Skip to main content

Advertisement

Log in

Aspirin-Mediated Reset of Preeclamptic Placental Stem Cell Transcriptome – Implication for Stabilized Placental Function

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a pregnancy-specific disease, occurring in ~ 2–10% of all pregnancies. PE is associated with increased maternal and perinatal morbidity and mortality, hypertension, proteinuria, disrupted artery remodeling, placental ischemia and reperfusion, and inflammation. The mechanism of PE pathogenesis remains unresolved explaining limited treatment. Aspirin is used to reduce the risk of developing PE. This study investigated aspirin’s effect on PE-derived placenta mesenchymal stem cells (P-MSCs). P-MSCs from chorionic membrane (CM), chorionic villi, membranes from the maternal and amniotic regions, and umbilical cord were similar in morphology, phenotype and multipotency. Since CM-derived P-MSCs could undergo long-term passages, the experimental studies were conducted with this source of P-MSCs. Aspirin (1 mM) induced significant functional and transcriptomic changes in PE-derived P-MSCs, similar to healthy P-MSCs. These include cell cycle quiescence, improved angiogenic pathways, and immune suppressor potential. The latter indicated that aspirin could induce an indirect program to mitigate PE-associated inflammation. As a mediator of activating the DNA repair program, aspirin increased p53, and upregulated genes within the basic excision repair pathway. The robust ability for P-MSCs to maintain its function with high dose aspirin contrasted bone marrow (M) MSCs, which differentiated with eventual senescence/aging with 100 fold less aspirin. This difference cautions how data from other MSC sources are extrapolated to evaluate PE pathogenesis. Dysfunction among P-MSCs in PE involves a network of multiple pathways that can be restored to an almost healthy functional P-MSC. The findings could lead to targeted treatment for PE.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available from Dr. Pranela Rameshwar (rameshwa@njms.rutgers.edu).

Code Availability

Not applicable.

References

  1. Say, L., Chou, D., Gemmill, A., Tuncalp, O., Moller, A. B., Daniels, J., Gulmezoglu, A. M., Temmerman, M., & Alkema, L. (2014). Global causes of maternal death: A WHO systematic analysis. The Lancet Global Health, 2, e323-333.

    PubMed  Google Scholar 

  2. Kuklina, E. V., Ayala, C., & Callaghan, W. M. (2009). Hypertensive disorders and severe obstetric morbidity in the United States. Obstetrics & Gynecology, 113, 1299–1306.

    Google Scholar 

  3. Steegers, E. A., von Dadelszen, P., Duvekot, J. J., & Pijnenborg, R. (2010). Pre-eclampsia. Lancet, 376, 631–644.

    PubMed  Google Scholar 

  4. Ornaghi, S., & Paidas, M. J. (2017). Novel Therapy for the Treatment of Early-Onset Preeclampsia. Clinical Obstetrics & Gynecology, 60, 169–182.

    Google Scholar 

  5. Dekker, G. A., & Sibai, B. M. (1998). Etiology and pathogenesis of preeclampsia: Current concepts. American Journal of Obstetrics and Gynecology, 179, 1359–1375.

    CAS  PubMed  Google Scholar 

  6. Maynard, S. E., Min, J. Y., Merchan, J., Lim, K. H., Li, J., Mondal, S., Libermann, T. A., Morgan, J. P., Sellke, F. W., Stillman, I. E., Epstein, F. H., Sukhatme, V. P., & Karumanchi, S. A. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. The Journal of Clinical Investigation, 111, 649–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lyall, F., Bulmer, J. N., Duffie, E., Cousins, F., Theriault, A., & Robson, S. C. (2001). Human trophoblast invasion and spiral artery transformation: The role of PECAM-1 in normal pregnancy, preeclampsia, and fetal growth restriction. American Journal of Pathology, 158, 1713–1721.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Santner-Nanan, B., Peek, M. J., Khanam, R., Richarts, L., Zhu, E., Fazekas de St Groth, B., & Nanan, R. (2009). Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. The Journal of Immunology, 183, 7023–7030.

    CAS  PubMed  Google Scholar 

  9. James, J. L. (2016). Stem Cells and Pregnancy Disorders: From Pathological Mechanisms to Therapeutic Horizons. Seminars in Reproductive Medicine, 34, 17–26.

    CAS  PubMed  Google Scholar 

  10. Xu, J., Gu, Y., Sun, J., Zhu. H., Lewis, D. F., Wang, Y. (2018). Reduced CD200 expression is associated with altered Th1/Th2 cytokine production in placental trophoblasts from preeclampsia. American Journal of Reproductive Immunology, 79, e12763.

  11. Saito, S., Nakashima, A., Shima, T., & Ito, M. (2010). Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. American Journal of Reproductive Immunology, 63, 601–610.

    CAS  PubMed  Google Scholar 

  12. Sherman, L. S., Munoz, J., Patel, S. A., Dave, M. A., Paige, I., & Rameshwar, P. (2011). Moving from the laboratory bench to patients’ bedside: Considerations for effective therapy with stem cells. Clinical and Translational Science, 4, 380–386.

    PubMed  PubMed Central  Google Scholar 

  13. Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: Clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology, 36, 568–584.

    CAS  Google Scholar 

  14. Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Buhring, H. J., Evangelista, M., Hennerbichler, S., Liu, B., Magatti, M., Mao, N., Miki, T., Marongiu, F., Nakajima, H., Nikaido, T., Portmann-Lanz, C. B., Sankar, V., Soncini, M., Stadler, G., Surbek, D., … Strom, S. C. (2008). Concise review: Isolation and characterization of cells from human term placenta: Outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells, 26, 300–311.

    PubMed  Google Scholar 

  15. Potian, J. A., Aviv, H., Ponzio, N. M., Harrison, J. S., & Rameshwar, P. (2003). Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. Journal of immunology (Baltimore, Md: 1950), 171, 3426–3434.

    CAS  Google Scholar 

  16. Galipeau, J., Krampera, M., Barrett, J., Dazzi, F., Deans, R. J., DeBruijn, J., Dominici, M., Fibbe, W. E., Gee, A. P., Gimble, J. M., Hematti, P., Koh, M. B., LeBlanc, K., Martin, I., McNiece, I. K., Mendicino, M., Oh, S., Ortiz, L., Phinney, D. G., … Sensebe, L. (2016). International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 18, 151–159.

    CAS  PubMed  Google Scholar 

  17. Majumdar, M. K., Keane-Moore, M., Buyaner, D., Hardy, W. B., Moorman, M. A., McIntosh, K. R., & Mosca, J. D. (2003). Characterization and functionality of cell surface molecules on human mesenchymal stem cells. Journal of Biomedical Science, 10, 228–241.

    CAS  PubMed  Google Scholar 

  18. Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringden, O. (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–896.

    PubMed  Google Scholar 

  19. Meraviglia, V., Vecellio, M., Grasselli, A., Baccarin, M., Farsetti, A., Capogrossi, M. C., Pompilio, G., Coviello, D. A., Gaetano, C., Di Segni, M., & Rossini, A. (2012). Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differentiation; Research in Biological Diversity, 83, 260–270.

    CAS  PubMed  Google Scholar 

  20. Castrechini, N. M., Murthi, P., Gude, N. M., Erwich, J. J., Gronthos, S., Zannettino, A., Brennecke, S. P., & Kalionis, B. (2010). Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta, 31, 203–212.

    CAS  PubMed  Google Scholar 

  21. Magatti, M., Stefani, F. R., Papait, A., Cargnoni, A., Masserdotti, A., Silini, A. R, Parolini O. (2019). Perinatal Mesenchymal Stromal Cells and Their Possible Contribution to Fetal-Maternal Tolerance. Cells. 8, 1401.

  22. Gu, Y. Z., Xue, Q., Chen, Y. J., Yu, G. H., Qing, M. D., Shen, Y., Wang, M. Y., Shi, Q., & Zhang, X. G. (2013). Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Human Immunol., 74, 267–276.

    CAS  Google Scholar 

  23. Rolfo, A., Giuffrida, D., Nuzzo, A. M., Pierobon, D., Cardaropoli, S., Piccoli, E., Giovarelli, M., & Todros, T. (2013). Pro-inflammatory profile of preeclamptic placental mesenchymal stromal cells: New insights into the etiopathogenesis of preeclampsia. PLoS ONE, 8, e59403.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Myatt, L. (2002). Role of placenta in preeclampsia. Endocrine, 19, 103–111.

    CAS  PubMed  Google Scholar 

  25. Margioula-Siarkou, G., Margioula-Siarkou, C., Petousis, S., Margaritis, K., Vavoulidis, E., Gullo, G., Alexandratou, M., Dinas, K., Sotiriadis, A., & Mavromatidis, G. (2022). The role of endoglin and its soluble form in pathogenesis of preeclampsia. Molecular and Cellular Biochemistry, 477, 479–491.

    CAS  PubMed  Google Scholar 

  26. Hwang, J. H., Lee, M. J., Seok, O. S., Paek, Y. C., Cho, G. J., Seol, H. J., Lee, J. K., & Oh, M. J. (2010). Cytokine expression in placenta-derived mesenchymal stem cells in patients with pre-eclampsia and normal pregnancies. Cytokine, 49, 95–101.

    CAS  PubMed  Google Scholar 

  27. Goodlin, R. C., Haesslein, H. O., & Fleming, J. (1978). Aspirin for the treatment of recurrent toxaemia. Lancet, 2, 51.

    CAS  PubMed  Google Scholar 

  28. Roberge, S., Sibai, B., McCaw-Binns, A., & Bujold, E. (2016). Low-Dose Aspirin in Early Gestation for Prevention of Preeclampsia and Small-for-Gestational-Age Neonates: Meta-analysis of Large Randomized Trials. American Journal of Perinatology, 33, 781–785.

    PubMed  Google Scholar 

  29. Chaemsaithong, P., Cuenca-Gomez, D., Plana, M. N., Gil, M. M., Poon, L. C. (2020). Does low-dose aspirin initiated before 11 weeks' gestation reduce the rate of preeclampsia? American Journal of Obstetrics and Gynecology. 222, 437–450.

  30. Bujold, E., Roberge, S., Lacasse, Y., Bureau, M., Audibert, F., Marcoux, S., Forest, J. C., & Giguere, Y. (2010). Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: A meta-analysis. Obstetrics & Gynecology, 116, 402–414.

    Google Scholar 

  31. Roberge, S., Bujold, E., & Nicolaides, K. H. (2018). Aspirin for the prevention of preterm and term preeclampsia: Systematic review and metaanalysis. American Journal of Obstetrics and Gynecology, 218, 287-293.e281.

    CAS  PubMed  Google Scholar 

  32. Roberge, S., Nicolaides, K., Demers, S., Hyett, J., Chaillet, N., & Bujold, E. (2017). The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: Systematic review and meta-analysis. American Journal of Obstetrics and Gynecology, 216, 110-120.e116.

    CAS  PubMed  Google Scholar 

  33. Meher, S., Duley, L., Hunter, K., & Askie, L. (2017). Antiplatelet therapy before or after 16 weeks’ gestation for preventing preeclampsia: An individual participant data meta-analysis. American Journal of Obstetrics and Gynecology, 216, 121-128.e122.

    CAS  PubMed  Google Scholar 

  34. Rolnik, D. L., Wright, D., Poon, L. C., O’Gorman, N., Syngelaki, A., de Paco, M. C., Akolekar, R., Cicero, S., Janga, D., Singh, M., Molina, F. S., Persico, N., Jani, J. C., Plasencia, W., Papaioannou, G., Tenenbaum-Gavish, K., Meiri, H., Gizurarson, S., Maclagan, K., & Nicolaides, K. H. (2017). Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. New England Journal of Medicine, 377, 613–622.

    CAS  PubMed  Google Scholar 

  35. LeFevre, M. L. (2014). Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Annals of Internal Medicine, 161, 819–826.

    PubMed  Google Scholar 

  36. WHO recommendation on low-dose acetylsalicylic acid (aspirin) for pre-eclampsia prevention in high-risk women. (2011) The WHO Reprod Health Library, Geneva, Switzerland.

  37. ACOG Committee Opinion No. (2018). 743: Low-Dose Aspirin Use During Pregnancy. Obstetrics & Gynecology, 132, e44–e52.

    Google Scholar 

  38. Ai, G., Dachineni, R., Kumar, D. R., Marimuthu, S., Alfonso, L. F., & Bhat, G. J. (2016). Aspirin acetylates wild type and mutant p53 in colon cancer cells: Identification of aspirin acetylated sites on recombinant p53. Tumour Biology, 37, 6007–6016.

    CAS  PubMed  Google Scholar 

  39. Cadavid, A. P. (2017). Aspirin: The Mechanism of Action Revisited in the Context of Pregnancy Complications. Frontiers in Immunology, 8, 261.

    PubMed  PubMed Central  Google Scholar 

  40. Lopez-Lazaro, M. (2015). Understanding why aspirin prevents cancer and why consuming very hot beverages and foods increases esophageal cancer risk Controlling the division rates of stem cells is an important strategy to prevent cancer. Oncoscience, 2, 849–856.

    PubMed  PubMed Central  Google Scholar 

  41. Hao, W., Shi, S., Zhou, S., Wang, X., & Nie, S. (2018). Aspirin inhibits growth and enhances cardiomyocyte differentiation of bone marrow mesenchymal stem cells. European Journal of Pharmacology, 827, 198–207.

    CAS  PubMed  Google Scholar 

  42. Wang, Y., Chen, X., Zhu, W., Zhang, H., Hu, S., & Cong, X. (2006). Growth inhibition of mesenchymal stem cells by aspirin: Involvement of the WNT/beta-catenin signal pathway. Clinical and Experimental Pharmacology and Physiology, 33, 696–701.

    CAS  PubMed  Google Scholar 

  43. Fan, W., Li, J., Chen, J., Zhu, L., Wang, Y., Sun, B., Hua, B., Guo, C., & Yan, Z. (2017). Aspirin inhibits the proliferation of synovium-derived mesenchymal stem cells by arresting the cell cycle in the G0/G1 phase. American Journal of Translational Research, 9, 5056–5062.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, Y., Walsh, S. W., & Kay, H. H. (1992). Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. American Journal of Obstetrics and Gynecology, 167, 946–949.

    CAS  PubMed  Google Scholar 

  45. Walsh, S. W., Wang, Y., Kay, H. H., & McCoy, M. C. (1992). Low-dose aspirin inhibits lipid peroxides and thromboxane but not prostacyclin in pregnant women. American Journal of Obstetrics and Gynecology, 167, 926–930.

    CAS  PubMed  Google Scholar 

  46. Panagodage, S., Yong, H. E., Da Silva, C. F., Borg, A. J., Kalionis, B., Brennecke, S. P., & Murthi, P. (2016). Low-Dose Acetylsalicylic Acid Treatment Modulates the Production of Cytokines and Improves Trophoblast Function in an in Vitro Model of Early-Onset Preeclampsia. The American Journal of Pathology, 186, 3217–3224.

    CAS  PubMed  Google Scholar 

  47. Viswanathan, S., Ciccocioppo, R., Galipeau, J., Krampera, M., Le Blanc, K., Martin, I., Moniz, K., Nolta, J., Phinney, D. G., Shi, Y., Szczepiorkowski, Z. M., Tarte, K., Weiss, D. J., Ashford, P. (2021). Consensus International Council for Commonality in Blood Banking Automation-International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells. Cytotherapy. 12, 1060-1063.

  48. ACOG Practice Bulletin No. 202. (2019). Gestational Hypertension and Preeclampsia. Obstetrics & Gynecology. 133, e1-e25.

  49. Sandiford, O. A., Donnelly, R. J., El-Far, M. H., Burgmeyer, L. M., Sinha, G., Pamarthi, S. H., Sherman, L. S., Ferrer, A. I., DeVore, D. E., Patel, S. A., Naaldijk, Y., Alonso, S., Barak, P., Bryan, M., Ponzio, N. M., Narayanan, R., Etchegaray, J. P., Kumar, R., & Rameshwar, P. (2021). Mesenchymal Stem Cell-Secreted Extracellular Vesicles Instruct Stepwise Dedifferentiation of Breast Cancer Cells into Dormancy at the Bone Marrow Perivascular Region. Cancer Research, 81, 1567–1582.

    CAS  PubMed  Google Scholar 

  50. Cao, Y., Xiong, J., Mei, S., Wang, F., Zhao, Z., Wang, S., & Liu, Y. (2015). Aspirin promotes bone marrow mesenchymal stem cell-based calvarial bone regeneration in mini swine. Stem Cell Research & Therapy, 6, 210.

    Google Scholar 

  51. Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47, D607-d613.

    CAS  PubMed  Google Scholar 

  52. Rameshwar, P., Joshi, D. D., Yadav, P., Qian, J., Gascon, P., Chang, V. T., Anjaria, D., Harrison, J. S., & Song, X. (2001). Mimicry between neurokinin-1 and fibronectin may explain the transport and stability of increased substance P immunoreactivity in patients with bone marrow fibrosis. Blood, 97, 3025–3031.

    CAS  PubMed  Google Scholar 

  53. Liu, Y., Prasad, R., Beard, W. A., Kedar, P. S., Hou, E. W., Shock, D. D., & Wilson, S. H. (2007). Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta. Journal of Biological Chemistry, 282, 13532–13541.

    CAS  PubMed  Google Scholar 

  54. Ahuja, A. K., Jodkowska, K., Teloni, F., Bizard, A. H., Zellweger, R., Herrador, R., Ortega, S., Hickson, I. D., Altmeyer, M., Mendez, J., & Lopes, M. (2016). A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nature Communications, 7, 10660.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vallabhaneni, H., Lynch, P. J., Chen, G., Park, K., Liu, Y., Goehe, R., Mallon, B. S., Boehm, M., & Hursh, D. A. (2018). High Basal Levels of γH2AX in Human Induced Pluripotent Stem Cells Are Linked to Replication-Associated DNA Damage and Repair. Stem Cells, 36, 1501–1513.

    CAS  PubMed  Google Scholar 

  56. Choi, E. H., Yoon, S., Koh, Y. E., Seo, Y. J., & Kim, K. P. (2020). Maintenance of genome integrity and active homologous recombination in embryonic stem cells. Experimental & Molecular Medicine, 52, 1220–1229.

    CAS  Google Scholar 

  57. Patel, S. A., Meyer, J. R., Greco, S. J., Corcoran, K. E., Bryan, M., & Rameshwar, P. (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta. The Journal of Immunology, 184, 5885–5894.

    CAS  PubMed  Google Scholar 

  58. Kent, L. N., & Leone, G. (2019). The broken cycle: E2F dysfunction in cancer. Nature Reviews Cancer, 19, 326–338.

    CAS  PubMed  Google Scholar 

  59. Giacinti, C., & Giordano, A. (2006). RB and cell cycle progression. Oncogene, 25, 5220–5227.

    CAS  PubMed  Google Scholar 

  60. Chen, J. (2016). The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harbor Perspectives in Medicine, 6, a026104–a026104.

    PubMed  PubMed Central  Google Scholar 

  61. Clark, D. E., Smith, S. K., He, Y., Day, K. A., Licence, D. R., Corps, A. N., Lammoglia, R., & Charnock-Jones, D. S. (1998). A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biology of Reproduction, 59, 1540–1548.

    CAS  PubMed  Google Scholar 

  62. McKeeman, G. C., Ardill, J. E., Caldwell, C. M., Hunter, A. J., & McClure, N. (2004). Soluble vascular endothelial growth factor receptor-1 (sFlt-1) is increased throughout gestation in patients who have preeclampsia develop. American Journal of Obstetrics and Gynecology., 191, 1240–1246.

    CAS  PubMed  Google Scholar 

  63. Agrawal, S., Cerdeira, A. S., Redman, C., & Vatish, M. (2018). Meta-Analysis and Systematic Review to Assess the Role of Soluble FMS-Like Tyrosine Kinase-1 and Placenta Growth Factor Ratio in Prediction of Preeclampsia: The SaPPPhirE Study. Hypertension, 71, 306–316.

    CAS  PubMed  Google Scholar 

  64. Yusuf, A. M., Kahane, A., & Ray, J. G. (2018). First and Second Trimester Serum sFlt-1/PlGF Ratio and Subsequent Preeclampsia: A Systematic Review. Journal of Obstetrics and Gynaecology Canada, 40, 618–626.

    PubMed  Google Scholar 

  65. Odibo, A. O., Rada, C. C., Cahill, A. G., Goetzinger, K. R., Tuuli, M. G., Odibo, L., Macones, G. A., & England, S. K. (2013). First-trimester serum soluble fms-like tyrosine kinase-1, free vascular endothelial growth factor, placental growth factor and uterine artery Doppler in preeclampsia. Journal of Perinatology, 33, 670–674.

    CAS  PubMed  Google Scholar 

  66. Gonzales, S. K., Badell, M., Cottrell, H., Rimawi, B., Deepak, V., Sidell, N., & Rajakumar, A. (2018). Villous explants from preeclamptic placentas induce sFlt1 in PBMCs: An ex vivo co-culture study. Pregnancy Hypertens., 12, 40–46.

    PubMed  Google Scholar 

  67. Tang, K. C., Trzaska, K. A., Smirnov, S. V., Kotenko, S. V., Schwander, S. K., Ellner, J. J., & Rameshwar, P. (2008). Down-regulation of MHC II in mesenchymal stem cells at high IFN-gamma can be partly explained by cytoplasmic retention of CIITA. The Journal of Immunology, 180, 1826–1833.

    CAS  PubMed  Google Scholar 

  68. Ghosh, D., McGrail, D. J., & Dawson, M. R. (2017). TGF-β1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed. Frontiers in Cell and Developmental Biology., 5, 28.

    PubMed  PubMed Central  Google Scholar 

  69. Sherman, L. S., Shaker, M., Mariotti, V., & Rameshwar, P. (2017). Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy, 19, 19–27.

    PubMed  Google Scholar 

  70. Khanabdali, R., Shakouri-Motlagh, A., Wilkinson, S., Murthi, P., Georgiou, H. M., Brennecke, S. P., & Kalionis, B. (2018). Low-dose aspirin treatment enhances the adhesion of preeclamptic decidual mesenchymal stem/stromal cells and reduces their production of pro-inflammatory cytokines. Journal of Molecular Medicine, 96, 1215–1225.

    CAS  PubMed  Google Scholar 

  71. Menon, R., & Moore, J. J. (2020). Fetal Membranes, Not a Mere Appendage of the Placenta, but a Critical Part of the Fetal-Maternal Interface Controlling Parturition. Obstetrics and Gynecology Clinics of North America, 47, 147–162.

    PubMed  Google Scholar 

  72. Choi, Y. S., Park, Y. B., Ha, C. W., Kim, J. A., Heo, J. C., Han, W. J., Oh, S. Y., & Choi, S. J. (2017). Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta. PLoS ONE, 12, e0172642.

    PubMed  PubMed Central  Google Scholar 

  73. Ohinata, Y., Endo, T. A., Sugishita, H., Watanabe, T., Iizuka, Y., Kawamoto, Y., Saraya, A., Kumon, M., Koseki, Y., Kondo, T., Ohara, O., & Koseki, H. (2022). Establishment of mouse stem cells that can recapitulate the developmental potential of primitive endoderm. Science, 375, 574–578.

    CAS  PubMed  Google Scholar 

  74. de Araújo, T. E., Milián, I. C. B., de Souza, G., da Silva, R. J., Rosini, A. M., Guirelli, P. M., Franco, P. S., Barbosa, B. F., Ferro, E. A. V., & da Costa, I. N. (2020). Experimental models of maternal–fetal interface and their potential use for nanotechnology applications. Cell Biology International, 44, 36–50.

    Google Scholar 

  75. Kaartokallio, T., Cervera, A., Kyllönen, A., Laivuori, K., Kere, J., Laivuori, H., Laivuori, H., Heinonen, S., Kajantie, E., Kere, J., Kivinen, K., Pouta, A., & The, F. C. I. G. (2015). Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Scientific Reports, 5, 14107.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Aryeh Foundation and NJCCR predoctoral fellow to LSS.

Author information

Authors and Affiliations

Authors

Contributions

MPR collected the placenta and expand the P-MSCs in culture, conducted the experiments, wrote the manuscript and analyzed the data.

LSS expand P-MSCs and MSC (M) in culture, conducted the experiments, wrote the manuscript and analyzed the data.

BS wrote the manuscript, conducted the experiments.

ME-F analyzed the RNA-Seq, provided conceptual input, wrote the manuscript.

SS analyzed the RNA-Seq, conducted experiments, reviewed the manuscript.

SHP conducted the experiments, analyzed the data, wrote the manuscript.

JK took bone marrow aspirate and acquire informed consent, culture MSC (C), wrote the manuscript, provided conceptual input into experimental design.

AH-N: took bone marrow aspirate and acquire informed consent, culture MSC (C), wrote the manuscript, provided conceptual input into experimental design.

J-PE analyzed the data, provided conceptual input into the experimental design and wrote the manuscript.

SFW initiated the overall concept, wrote the paper, analyze the data.

PR provided the major conceptual design, oversee the experiment, trouble shoot, provided final data analyses, wrote the manuscript.

Corresponding authors

Correspondence to Shauna F. Williams or Pranela Rameshwar.

Ethics declarations

Ethics Approval

Rutgers Institutional Review Board approved this study (see method section).

Consent to Participate

Participating subjects signed the informed consent forms (see method section).

Consent for Publication

Not applicable.

Conflicts of Interest/Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is in partial fulfillment for LSS doctoral thesis and MR fellowship thesis.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 694 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romagano, M.P., Sherman, L.S., Shadpoor, B. et al. Aspirin-Mediated Reset of Preeclamptic Placental Stem Cell Transcriptome – Implication for Stabilized Placental Function. Stem Cell Rev and Rep 18, 3066–3082 (2022). https://doi.org/10.1007/s12015-022-10419-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10419-8

Keywords

Navigation