAPI (UFMG) for microscopical technical support and Laboratory of Flow Cytometry at the Instituto de Ciências Biológicas/UFMG (http://labs.icb.ufmg.br/citometria/)” for providing the equipment and technical support for experiments involving flow cytometry.

Author information

Authors and Affiliations

Authors

Contributions

AB conceived and supervised the study; CCP, PRM, XLCW, TR, PPGG, MCXP, JHA, VACA, SRP, AK, FCC, RRR, AM, AB analyzed the data and discussed the results; AB and PSF were responsible for funding; AM and AB wrote the original draft; all authors contributed to and approved the final version of the manuscript.

Corresponding author

Correspondence to Alexander Birbrair.

Ethics declarations

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors indicate no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Caroline C. Picoli and Patrícia Rocha Martins contributed equally and were co-first authors in this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Transplantation of whole bone with the surrounding skeletal muscle does not improve the amount of hematopoietic stem cells in the subcutaneously transplanted bones. A C57BL6-derived femur with surrounding skeletal muscle subcutaneous transplantation into recipient NOD/SCID mice scheme. Whole femurs with muscle from C57BL6 mouse were implanted subcutaneously into NOD/SCID mice. After 45 days, the subcutaneously transplanted femurs from donor C57BL6 were collected for analysis. B Representative flow cytometry dot plots of bone marrow cells are shown. Data were assessed by flow cytometry analysis of bone marrow cells isolated from the femurs. Representative flow cytometry plots of femurs with surrounding skeletal muscle from C57BL6 mice implanted subcutaneously into C57BL6 mice analyzed after 45 days. The gating strategy was applied to analyze LSK (Sca-1 + c-kit + Lineage − gated). (PNG 429 KB)

High Resolution Image (TIF 962 KB)

Supplementary Fig. 2

Transplantation of whole bone with the surrounding skeletal muscle does not improve the amount of hematopoietic stem cells in the subcutaneously transplanted bones. A C57BL6-derived femur with surrounding skeletal muscle subcutaneous transplantation into recipient NOD/SCID mice scheme. Whole femurs with muscle from C57BL6 mouse were implanted subcutaneously into NOD/SCID mice. After 45 days, the subcutaneously transplanted femurs from donor C57BL6 were collected for analysis. B Representative flow cytometry dot plots of bone marrow cells are shown. Data were assessed by flow cytometry analysis of bone marrow cells isolated from the femurs. Representative flow cytometry plots of femurs with surrounding skeletal muscle from C57BL6 mice implanted subcutaneously into C57BL6 mice analyzed after 45 days. The gating strategy was applied to analyze LSK (Sca-1 + c-kit + Lineage − gated). (PNG 4.16 MB)

High Resolution Image (TIF 5.08 MB)

Supplementary Fig. 3

Subcutaneously transplanted bones lack sympathetic innervation. A Schematic diagram of femurs derived from Myh11CreER/TdTomato mice subcutaneously transplanted into C57BL6 WT mice. Femurs from Myh11CreER/TdTomato mice were dissected and transplanted subcutaneously into recipient C57BL6 WT mice. After 3 months, the animals were submitted to tamoxifen treatment for 5 days, and, after 2 days, the subcutaneously transplanted femurs were collected for analyses. B Representative photomicrograph of a femur section showing Myh11CreER+/TdTomato+ peri-arteriolar cells (red), CD31+/CD144+ blood vessels (blue), TH+ sympathetic nerve fibers (green) and DAPI+ nuclei (white). (PNG 3.05 MB)

High Resolution Image (TIF 4.53 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picoli, C.C., Martins, P.R., Wong, X.L.C. et al. Whole bone subcutaneous transplantation as a strategy to study precisely the bone marrow niche. Stem Cell Rev and Rep 19, 906–927 (2023). https://doi.org/10.1007/s12015-022-10496-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10496-9

Keywords

Navigation