Skip to main content
Log in

The Intercellular Communication Between Mesenchymal Stromal Cells and Hematopoietic Stem Cells Critically Depends on NF-κB Signalling in the Mesenchymal Stromal Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs) regulate the fate of the hematopoietic stem cells (HSCs) through both cell-cell interactions and paracrine mechanisms involving multiple signalling pathways. We have previously shown that co-culturing of HSCs with CoCl2-treated MSCs expands functional HSCs. While performing these experiments, we had observed that the growth of CoCl2-treated MSCs was significantly stunted. Here, we show that CoCl2-treated MSCs possess activated NF-κB signalling pathway, and its pharmacological inhibition significantly relieves their growth arrest. Most interestingly, we found that pharmacological inhibition of NF-κB pathway in both control and CoCl2-treated MSCs completely blocks their intercellular communication with the co-cultured hematopoietic stem and progenitor cells (HSPCs), resulting in an extremely poor output of hematopoietic cells. Mechanistically, we show that this is due to the down-regulation of adhesion molecules and various HSC-supportive factors in the MSCs. This loss of physical interaction with HSPCs could be partially restored by treating the MSCs with calcium ionophore or calmodulin, suggesting that NF-κB regulates intracellular calcium flux in the MSCs. Importantly, the HSPCs co-cultured with NF-κB-inhibited-MSCs were in a quiescent state, which could be rescued by re-culturing them with untreated MSCs. Our data underscore a critical requirement of NF-κB signalling in the MSCs in intercellular communication between HSCs and MSCs for effective hematopoiesis to occur ex vivo. Our data raises a cautionary note against excessive use of anti-inflammatory drugs targeting NF-κB.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The article and its supplementary information files contain all the data generated or analysed during the study.

References

  1. Zhang, P., Zhang, C., Li, J., Han, J., Liu, X., & Yang, H. (2019). The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Research & Therapy, 10(1), 1–13. https://doi.org/10.1186/s13287-019-1422-7

    Article  Google Scholar 

  2. Li, T., & Wu, Y. (2011). Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Research, 2011, 353878, 1–8. https://doi.org/10.1155/2011/353878

  3. Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., MacArthur, B. D., Lira, S. A., … Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–834. https://doi.org/10.1038/nature09262

  4. Singh, S., Moirangthem, R. D., Vaidya, A., Jalnapurkar, S., Limaye, L., & Kale, V. (2016). AKT signaling prevailing in mesenchymal stromal cells modulates the functionality of hematopoietic stem cells via intercellular communication. Stem Cells, 34(9), 2354–2367. https://doi.org/10.1002/stem.2409

    Article  CAS  PubMed  Google Scholar 

  5. Burnham, A. J., Daley-Bauer, L. P., & Horwitz, E. M. (2020). Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Advances, 4(22), 5877–5887. https://doi.org/10.1182/bloodadvances.2020002646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crippa, S., Santi, L., Bosotti, R., Porro, G., & Bernardo, M. E. (2020). Bone marrow-derived mesenchymal stromal cells: a novel target to optimize hematopoietic stem cell transplantation protocols in hematological malignancies and rare genetic disorders. Journal of Clinical Medicine, 9(1), 2. https://doi.org/10.3390/jcm9010002

    Article  CAS  Google Scholar 

  7. Crippa, S., & Bernardo, M. E. (2018). Mesenchymal stromal cells: role in the BM niche and in the support of hematopoietic stem cell transplantation. Hemasphere, 2(6), e151. https://doi.org/10.1097/HS9.0000000000000151

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson, R. W., Sowder, M. E., & Giaccia, A. J. (2017). Hypoxia and bone metastatic disease. Current Osteoporosis Reports, 15(4), 231–238. https://doi.org/10.1007/s11914-017-0378-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mohammadali, F., Abroun, S., & Atashi, A. (2018). Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34 + stem cells. Iranian Journal of Basic Medical Sciences, 21(7), 709. https://doi.org/10.22038/IJBMS.2018.26820.6561

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moirangthem, R. D., Singh, S., Adsul, A., Jalnapurkar, S., Limaye, L., & Kale, V. P. (2015). Hypoxic niche-mediated regeneration of hematopoiesis in the engraftment window is dominantly affected by oxygen tension in the milieu. Stem Cells and Development, 24(20), 2423–2436. https://doi.org/10.1089/scd.2015.0112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Culver, C., Sundqvist, A., Mudie, S., Melvin, A., Xirodimas, D., & Rocha, S. (2010). Mechanism of hypoxia-induced NF-κB. Molecular and Cellular Biology, 30(20), 4901–4921. https://doi.org/10.1128/MCB.00409-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D’Ignazio, L., Bandarra, D., & Rocha, S. (2016). NF-κB and HIF crosstalk in immune responses. The FEBS Journal, 283(3), 413–424. https://doi.org/10.1111/febs.13578

    Article  CAS  PubMed  Google Scholar 

  13. BelAiba, R. S., Bonello, S., Zähringer, C., Schmidt, S., Hess, J., Kietzmann, T., & Görlach, A. (2007). Hypoxia up-regulates hypoxia-inducible factor-1α transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells. Molecular Biology of the Cell, 18(12), 4691–4697. https://doi.org/10.1091/mbc.e07-04-0391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Halvarsson, C., Rörby, E., Eliasson, P., Lang, S., Soneji, S., & Jönsson, J. I. (2019). Putative role of nuclear factor-kappa B but not hypoxia-inducible factor-1α in hypoxia-dependent regulation of oxidative stress in hematopoietic stem and progenitor cells. Antioxidants & Redox Signaling, 31(3), 211–226. https://doi.org/10.1089/ars.2018.7551

    Article  CAS  Google Scholar 

  15. Ping, Z., Chen, S., Hermans, S. J., Kenswil, K. J., Feyen, J., van Dijk, C., … Raaijmakers, M. H. (2019). Activation of NF-κB driven inflammatory programs in mesenchymal elements attenuates hematopoiesis in low-risk myelodysplastic syndromes. Leukemia, 33(2), 536–541. https://doi.org/10.1038/s41375-018-0267-x

  16. Rius, J., Guma, M., Schachtrup, C., Akassoglou, K., Zinkernagel, A. S., Nizet, V., … Karin, M. (2008). NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature, 453(7196), 807–811. https://doi.org/10.1038/nature06905

  17. Walmsley, S. R., Farahi, N., Peyssonnaux, C., Johnson, R. S., Cramer, T., Sobolewski, A., … Chilvers, E. R. (2005). Hypoxia-induced neutrophil survival is mediated by HIF-1α–dependent NF-κB activity. Journal of Experimental Medicine, 201(1), 105–115. https://doi.org/10.1084/jem.20040624

  18. González-Murillo, Á., Fernández, L., Baena, S., Melen, G. J., Sánchez, R., Sánchez‐Valdepeñas, C., … Ramírez, M. (2015). The NFKB inducing kinase modulates hematopoiesis during stress. Stem Ccells, 33(9), 2825–2837. https://doi.org/10.1002/stem.2066

  19. Fang, J., Muto, T., Kleppe, M., Bolanos, L. C., Hueneman, K. M., Walker, C. S., …Starczynowski, D. T. (2018). TRAF6 mediates basal activation of NF-κB necessary for hematopoietic stem cell homeostasis. Cell Reports, 22(5), 1250–1262. https://doi.org/10.1016/j.celrep.2018.01.013

  20. Nakagawa, M. M., & Rathinam, C. V. (2018). Constitutive activation of the canonical NF-κB Pathway leads to bone marrow failure and induction of erythroid signature in hematopoietic stem cells. Cell Reports, 25(8), 2094–2109. https://doi.org/10.1016/j.celrep.2018.10.071

    Article  CAS  PubMed  Google Scholar 

  21. Stein, S. J., & Baldwin, A. S. (2013). Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood, The Journal of the American Society of Hematology, 121(25), 5015–5024. https://doi.org/10.1182/blood-2013-02-486142

    Article  CAS  Google Scholar 

  22. Zhao, C., Xiu, Y., Ashton, J., Xing, L., Morita, Y., Jordan, C. T., & Boyce, B. F. (2012). Noncanonical NF-κB signaling regulates hematopoietic stem cell self‐renewal and microenvironment interactions. Stem Cells, 30(4), 709–718. https://doi.org/10.1002/stem.1050

    Article  CAS  PubMed  Google Scholar 

  23. Poulos, M. G., Ramalingam, P., Gutkin, M. C., Kleppe, M., Ginsberg, M., Crowley, M.J., … Butler, J. M. (2016). Endothelial-specific inhibition of NF-κB enhances functional haematopoiesis. Nature Communications, 7(1), 1–15. https://doi.org/10.1038/ncomms13829

  24. Ramalingam, P., Poulos, M. G., Lazzari, E., Gutkin, M. C., Lopez, D., Kloss, C. C.,… Butler, J. M. (2020). Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF. Nature Communications, 11(1), 1–20. https://doi.org/10.1038/s41467-020-14478-8

  25. Antebi, B., Rodriguez, L. A., Walker, K. P., Asher, A. M., Kamucheka, R. M., Alvarado,L., … Cancio, L. C. (2018). Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Research & Therapy, 9(1), 1–15. https://doi.org/10.1186/s13287-018-1007-x

  26. Zeng, H. L., Zhong, Q., Qin, Y. L., Bu, Q. Q., Han, X. A., Jia, H. T., & Liu, H. W. (2011). Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells. BMC Cell Biology, 12(1), 1–10. https://doi.org/10.1186/1471-2121-12-32

    Article  CAS  Google Scholar 

  27. Budgude, P., Kale, V., & Vaidya, A. (2021). Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using trehalose maintains their ability to expand hematopoietic stem cells in vitro. Cryobiology, 98, 152–163. https://doi.org/10.1016/j.cryobiol.2020.11.009

    Article  CAS  PubMed  Google Scholar 

  28. Xu, W., Xu, R., Li, Z., Wang, Y., & Hu, R. (2019). Hypoxia changes chemotaxis behaviour of mesenchymal stem cells via HIF-1α signalling. Journal of Cellular and Molecular Medicine, 23(3), 1899–1907. https://doi.org/10.1111/jcmm.14091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishiuchi, N., Nakashima, A., Doi, S., Yoshida, K., Maeda, S., Kanai, R., … Masaki, T. (2020). Hypoxia-preconditioned mesenchymal stem cells prevent renal fibrosis and inflammation in ischemia-reperfusion rats. Stem Cell Research & Therapy, 11(1), 1–15. https://doi.org/10.1186/s13287-020-01642-6

  30. Budgude, P., Kale, V., & Vaidya, A. (2021). Pharmacological inhibition of p38 MAPK rejuvenates bone marrow derived-mesenchymal stromal cells and boosts their hematopoietic stem cell-supportive ability. Stem Cell Reviews and Reports, 17(6), 2210–2222. https://doi.org/10.1007/s12015-021-10240-9

    Article  CAS  PubMed  Google Scholar 

  31. Montecino-Rodriguez, E., & Dorshkind, K. (2020). Use of busulfan to condition mice for bone marrow transplantation. STAR Protocols, 1(3), 100159. https://doi.org/10.1016/j.xpro.2020.100159

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kesherwani, V., Tarang, S., Barnes, R., & Agrawal, S. K. (2014). Fasudil reduces GFAP expression after hypoxic injury. Neuroscience Letters, 576, 45–50. https://doi.org/10.1016/j.neulet.2014.05.053

    Article  CAS  PubMed  Google Scholar 

  33. Cervellati, F., Cervellati, C., Romani, A., Cremonini, E., Sticozzi, C., Belmonte,G., … Valacchi, G. (2014). Hypoxia induces cell damage via oxidative stress in retinal epithelial cells. Free Radical Research, 48(3), 303–312. https://doi.org/10.3109/10715762.2013.867484

  34. Kulkarni, R., Bajaj, M., Ghode, S., Jalnapurkar, S., Limaye, L., & Kale, V. P. (2018). Intercellular transfer of microvesicles from young mesenchymal stromal cells rejuvenates aged murine hematopoietic stem cells. Stem Cells, 36(3), 420–433. https://doi.org/10.1002/stem.2756

    Article  CAS  PubMed  Google Scholar 

  35. Saleh, M. (2015). The impact of mesenchymal stem cells on differentiation of hematopoietic stem cells. Advanced Pharmaceutical Bulletin, 5(3), 299–304. https://doi.org/10.15171/apb.2015.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vagima, Y., Lapid, K., Kollet, O., Goichberg, P., Alon, R., & Lapidot, T. (2011). Pathways implicated in stem cell migration: the SDF-1/CXCR4 axis. Stem Cell Migration, 750, 277–289. https://doi.org/10.1007/978-1-61779-145-1_19

    Article  CAS  Google Scholar 

  37. Liesveld, J. L., Sharma, N., & Aljitawi, O. S. (2020). Stem cell homing: From physiology to therapeutics. Stem Cells, 38(10), 1241–1253. https://doi.org/10.1002/stem.3242

    Article  PubMed  Google Scholar 

  38. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., & Hopkinson, A. (2014). Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells, 32(6), 1380–1389. https://doi.org/10.1002/stem.1661

    Article  CAS  PubMed  Google Scholar 

  39. Nie, Y., Han, Y. C., & Zou, Y. R. (2008). CXCR4 is required for the quiescence of primitive hematopoietic cells. Journal of Experimental Medicine, 205(4), 777–783. https://doi.org/10.1084/jem.20072513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pogoda, K., Kameritsch, P., Retamal, M. A., & Vega, J. L. (2016). Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: a revision. BMC Cell Biology, 17(1), 137–150. https://doi.org/10.1186/s12860-016-0099-3

    Article  CAS  Google Scholar 

  41. Budgude, P., Kale, V., & Vaidya, A. (2020). Mesenchymal stromal cell-derived extracellular vesicles as cell‐free biologics for the ex vivo expansion of hematopoietic stem cells. Cell Biology International, 44(5), 1078–1102. https://doi.org/10.1002/cbin.11313

    Article  CAS  PubMed  Google Scholar 

  42. Kulkarni, R., & Kale, V. (2020). Physiological cues involved in the regulation of adhesion mechanisms in hematopoietic stem cell fate decision. Frontiers in Cell and Developmental Biology, 8, 611. https://doi.org/10.3389/fcell.2020.00611

    Article  PubMed  PubMed Central  Google Scholar 

  43. Villalobo, A., & Berchtold, M. W. (2020). The role of calmodulin in tumor cell migration, invasiveness, and metastasis. International Journal of Molecular Sciences, 21(3), 765. https://doi.org/10.3390/ijms21030765

    Article  CAS  PubMed Central  Google Scholar 

  44. Xu, Z., Yao, G., Niu, W., Fan, H., Ma, X., Shi, S., … Sun, Y. (2021). Calcium ionophore(A23187) rescues the activation of unfertilized oocytes after intracytoplasmic sperm injection and chromosome analysis of blastocyst after activation. Frontiers in Endocrinology, 846. https://doi.org/10.3389/fendo.2021.692082

  45. Oostendorp, R. A., & Dörmer, P. (1997). VLA-4-mediated interactions between normal human hematopoietic progenitors and stromal cells. Leukemia & Lymphoma, 24(5–6), 423–435. https://doi.org/10.3109/10428199709055581

    Article  CAS  Google Scholar 

  46. Pillozzi, S., & Becchetti, A. (2012). Ion channels in hematopoietic and mesenchymal stem cells. Stem Cells International, 2012, 217910. https://doi.org/10.1155/2012/217910

  47. Nakahara, F., Borger, D. K., Wei, Q., Pinho, S., Maryanovich, M., Zahalka, A. H.,… Frenette, P. S. (2019). Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nature Cell Biology, 21(5), 560–567. https://doi.org/10.1038/s41556-019-0308-3

  48. Jalnapurkar, S., Moirangthem, R. D., Singh, S., Limaye, L., & Kale, V. (2019). Microvesicles secreted by nitric oxide-primed mesenchymal stromal cells boost the engraftment potential of hematopoietic stem cells. Stem Cells, 37(1), 128–138. https://doi.org/10.1002/stem.2912

    Article  CAS  PubMed  Google Scholar 

  49. Takam Kamga, P., Bazzoni, R., Dal Collo, G., Cassaro, A., Tanasi, I., Russignan, A., … Krampera, M. (2021). The role of notch and wnt signaling in MSC communication in normal and leukemic bone marrow niche. Frontiers in Cell and Developmental Biology, 8, 1653. https://doi.org/10.3389/fcell.2020.599276

  50. Prendes, M., Zheng, Y., & Beg, A. A. (2003). Regulation of developing B cell survival by RelA-containing NF-κB complexes. The Journal of Immunology, 171(8), 3963–3969. https://doi.org/10.4049/jimmunol.171.8.3963

    Article  CAS  PubMed  Google Scholar 

  51. Gerondakis, S., Fulford, T. S., Messina, N. L., & Grumont, R. J. (2014). NF-κB control of T cell development. Nature Immunology, 15(1), 15–25. https://doi.org/10.1038/ni.2785

    Article  CAS  PubMed  Google Scholar 

  52. Bottero, V., Withoff, S., & Verma, I. M. (2006). NF-κB and the regulation of hematopoiesis. Cell Death & Differentiation, 13(5), 785–797. https://doi.org/10.1038/sj.cdd.4401888

    Article  CAS  Google Scholar 

  53. Kfoury, Y., Ji, F., Mazzola, M., Sykes, D. B., Scherer, A. K., Anselmo, A., … Scadden, D. T. (2021). tiRNA signaling via stress-regulated vesicle transfer in the hematopoietic niche. BioRxiv, 2090–2103.e9. https://doi.org/10.1016/j.stem.2021.08.014

  54. Chen, Y., Li, W., Xie, R., Tang, B., Xiao, Y., Yang, F., … Liu, J. J. (2020). Nuclear factor-κB increases intracellular calcium by upregulation of Na+-Ca2 + exchanger 1 in cerulein-induced acute pancreatitis. Pancreas, 49(1), 111–119. https://doi.org/10.1097/MPA.0000000000001465

  55. Ghode, S. S., Bajaj, M. S., Kulkarni, R. S., Limaye, L. S., Shouche, Y. S., & Kale, V. P. (2017). Neuropilin-1 is an important niche component and exerts context-dependent effects on hematopoietic stem cells. Stem Cells and Development, 26(1), 35–48. https://doi.org/10.1089/scd.2016.0096

    Article  CAS  PubMed  Google Scholar 

  56. Lawrence, T. (2009). The nuclear factor B pathway in inflammation. Inflammation biology group. Cold Spring Harbor Laboratory Press, 1(6), 1–10. https://doi.org/10.1101/cshperspect.a001651

    Article  CAS  Google Scholar 

  57. Lin, Y., Bai, L., Chen, W., & Xu, S. (2010). The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opinion on Therapeutic Targets, 14(1), 45–55. https://doi.org/10.1517/14728220903431069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takada, Y., Bhardwaj, A., Potdar, P., & Aggarwal, B. B. (2004). Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-κ B activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene, 23(57), 9247–9258. https://doi.org/10.1038/sj.onc.1208169

    Article  CAS  PubMed  Google Scholar 

  59. Galati, G., Tafazoli, S., Sabzevari, O., Chan, T. S., & O’Brien, P. J. (2002). Idiosyncratic NSAID drug induced oxidative stress. Chemico-biological Interactions, 142(1–2), 25–41. https://doi.org/10.1016/s0009-2797(02)00052-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Symbiosis Centre for Research & Innovation, Symbiosis International (Deemed University) (SIU) for providing infrastructural support.

Funding

This study was funded by SIU. SP was provided with a Senior Research Fellowship (SRF) by SIU.

Author information

Authors and Affiliations

Authors

Contributions

Investigation, Interpretation and Data Analysis, Validation, Writing – original draft preparation: SP, VK, AV; Conceptualization, Methodology, Writing –Editing; VK, AV; Visualization, Resources and Funding acquisition, Writing—Reviewing, Supervision: AV.

All authors have approved the final article.

Corresponding author

Correspondence to Anuradha Vaidya.

Ethics declarations

Ethical Approval

All the animal experiments were performed as per the guidelines of the Institutional Animal Ethics Committee (IAEC) of the Symbiosis School of Biological Sciences (SSBS) (Approval Number: SSBS/IAEC/10–2016).

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

Flow cytometry panels showing MSCs (A) positive for MSC specific markers (CD44, CD105, CD73 and CD90) and (B) negative for HSC specific markers (CD45 and CD34). (PNG 985 kb)

High Resolution Image (TIF 3110 kb)

Supplementary Fig. 2

(A) The graph represents the growth curve of MSCs treated or not with either CoCl2 or hypoxia (n=3). (*Comparison with control; #Comparison with hypoxia). (B and D) Representative images show immunofluorescence staining of MSCs treated with CoCl2 or hypoxia using antibodies against Ki67 (Scale 50μm; Magnification 20X) (B) or NF-κB1 p105/p50 (D) (Scale 20μm; Magnification 40X). (C) Graph represents the percentage of Ki67 positive (+ve) MSCs treated with various concentrations of NF-κB inhibitor. The data represent mean ± SD. * p≤0.05, ** p≤0.01, ***p≤0.001. (PNG 5081 kb)

High Resolution Image (TIF 7100 kb)

Supplementary Fig. 3

(A) Flow cytometry panel depicting the gating strategy used for phenotypic analysis of the output cells harvested from MSC-HSC co-cultures. (B) The graph represents the number of viable TNCs harvested after co-culture of HSCs with control MSCs and CoCl2-MSCs treated or not with various concentrations of NF-κB inhibitor (n=3). (C-E) The graphical representation shows the frequencies of Lin- cells (C), LSK HSCs (D), and LSK CXCR4+ cells (E) (n=3) obtained in the above mentioned co-cultures. The comparisons between the groups that are statistically not significant have not been shown in the graphs. The data represents mean ± SD. ** p≤0.01, ***p≤0.001. (PNG 2136 kb)

High Resolution Image (TIF 7086 kb)

Supplementary Fig. 4

(A-C) The mean fluorescence intensity (MFI) of (A) N-cadherin (B) integrin-α4 and (C) integrin-α5 after Calmodulin (CaM) treatment is represented graphically (n=6). (D-F) The graphs represent the mean fluorescence intensity (MFI) of N-cadherin (D), integrin-α4 (E), and integrin-α5 (F) after calcium ionophore (Cal Ion) treatment. (A.U. Arbitrary units). The comparisons between the groups that are statistically not significant have not been shown in the graphs. The data represents mean ± SD. * p≤0.05, ** p≤0.01, ***p≤0.001. *comparison with control, #comparison with NKI, @comparison between Cal Ion or CaM groups. (PNG 2430 kb)

High Resolution Image (TIF 7801 kb)

Supplementary Fig. 5

The absolute numbers of (A) Lin- cells, (B) LSK-HSCs, and (C) LT-HSCs and ST-HSCs obtained in the serial transfer experiments are graphically depicted (n=3). (D) The graph shows the frequency of Sca-1+ c-kit- and Sca-1- c-kit+ cells in the harvested cells after serial co-culture (n=3). The data represent mean ± SD. * p≤0.05, ***p≤0.001. (PNG 1016 kb)

High Resolution Image (TIF 4274 kb)

Supplementary Table 1

(XLSX 20.5 KB)

Supplementary Table 2

(XLSX 20.1 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendse, S., Kale, V. & Vaidya, A. The Intercellular Communication Between Mesenchymal Stromal Cells and Hematopoietic Stem Cells Critically Depends on NF-κB Signalling in the Mesenchymal Stromal Cells. Stem Cell Rev and Rep 18, 2458–2473 (2022). https://doi.org/10.1007/s12015-022-10364-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10364-6

Keywords

Navigation