Skip to main content
Log in

Combined Transplantation of Human MSCs and ECFCs Improves Cardiac Function and Decrease Cardiomyocyte Apoptosis After Acute Myocardial Infarction

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Ischemic heart disease, often caused by an acute myocardial infarction (AMI) is one of the leading causes of morbidity and mortality worldwide. Despite significant advances in medical and procedural therapies, millions of AMI patients progress to develop heart failure every year.

Methods

Here, we examine the combination therapy of human mesenchymal stromal cells (MSCs) and endothelial colony-forming cells (ECFCs) to reduce the early ischemic damage (MSCs) and enhance angiogenesis (ECFCs) in a pre-clinical model of acute myocardial infarction. NOD/SCID mice were subjected to AMI followed by transplantation of MSCs and ECFCs either alone or in combination. Cardiomyocyte apoptosis and cardiac functional recovery were assessed in short- and long-term follow-up studies.

Results

At 1 day after AMI, MSC- and ECFC-treated animals demonstrated significantly lower cardiomyocyte apoptosis compared to vehicle-treated animals. This phenomenon was associated with a significant reduction in infarct size, cardiac fibrosis, and improvement in functional cardiac recovery 4 weeks after AMI.

Conclusions

The use of ECFCs, MSCs, and the combination of both cell types reduce cardiomyocyte apoptosis, scar size, and adverse cardiac remodeling, compared to vehicle, in a pre-clinical model of AMI. These results support the use of this combined cell therapy approach in future human studies during the acute phase of ischemic cardiac injury.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

Data is available upon request submitted to the corresponding author.

References

  1. Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., et al. (2019). Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 139(10), e56–e528.

    Article  Google Scholar 

  2. Bolli, R., Tang, X. L., Sanganalmath, S. K., Rimoldi, O., Mosna, F., Abdel-Latif, A., et al. (2013). Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation, 128(2), 122–131.

    Article  CAS  Google Scholar 

  3. Tripathi, H., Peng, H., Donahue, R., Chelvarajan, L., Gottipati, A., Levitan, B., et al. (2020). Isolation Methods for Human CD34 Subsets Using Fluorescent and Magnetic Activated Cell Sorting: An In Vivo Comparative Study. Stem Cell Reviews and Reports, 16(2), 413–423.

    Article  CAS  Google Scholar 

  4. Sid-Otmane, C., Perrault, L. P., & Ly, H. Q. (2020). Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes. Journal of Translational Medicine., 18(1), 336.

    Article  Google Scholar 

  5. Smadja, D. M. (2019). Vasculogenic Stem and Progenitor Cells in Human: Future Cell Therapy Product or Liquid Biopsy for Vascular Disease. Advances in Experimental Medicine and Biology, 1201, 215–237.

    Article  CAS  Google Scholar 

  6. Smadja, D. M., Melero-Martin, J. M., Eikenboom, J., Bowman, M., Sabatier, F., & Randi, A. M. (2019). Standardization of methods to quantify and culture endothelial colony-forming cells derived from peripheral blood: Position paper from the International Society on Thrombosis and Haemostasis SSC. Journal of Thrombosis and Haemostasis, 17(7), 1190–1194.

    Article  Google Scholar 

  7. Rossi, E., Smadja, D., Goyard, C., Cras, A., Dizier, B., Bacha, N., et al. (2017). Co-injection of mesenchymal stem cells with endothelial progenitor cells accelerates muscle recovery in hind limb ischemia through an endoglin-dependent mechanism. Thrombosis and Haemostasis, 117(10), 1908–1918.

    Article  Google Scholar 

  8. d’Audigier, C., Susen, S., Blandinieres, A., Mattot, V., Saubamea, B., Rossi, E., et al. (2018). Egfl7 Represses the Vasculogenic Potential of Human Endothelial Progenitor Cells. Stem Cell Reviews, 14(1), 82–91.

    Article  CAS  Google Scholar 

  9. Nevo, N., Lecourt, S., Bieche, I., Kucia, M., Cras, A., Blandinieres, A., et al. (2020). Valproic Acid Decreases Endothelial Colony Forming Cells Differentiation and Induces Endothelial-to-Mesenchymal Transition-like Process. Stem Cell Reviews and Reports, 16(2), 357–368.

    Article  CAS  Google Scholar 

  10. Freida, D., Lecourt, S., Cras, A., Vanneaux, V., Letort, G., Gidrol, X., et al. (2013). Human bone marrow mesenchymal stem cells regulate biased DNA segregation in response to cell adhesion asymmetry. Cell Reports, 5(3), 601–610.

    Article  CAS  Google Scholar 

  11. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–7.

  12. Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.

    Article  CAS  Google Scholar 

  13. Tripathi, H., Al-Darraji, A., Abo-Aly, M., Peng, H., Shokri, E., Chelvarajan, L., et al. (2020). Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology., 149, 95–114.

    Article  CAS  Google Scholar 

  14. Kang, K. T., Coggins, M., Xiao, C., Rosenzweig, A., & Bischoff, J. (2013). Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats. Angiogenesis, 16(4), 773–784.

    Article  CAS  Google Scholar 

  15. Popescu, S., Preda, M. B., Marinescu, C. I., Simionescu, M., & Burlacu, A. (2021). Dual Stem cell therapy improves the myocardial recovery post-infarction through reciprocal modulation of cell functions. International Journal of Molecular Sciences, 22(11), 5631.

    Article  CAS  Google Scholar 

  16. Chambers, S. E. J., Pathak, V., Pedrini, E., Soret, L., Gendron, N., Guerin, C. L., et al. (2021). Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Translational Medicine, 10(Suppl 2), S54–S61.

    Article  Google Scholar 

  17. Smadja, D. M., Bieche, I., Silvestre, J. S., Germain, S., Cornet, A., Laurendeau, I., et al. (2008). Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2137–2143.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Abdel-Latif is supported by the NIH Grant R01 HL124266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdel-Latif.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, H., Domingues, A., Donahue, R. et al. Combined Transplantation of Human MSCs and ECFCs Improves Cardiac Function and Decrease Cardiomyocyte Apoptosis After Acute Myocardial Infarction. Stem Cell Rev and Rep 19, 573–577 (2023). https://doi.org/10.1007/s12015-022-10468-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10468-z

Keywords

Navigation