Skip to main content

Advertisement

Log in

Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cardiac organoids (COs) are miniaturized and simplified organ structures that can be used in heart development biology, drug screening, disease modeling, and regenerative medicine. This cardiac organoid (CO) model is revolutionizing our perspective on answering major cardiac physiology and pathology issues. Recently, many research groups have reported various methods for modeling the heart in vitro. However, there are differences in methodologies and concepts. In this review, we discuss the recent advances in cardiac organoid technologies derived from human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), with a focus on the summary of methods for organoid generation. In addition, we introduce CO applications in modeling heart development and cardiovascular diseases and discuss the prospects for and common challenges of CO that still need to be addressed. A detailed understanding of the development of CO will help us design better methods, explore and expand its application in the cardiovascular field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

CFS:

Cardiac fibroblasts

COs:

Cardiac organoids

CMs:

Cardiomyocytes

CRISPR:

Clustered regularly interspaced short palindromic repeats

CX43:

Connexin 43

cAMP:

Cyclic AMP

dECMs:

Decellularized ECMs

DMD:

Duchenne muscular dystrophy

EB:

Embryoid body

ECM:

Extracellular matrix

EHM:

Engineered human myocardium

EAT:

Engineered cardiac tissues

FHF:

First heart field

HFOs:

Heart-forming organoids

hCOs:

Human cardiac organoids

hESCs:

Human-embryonic stem cells

hiPSCs:

Human-induced pluripotent stem cells

MTs:

Microtissues

ReWs:

Reentrant waves

SHF:

Second heart field

VLs:

Vessel-like structures

References

  1. Zwi-Dantsis, L., & Gepstein, L. (2012). Induced pluripotent stem cells for cardiac repair [J]. Cellular and Molecular Life Sciences, 69(19), 3285–3299.

    Article  CAS  PubMed  Google Scholar 

  2. Kim, J., Koo, B. K., & Knoblich, J. A. (2020). Human organoids: model systems for human biology and medicine [J]. Nature Reviews Molecular Cell Biology, 21(10), 571–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McCauley, H. A., & Wells, J. M. (2017). Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish [J]. Development, 144(6), 958–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Voges, H. K., Mills, R. J., Elliott, D. A., et al. (2017). Development of a human cardiac organoid injury model reveals innate regenerative potential [J]. Development, 144(6), 1118–1127.

    CAS  PubMed  Google Scholar 

  5. Fatehullah, A., Tan, S. H., & Barker, N. (2016). Organoids as an in vitro model of human development and disease [J]. Nature Cell Biology, 18(3), 246–254.

    Article  PubMed  Google Scholar 

  6. Correia, C., Koshkin, A., Duarte, P., et al. (2018). 3D aggregate culture improves metabolic maturation of human pluripotent stem cell derived cardiomyocytes [J]. Biotechnology and Bioengineering, 115(3), 630–644.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, V. C., Ye, J., Shukla, P., et al. (2015). Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells [J]. Stem Cell Research, 15(2), 365–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kempf, H., Kropp, C., Olmer, R., et al. (2015). Cardiac differentiation of human pluripotent stem cells in scalable suspension culture [J]. Nature Protocols, 10(9), 1345–1361.

    Article  CAS  PubMed  Google Scholar 

  9. Domian, I. J., Chiravuri, M., van der Meer, P., et al. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells [J]. Science, 326(5951), 426–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kattman, S. J., Witty, A. D., Gagliardi, M., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines [J]. Cell Stem Cell, 8(2), 228–240.

    Article  CAS  PubMed  Google Scholar 

  11. Eschenhagen, T., & Zimmermann, W. H. (2005). Engineering myocardial tissue [J]. Circulation Research, 97(12), 1220–1231.

    Article  CAS  PubMed  Google Scholar 

  12. Beauchamp, P., Moritz, W., Kelm, J. M., et al. (2015). Development and Characterization of a Scaffold-Free 3D Spheroid Model of Induced Pluripotent Stem Cell-Derived Human Cardiomyocytes [J]. Tissue Engineering. Part C, Methods, 21(8), 852–861.

    Article  CAS  PubMed  Google Scholar 

  13. Polonchuk, L., Chabria, M., Badi, L., et al. (2017). Cardiac spheroids as promising in vitro models to study the human heart microenvironment [J]. Science and Reports, 7(1), 7005.

    Article  Google Scholar 

  14. Daly, A. C., Davidson, M. D., & Burdick, J. A. (2021). 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels [J]. Nature Communications, 12(1), 753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Giacomelli, E., Meraviglia, V., Campostrini, G., et al. (2020). Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease [J]. Cell Stem Cell, 26(6), 862-879 e811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beauchamp, P., Jackson, C. B., Ozhathil, L. C., et al. (2020). 3D Co-culture of hiPSC-Derived Cardiomyocytes With Cardiac Fibroblasts Improves Tissue-Like Features of Cardiac Spheroids [J]. Frontiers in Molecular Biosciences, 7, 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zuppinger, C. (2019). Measurement of Contractility and Calcium Release in Cardiac Spheroids [J]. Methods in Molecular Biology, 1929, 41–52.

    Article  CAS  PubMed  Google Scholar 

  18. Arai, K., Murata, D., Verissimo, A. R., et al. (2018). Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer [J]. PLoS ONE, 13(12), e0209162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ong, C. S., Pitaktong, I., & Hibino, N. (2020). Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting [J]. Methods in Molecular Biology, 2140, 183–197.

    Article  CAS  PubMed  Google Scholar 

  20. Noguchi, R., Nakayama, K., Itoh, M., et al. (2016). Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease [J]. Journal of Heart and Lung Transplantation, 35(1), 137–145.

    Article  Google Scholar 

  21. Pitaktong, I., Lui, C., Lowenthal, J., et al. (2020). Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids [J]. Tissue Engineering. Part C, Methods, 26(2), 80–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Caspi, O., Lesman, A., Basevitch, Y., et al. (2007). Tissue engineering of vascularized cardiac muscle from human embryonic stem cells [J]. Circulation Research, 100(2), 263–272.

    Article  CAS  PubMed  Google Scholar 

  23. Saini, H., Navaei, A., van Putten, A., et al. (2015). 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts [J]. Adv Healthc Mater, 4(13), 1961–1971.

    Article  CAS  PubMed  Google Scholar 

  24. Radisic, M., Park, H., Martens, T. P., et al. (2008). Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue [J]. Journal of Biomedical Materials Research. Part A, 86(3), 713–724.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, Y., Asfour, H., & Bursac, N. (2017). Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue [J]. Acta Biomaterialia, 55, 120–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garzoni, L. R., Rossi, M. I., de Barros, A. P., et al. (2009). Dissecting coronary angiogenesis: 3D co-culture of cardiomyocytes with endothelial or mesenchymal cells [J]. Experimental Cell Research, 315(19), 3406–3418.

    Article  CAS  PubMed  Google Scholar 

  27. Burridge, P. W., Matsa, E., Shukla, P., et al. (2014). Chemically defined generation of human cardiomyocytes [J]. Nature Methods, 11(8), 855–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pei, F., Jiang, J., Bai, S., et al. (2017). Chemical-defined and albumin-free generation of human atrial and ventricular myocytes from human pluripotent stem cells [J]. Stem Cell Research, 19, 94–103.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, Y., Rafatian, N., Feric, N. T., et al. (2019). A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling [J]. Cell, 176(4), 913-927 e918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oh, Y., Cho, G. S., Li, Z., et al. (2016). Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons [J]. Cell Stem Cell, 19(1), 95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winbo, A., Ramanan, S., Eugster, E., et al. (2020). Functional coculture of sympathetic neurons and cardiomyocytes derived from human-induced pluripotent stem cells [J]. American Journal of Physiology. Heart and Circulatory Physiology, 319(5), H927–H937.

    Article  CAS  PubMed  Google Scholar 

  32. Bejleri, D., & Davis, M. E. (2019). Decellularized Extracellular Matrix Materials for Cardiac Repair and Regeneration [J]. Adv Healthc Mater, 8(5), e1801217.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guyette, J. P., Charest, J. M., Mills, R. W., et al. (2016). Bioengineering Human Myocardium on Native Extracellular Matrix [J]. Circulation Research, 118(1), 56–72.

    Article  CAS  PubMed  Google Scholar 

  34. McCrary, M. W., Bousalis, D., Mobini, S., et al. (2020). Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues [J]. Acta Biomaterialia, 111, 1–19.

    Article  CAS  PubMed  Google Scholar 

  35. Basara Gozde, Ozcebe S. Gulberk, Ellis Bradley W., et al. (2021). Tunable human myocardium derived decellularized extracellular matrix for 3D bioprinting and cardiac tissue engineering [J]. Gels, 7(2), 70

  36. Saludas, L., Pascual-Gil, S., Prosper, F., et al. (2017). Hydrogel based approaches for cardiac tissue engineering [J]. International Journal of Pharmaceutics, 523(2), 454–475.

    Article  CAS  PubMed  Google Scholar 

  37. Shkumatov, A., Baek, K., & Kong, H. (2014). Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies [J]. PLoS ONE, 9(4), e94764.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Asti, A., & Gioglio, L. (2014). Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation [J]. International Journal of Artificial Organs, 37(3), 187–205.

    Article  PubMed  Google Scholar 

  39. Depalma, S. J., Davidson, C. D., Stis, A. E., et al. (2021). Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices [J]. Biomaterials Science, 9(1), 93–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hendrickson, T., Mancino, C., Whitney, L., et al. (2021). Mimicking cardiac tissue complexity through physical cues: A review on cardiac tissue engineering approaches [J]. Nanomedicine, 33, 102367.

    Article  CAS  PubMed  Google Scholar 

  41. Leslie-Barbick, J. E., Saik, J. E., Gould, D. J., et al. (2011). The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide [J]. Biomaterials, 32(25), 5782–5789.

    Article  CAS  PubMed  Google Scholar 

  42. Schneider, M. C., Chu, S., Randolph, M. A., et al. (2019). An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor beta3 [J]. Acta Biomaterialia, 93, 97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prakash Parthiban, S., Rana, D., Jabbari, E., et al. (2017). Covalently immobilized VEGF-mimicking peptide with gelatin methacrylate enhances microvascularization of endothelial cells [J]. Acta Biomaterialia, 51, 330–340.

    Article  CAS  PubMed  Google Scholar 

  44. Liu, N., Ye, X., Yao, B., et al. (2021). Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration [J]. Bioact Mater, 6(5), 1388–1401.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, A., Hudson, A. R., Shiwarski, D. J., et al. (2019). 3D bioprinting of collagen to rebuild components of the human heart [J]. Science, 365(6452), 482–487.

    Article  CAS  PubMed  Google Scholar 

  46. Kupfer, M. E., Lin, W. H., Ravikumar, V., et al. (2020). In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid [J]. Circulation Research, 127(2), 207–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zuppinger, C. (2016). 3D culture for cardiac cells [J]. Biochimica et Biophysica Acta, 1863(7 Pt B), 1873–1881.

    Article  CAS  PubMed  Google Scholar 

  48. Shadrin, I.Y., Allen, B.W., Qian, Y., et al. (2017). Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues [J]. Nature Communications, 8(1), 1825.

  49. Jackman, C. P., Ganapathi, A. M., Asfour, H., et al. (2018). Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation [J]. Biomaterials, 159, 48–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao, L., Gregorich, Z. R., Zhu, W., et al. (2018). Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine [J]. Circulation, 137(16), 1712–1730.

    Article  PubMed  Google Scholar 

  51. Hansen, A., Eder, A., Bonstrup, M., et al. (2010). Development of a drug screening platform based on engineered heart tissue [J]. Circulation Research, 107(1), 35–44.

    Article  CAS  PubMed  Google Scholar 

  52. Li, J., Zhang, L., Yu, L., et al. (2020). Circulating re-entrant waves promote maturation of hiPSC-derived cardiomyocytes in self-organized tissue ring [J]. Communications Biology, 3(1), 122.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Seguret, M., Vermersch, E., Jouve, C., et al. (2021). Cardiac organoids to model and heal heart failure and cardiomyopathies [J]. Biomedicines, 9(5), 563.

  54. MacQueen, L. A., Sheehy, S. P., Chantre, C. O., et al. (2018). A tissue-engineered scale model of the heart ventricle [J]. Nature Biomedical Engineering, 2(12), 930–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, R. A., Keung, W., Cashman, T. J., et al. (2018). Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells [J]. Biomaterials, 163, 116–127.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ho Beatrice Xuan, Sheng Pang Jeremy Kah, Phua Qian Hua, et al. (2021). Generation of human chambered cardiac organoids from pluripotent stem cells for improved modelling of cardiovascular diseases [J]. BioRxiv. https://doi.org/10.1101/2021.05.21.445153

  57. Silva, A. C., Matthys, O. B., Joy, D. A., et al. (2021). Co-emergence of cardiac and gut tissues promotes cardiomyocyte maturation within human iPSC-derived organoids [J]. Cell stem cell, 28(12), 2137–2152.e6.

  58. Rossi, G., Broguiere, N., Miyamoto, M., et al. (2021). Capturing Cardiogenesis in Gastruloids [J]. Cell Stem Cell, 28(2), 230-240 e236.

    Article  CAS  PubMed  Google Scholar 

  59. Drakhlis, L., Biswanath, S., Farr, C. M., et al. (2021). Human heart-forming organoids recapitulate early heart and foregut development [J]. Nature Biotechnology, 39(6), 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Richards, D. J., Li, Y., Kerr, C. M., et al. (2020). Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity [J]. Nature Biomedical Engineering, 4(4), 446–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tiburcy, M., Hudson, J. E., Balfanz, P., et al. (2017). Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair [J]. Circulation, 135(19), 1832–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sabater-Molina, M., Perez-Sanchez, I., Hernandez del Rincon, J. P., et al. (2018). Genetics of hypertrophic cardiomyopathy: A review of current state [J]. Clinical Genetics, 93(1), 3–14.

    Article  CAS  PubMed  Google Scholar 

  63. Ware, J. S., & Cook, S. A. (2018). Role of titin in cardiomyopathy: from DNA variants to patient stratification [J]. Nature Reviews Cardiology, 15(4), 241–252.

    Article  CAS  PubMed  Google Scholar 

  64. Ohiri, J. C., & McNally, E. M. (2018). Gene Editing and Gene-Based Therapeutics for Cardiomyopathies [J]. Heart Failure Clinics, 14(2), 179–188.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, Q., Kirsch, G. E., Zhang, D., et al. (1998). Genetic basis and molecular mechanism for idiopathic ventricular fibrillation [J]. Nature, 392(6673), 293–296.

    Article  CAS  PubMed  Google Scholar 

  66. Arbelo, E., Sarquella-Brugada, G., & Brugada, J. (2016). Gene-Specific Therapy for Congenital Long QT Syndrome: Are We There Yet? [J]. Journal of the American College of Cardiology, 67(9), 1059–1061.

    Article  PubMed  Google Scholar 

  67. Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering [J]. Science, 361(6405), 866–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chadwick, A. C., & Musunuru, K. (2017). Genome Editing for the Study of Cardiovascular Diseases [J]. Current Cardiology Reports, 19(3), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guilinger, J. P., Thompson, D. B., & Liu, D. R. (2014). Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification [J]. Nature Biotechnology, 32(6), 577–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Slaymaker, I. M., Gao, L., Zetsche, B., et al. (2016). Rationally engineered Cas9 nucleases with improved specificity [J]. Science, 351(6268), 84–88.

    Article  CAS  PubMed  Google Scholar 

  71. Kleinstiver, B. P., Pattanayak, V., Prew, M. S., et al. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects [J]. Nature, 529(7587), 490–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen, J. S., Dagdas, Y. S., Kleinstiver, B. P., et al. (2017). Enhanced proofreading governs CRISPR-Cas9 targeting accuracy [J]. Nature, 550(7676), 407–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schwank, G., Koo, B. K., Sasselli, V., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients [J]. Cell Stem Cell, 13(6), 653–658.

    Article  CAS  PubMed  Google Scholar 

  74. Kodo, K., Ong, S. G., Jahanbani, F., et al. (2016). iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy [J]. Nature Cell Biology, 18(10), 1031–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mosqueira, D., Mannhardt, I., Bhagwan, J. R., et al. (2018). CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy [J]. European Heart Journal, 39(43), 3879–3892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ceholski, D. K., Turnbull, I. C., Kong, C. W., et al. (2018). Functional and transcriptomic insights into pathogenesis of R9C phospholamban mutation using human induced pluripotent stem cell-derived cardiomyocytes [J]. Journal of Molecular and Cellular Cardiology, 119, 147–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lan, F., Lee, A. S., Liang, P., et al. (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells [J]. Cell Stem Cell, 12(1), 101–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Limpitikul, W. B., Dick, I. E., Tester, D. J., et al. (2017). A Precision Medicine Approach to the Rescue of Function on Malignant Calmodulinopathic Long-QT Syndrome [J]. Circulation Research, 120(1), 39–48.

    Article  CAS  PubMed  Google Scholar 

  79. Gahwiler, E. K. N., Motta, S. E., Martin, M., et al. (2021). Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering [J]. Frontiers in Cell and Developmental Biology, 9, 639699.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Long, C., Li, H., Tiburcy, M., et al. (2018). Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing [J]. Science Advances, 4(1), eaap9004.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yang, K. C., Breitbart, A., de Lange, W. J., et al. (2018). Novel Adult-Onset Systolic Cardiomyopathy Due to MYH7 E848G Mutation in Patient-Derived Induced Pluripotent Stem Cells [J]. JACC: Basic to Translational Science, 3(6), 728–740.

    PubMed  PubMed Central  Google Scholar 

  82. Feng Wei, Schriever Hannah, Jiang Shan, et al. (2020). Computational profiling of hiPSC-derived heart organoids reveals chamber defects associated with Ebstein’s anomaly [J]. BioRxiv. https://doi.org/10.1101/2020.12.24.424346

  83. Driehuis, E., & Clevers, H. (2017). CRISPR/Cas 9 genome editing and its applications in organoids [J]. American Journal of Physiology. Gastrointestinal and Liver Physiology, 312(3), G257–G265.

    Article  PubMed  Google Scholar 

  84. Wilke, R. A., Lin, D. W., Roden, D. M., et al. (2007). Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges [J]. Nature Reviews Drug Discovery, 6(11), 904–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mills, R. J., Parker, B. L., Quaife-Ryan, G. A., et al. (2019). Drug Screening in Human PSC-Cardiac Organoids Identifies Pro-proliferative Compounds Acting via the Mevalonate Pathway [J]. Cell Stem Cell, 24(6), 895-907 e896.

    Article  CAS  PubMed  Google Scholar 

  86. Kitsuka, T., Itoh, M., Amamoto, S., et al. (2019). 2-Cl-C.OXT-A stimulates contraction through the suppression of phosphodiesterase activity in human induced pluripotent stem cell-derived cardiac organoids [J]. PLoS One, 14(7), e0213114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Skardal, A., Aleman, J., Forsythe, S., et al. (2020). Drug compound screening in single and integrated multi-organoid body-on-a-chip systems [J]. Biofabrication, 12(2), 025017.

    Article  CAS  PubMed  Google Scholar 

  88. Rajan, S. A. P., Aleman, J., Wan, M., et al. (2020). Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform [J]. Acta Biomater, 106, 124–135.

    Article  CAS  PubMed  Google Scholar 

  89. Yin, F., Zhang, X., Wang, L., et al. (2021). HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs [J]. Lab on a Chip, 21(3), 571–581.

    Article  CAS  PubMed  Google Scholar 

  90. Nie, Y. Z., Zheng, Y. W., Ogawa, M., et al. (2018). Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure [J]. Stem Cell Research & Therapy, 9(1), 5.

    Article  CAS  Google Scholar 

  91. Feric, N. T., Pallotta, I., Singh, R., et al. (2019). Engineered cardiac tissues generated in the Biowire™ II: a platform for human-based drug discovery [J]. Toxicological Sciences : an Official Journal of the Society of Toxicology, 172(1), 89–97.

Download references

Acknowledgements

We would like to thank Professor Wang Li from Fuwai Hospital for his training and support.

Funding

The author’s work is supported by Xiamen Science and Technology Plan Project Grant (No. 3502Z20209138), National Natural Science Foundation of China Youth Foud (No. 82100441).

Author information

Authors and Affiliations

Authors

Contributions

Liyuan Zhu performed data analysis and interpretation, and wrote the manuscript. Kui Lui and Qi Feng assisted with data collection and provided feedback. Yingnan Liao assembled the data, carried out the data analysis and interpretation, wrote the manuscript, and gave final approval of the manuscript.

Corresponding author

Correspondence to Yingnan Liao.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Liu, K., Feng, Q. et al. Cardiac Organoids: A 3D Technology for Modeling Heart Development and Disease. Stem Cell Rev and Rep 18, 2593–2605 (2022). https://doi.org/10.1007/s12015-022-10385-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10385-1

Keywords

Navigation