Skip to main content
Log in

The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles’ role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Abbreviations

Ac:

acetylation marks on histones

Ac-CoA:

acetyl-CoA

ACLY:

ATP-citrate lyase

ATF4:

Activation of transcription factor 4

ATF6:

Activating transcription factor 6

CHOP:

CCAAT/ enhancer-binding protein homologous-protein

CTBP:

c-terminal binding proteins

DRP1:

Dynamin-related protein 1

ERAD:

ER-associated degradation

eIF2α:

eukaryotic initiating factor 2α

FOXO1:

Forkhead box O1

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GDAP1:

Ganglioside-induced differentiation associated protein1

GRP75:

Glucose-regulated protein 75

GRP78:

Glucose regulated protein 78

GSK3β:

Glycogen synthase kinase3β

GPX:

glutathione peroxidase

HIF1-α:

Hypoxia-inducible factor1-α

HRE:

Hypoxia-responsive elements

HAT:

Histone acetyl transferase

hESCs:

human embryonic stem cells

IDO1:

Indoleamine 2,3-dioxygenase 1

IMM:

Inner membrane

IP3R:

Inositol 1,4,5-trisphosphate receptor

c-Jun N-terminal kinase:

JNK

JHDM:

JmjC-domain containing histone demethylases

MFF:

Mitochondrial fission factor

mtDNA:

Mitochondrial DNA

mTOR:

mammalian target of rapamycin

Met:

Methylation

NAD:

Nicotinamide adenine dinucleotide

Nrf2:

Nuclear factor erythroid 2 related factor 2

OMM:

Outer membrane

OPA1:

Optic atrophy protein 1

PSCs:

Pluripotent stem cells

PDK:

Pyruvate dehydrogenase kinase

PDH:

Pyruvate dehydrogenase

PINK1:

PGC1α, Peroxisome proliferator-activated receptor gamma coactivator1α

PTEN:

induced putative kinase 1

PERK:

Protein kinase-like endoplasmic reticulum kinase

REX1:

Reduced expression 1

ROS:

Reactive Oxygen Species

SOD:

Superoxide dismutase

SIRT:

Sirtuin

TET:

Ten-eleven translocation

UPR:

Unfolded protein response

VDAC:

Voltage dependent anion channel

XBP1:

X-box binding protein1

References

  1. Mora, C., Serzanti, M., Consiglio, A., Memo, M., & Dell’Era, P. (2017). Clinical potentials of human pluripotent stem cells. Cell Biology and Toxicology. https://doi.org/10.1007/s10565-017-9384-y

  2. Meamar, R., Nasr-Esfahani, M. H., Mousavi, S. A., & Basiri, K. (2013). Stem cell therapy in amyotrophic lateral sclerosis. Journal of Clinical Neuroscience. https://doi.org/10.1016/j.jocn.2013.04.024

  3. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science. https://doi.org/10.1126/science.282.5391.1145

  4. Boroviak, T., Loos, R., Lombard, P., Okahara, J., Behr, R., Sasaki, E., Nichols, J., Smith, A., & Bertone, P. (2015). Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Developmental Cell. https://doi.org/10.1016/j.devcel.2015.10.011

  5. Ha, T. W., Jeong, J. H., Shin, H., Kim, H. K., Im, J. S., Song, B. H., Hanna, J., Oh, J. S., Woo, D. H., Han, J., & Lee, M. R. (2020). Characterization of endoplasmic reticulum (ER) in human pluripotent stem cells revealed increased susceptibility to cell death upon ER stress. Cells. https://doi.org/10.3390/cells9051078

  6. Oh, S. K., Kim, H. S., Ahn, H. J., Seol, H. W., Kim, Y. Y., Park, Y. B., Yoon, C. J., Kim, D. W., Kim, S. H., & Moon, S. Y. (2005). Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells. https://doi.org/10.1634/stemcells.2004-0122

  7. Barreto, A., Gonzalez, J. M., Kabingu, E., Asea, A., & Fiorentino, S. (2003). Stress-induced release of HSC70 from human tumors. Cellular Immunology. https://doi.org/10.1016/s0008-8749(03)00115-1

  8. Buszczak, M., Signer, R. A., & Morrison, S. J. (2014). Cellular differences in protein synthesis regulate tissue homeostasis. Cell. https://doi.org/10.1016/j.cell.2014.09.016

  9. Vilchez, D., Boyer, L., Morantte, I., Lutz, M., Merkwirth, C., Joyce, D., Spencer, B., Page, L., Masliah, E., Berggren, W. T., Gage, F. H., & Dillin, A. (2012). Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature. https://doi.org/10.1038/nature11468

  10. Yang, Y., Cheung, H.H., Tu, J., Miu, K.K., &Chan, W.Y. (2016). New insights into the unfolded protein response in stem cells. Oncotarget,

  11. Lin, J. H., Li, H., Yasumura, D., Cohen, H. R., Zhang, C., Panning, B., Shokat, K. M., Lavail, M. M., & Walter, P. (2007). IRE1 signaling affects cell fate during the unfolded protein response. Science. https://doi.org/10.1126/science.1146361

  12. Hosseini, M., Shaygannia, E., Rahmani, M., Eskandari, A., Golsefid, A. A., Tavalaee, M., Gharagozloo, P., Drevet, J. R., & Nasr-Esfahani, M. H. (2020). Endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) occur in a rat varicocele testis model. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2020/5909306

  13. Bantug, G. R., Fischer, M., Grahlert, J., Balmer, M. L., Unterstab, G., Develioglu, L., Steiner, R., Zhang, L., Costa, A. S. H., Gubser, P. M., Burgener, A. V., Sauder, U., Loliger, J., Belle, R., Dimeloe, S., Lotscher, J., Jauch, A., Recher, M., Honger, G., et al. (2018). Mitochondria-endoplasmic reticulum contact sites function as Immunometabolic hubs that orchestrate the rapid recall response of memory CD8(+) T cells. Immunity. https://doi.org/10.1016/j.immuni.2018.02.012

  14. Sart, S., Song, L., & Li, Y. (2015). Controlling redox status for stem cell survival, expansion, and differentiation. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2015/105135

  15. Perales-Clemente, E., Folmes, C. D., & Terzic, A. (2014). Metabolic regulation of redox status in stem cells. Antioxidants & Redox Signaling. https://doi.org/10.1089/ars.2014.6000

  16. Wang, Q. Y., Liu, Z. S., Wang, J., Wang, H. X., Li, A., Yang, Y., Wang, X. Z., Zhao, Y. Q., Han, Q. Y., Cai, H., Liang, B., Song, N., Li, W. H., & Li, T. (2014). Glutathione peroxidase-1 is required for self-renewal of murine embryonic stem cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2014.04.139

  17. Esteban, M. A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W., Weng, Z., Chen, J., Ni, S., Chen, K., Li, Y., Liu, X., Xu, J., Zhang, S., Li, F., He, W., Labuda, K., Song, Y., et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2009.12.001

  18. Liu, J. C., Guan, X., Ryan, J. A., Rivera, A. G., Mock, C., Agrawal, V., Letai, A., Lerou, P. H., & Lahav, G. (2013). High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell. https://doi.org/10.1016/j.stem.2013.07.018

  19. Kim, S. U., Park, Y. H., Kim, J. M., Sun, H. N., Song, I. S., Huang, S. M., Lee, S. H., Chae, J. I., Hong, S., Sik Choi, S., Choi, S. C., Lee, T. H., Kang, S. W., Rhee, S. G., Chang, K. T., Lee, S. H., Yu, D. Y., & Lee, D. S. (2014). Dominant role of peroxiredoxin/JNK axis in stemness regulation during neurogenesis from embryonic stem cells. Stem Cells. https://doi.org/10.1002/stem.1593

  20. Zhou, L., Zheng, B., Tang, L., Huang, Y., & Zhu, D. (2014). Involvement of PIKE in icariin induced cardiomyocyte differentiation from murine embryonic stem cells. Pharmazie.

  21. Nazem, S., Rabiee, F., Ghaedi, K., Babashah, S., Sadeghizadeh, M., & Nasr-Esfahani, M.H. (2018). Fndc5 knockdown induced suppression of mitochondrial integrity and significantly decreased cardiac differentiation of mouse embryonic stem cells. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.26590

  22. Kopacz, A., Kloska, D., Forman, H. J., Jozkowicz, A., & Grochot-Przeczek, A. (2020). Beyond repression of Nrf2: An update on Keap1. Free Radical Biology & Medicine. https://doi.org/10.1016/j.freeradbiomed.2020.03.023

  23. Ishii, T., & andMann, G.E. (2014). Redox status in mammalian cells and stem cells during culture in vitro: Critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance. Redox Biology. https://doi.org/10.1016/j.redox.2014.04.008

  24. Jang, J., Wang, Y., Kim, H. S., Lalli, M. A., & Kosik, K. S. (2014). Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells. https://doi.org/10.1002/stem.1764

  25. Hu, Q., Khanna, P., Ee Wong, B.S., Lin Heng, Z.S., Subhramanyam, C.S., Thanga, L.Z., Sing Tan, S.W., &Baeg, G.H. (2018). Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation. Oncotarget, https://doi.org/10.18632/oncotarget.23786.

  26. Varum, S., Momcilovic, O., Castro, C., Ben-Yehudah, A., Ramalho-Santos, J., & Navara, C. S. (2009). Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Research. https://doi.org/10.1016/j.scr.2009.07.002

  27. Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., & St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. Journal of Cell Science. https://doi.org/10.1242/jcs.016972

  28. Sperber, H., Mathieu, J., Wang, Y., Ferreccio, A., Hesson, J., Xu, Z., Fischer, K. A., Devi, A., Detraux, D., Gu, H., Battle, S. L., Showalter, M., Valensisi, C., Bielas, J. H., Ericson, N. G., Margaretha, L., Robitaille, A. M., Margineantu, D., Fiehn, O., et al. (2015). The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nature Cell Biology. https://doi.org/10.1038/ncb3264

  29. Gu, W., Gaeta, X., Sahakyan, A., Chan, A. B., Hong, C. S., Kim, R., Braas, D., Plath, K., Lowry, W. E., & Christofk, H. R. (2016). Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell. https://doi.org/10.1016/j.stem.2016.08.008

  30. Prigione, A., Fauler, B., Lurz, R., Lehrach, H., &Adjaye, J. (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem cells,

  31. Zhang, J., Zhao, J., Dahan, P., Lu, V., Zhang, C., Li, H., & Teitell, M. A. (2018). Metabolism in pluripotent stem cells and early mammalian development. Cell Metabolism. https://doi.org/10.1016/j.cmet.2018.01.008

  32. Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J., Zhang, K., & Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell. https://doi.org/10.1016/j.stem.2010.11.015

  33. Folmes, C. D., Nelson, T. J., Martinez-Fernandez, A., Arrell, D. K., Lindor, J. Z., Dzeja, P. P., Ikeda, Y., Perez-Terzic, C., & Terzic, A. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism. https://doi.org/10.1016/j.cmet.2011.06.011

  34. Mlody, B., & Prigione, A. (2016). A glycolytic solution for pluripotent stem cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2016.09.005

  35. Shyh-Chang, N., & andDaley, G.Q. (2015). Metabolic switches linked to pluripotency and embryonic stem cell differentiation. Cell Metabolism. https://doi.org/10.1016/j.cmet.2015.02.011

  36. Lisowski, P., Kannan, P., Mlody, B., &Prigione, A. (2018). Mitochondria and the dynamic control of stem cell homeostasis. EMBO rep, https://doi.org/10.15252/embr.201745432.

  37. Lu, C., & Thompson, C. B. (2012). Metabolic regulation of epigenetics. Cell Metabolism. https://doi.org/10.1016/j.cmet.2012.06.001

  38. Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., Bomze, D., Elena-Herrmann, B., Scherf, T., Nissim-Rafinia, M., Kempa, S., Itskovitz-Eldor, J., Meshorer, E., Aberdam, D., & Nahmias, Y. (2015). Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metabolism. https://doi.org/10.1016/j.cmet.2015.02.002

  39. Warburg, O. (1956). On respiratory impairment in cancer cells. Science.

    Book  Google Scholar 

  40. Shyh-Chang, N., & Ng, H. H. (2017). The metabolic programming of stem cells. Genes & Development. https://doi.org/10.1101/gad.293167.116

  41. Ward, P. S., & andThompson, C.B. (2012). Metabolic reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell. https://doi.org/10.1016/j.ccr.2012.02.014

  42. Li, X. L., Eishi, Y., Bai, Y. Q., Sakai, H., Akiyama, Y., Tani, M., Takizawa, T., Koike, M., & Yuasa, Y. (2004). Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. International Journal of Oncology.

  43. Ling, G. Q., Chen, D. B., Wang, B. Q., & Zhang, L. S. (2012). Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncology Letters. https://doi.org/10.3892/ol.2012.916

  44. Ben-Porath, I., Thomson, M. W., Carey, V. J., Ge, R., Bell, G. W., Regev, A., & Weinberg, R. A. (2008). An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genetics. https://doi.org/10.1038/ng.127

  45. Shakya, A., Cooksey, R., Cox, J. E., Wang, V., McClain, D. A., & Tantin, D. (2009). Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nature Cell Biology. https://doi.org/10.1038/ncb1840

  46. Lees, J. G., Gardner, D. K., & Harvey, A. J. (2020). Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem Cells. https://doi.org/10.1002/stem.3152

  47. Safaeinejad, Z., Nabiuni, M., Peymani, M., Ghaedi, K., Nasr-Esfahani, M. H., & Baharvand, H. (2017). Resveratrol promotes human embryonic stem cells self-renewal by targeting SIRT1-ERK signaling pathway. European Journal of Cell Biology. https://doi.org/10.1016/j.ejcb.2017.08.002

  48. Zhang, Z. N., Chung, S. K., Xu, Z., & Xu, Y. (2014). Oct4 maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation. Stem Cells. https://doi.org/10.1002/stem.1532

  49. Zhao, T., & andXu, Y. (2010). p53 and stem cells: New developments and new concerns. Trends in Cell Biology. https://doi.org/10.1016/j.tcb.2009.12.004

  50. Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., He, C., & Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. https://doi.org/10.1126/science.1210597

  51. Wang, T., Chen, K., Zeng, X., Yang, J., Wu, Y., Shi, X., Qin, B., Zeng, L., Esteban, M. A., Pan, G., & Pei, D. (2011). The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell. https://doi.org/10.1016/j.stem.2011.10.005

  52. TeSlaa, T., Chaikovsky, A. C., Lipchina, I., Escobar, S. L., Hochedlinger, K., Huang, J., Graeber, T. G., Braas, D., & Teitell, M. A. (2016). Alpha-ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metabolism. https://doi.org/10.1016/j.cmet.2016.07.002

  53. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D., & Thompson, C. B. (2015). Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. https://doi.org/10.1038/nature13981

  54. Viswanathan, S. R., & andDaley, G.Q. (2010). Lin28: A microRNA regulator with a macro role. Cell. https://doi.org/10.1016/j.cell.2010.02.007

  55. Peng, S., Chen, L. L., Lei, X. X., Yang, L., Lin, H., Carmichael, G. G., & Huang, Y. (2011). Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells. https://doi.org/10.1002/stem.591

  56. Narva, E., Rahkonen, N., Emani, M. R., Lund, R., Pursiheimo, J. P., Nasti, J., Autio, R., Rasool, O., Denessiouk, K., Lahdesmaki, H., Rao, A., & Lahesmaa, R. (2012). RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells. https://doi.org/10.1002/stem.1013

  57. Zhang, J., Ratanasirintrawoot, S., Chandrasekaran, S., Wu, Z., Ficarro, S. B., Yu, C., Ross, C. A., Cacchiarelli, D., Xia, Q., Seligson, M., Shinoda, G., Xie, W., Cahan, P., Wang, L., Ng, S. C., Tintara, S., Trapnell, C., Onder, T., Loh, Y. H., et al. (2016). LIN28 regulates stem cell metabolism and conversion to primed pluripotency. Cell Stem Cell. https://doi.org/10.1016/j.stem.2016.05.009

  58. Takahashi, K., & andYamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. https://doi.org/10.1016/j.cell.2006.07.024

  59. Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C. J., Creyghton, M. P., van Oudenaarden, A., & Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. https://doi.org/10.1038/nature08592

  60. Buganim, Y., Faddah, D. A., Cheng, A. W., Itskovich, E., Markoulaki, S., Ganz, K., Klemm, S. L., van Oudenaarden, A., & Jaenisch, R. (2012). Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell. https://doi.org/10.1016/j.cell.2012.08.023

  61. Blackwell, T. K., Huang, J., Ma, A., Kretzner, L., Alt, F. W., Eisenman, R. N., & Weintraub, H. (1993). Binding of myc proteins to canonical and noncanonical DNA sequences. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.13.9.5216

  62. Cliff, T. S., Wu, T., Boward, B. R., Yin, A., Yin, H., Glushka, J. N., Prestegaard, J. H., & Dalton, S. (2017). MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell. https://doi.org/10.1016/j.stem.2017.08.018

  63. Varlakhanova, N. V., Cotterman, R. F., deVries, W. N., Morgan, J., Donahue, L. R., Murray, S., Knowles, B. B., & Knoepfler, P. S. (2010). Myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation. https://doi.org/10.1016/j.diff.2010.05.001

  64. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. https://doi.org/10.1016/j.cell.2007.11.019

  65. Folmes, C. D., Martinez-Fernandez, A., Faustino, R. S., Yamada, S., Perez-Terzic, C., Nelson, T. J., & Terzic, A. (2013). Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells. Journal of Cardiovascular Translational Research. https://doi.org/10.1007/s12265-012-9431-2

  66. Zhang, H., Badur, M. G., Divakaruni, A. S., Parker, S. J., Jager, C., Hiller, K., Murphy, A. N., & Metallo, C. M. (2016). Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions. Cell Reports. https://doi.org/10.1016/j.celrep.2016.06.102

  67. Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H.A., &Ruvkun, G. (1997). The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature, https://doi.org/10.1038/40194.

  68. Essers, M. A., Weijzen, S., de Vries-Smits, A. M., Saarloos, I., de Ruiter, N. D., Bos, J. L., & Burgering, B. M. (2004). FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. The EMBO Journal. https://doi.org/10.1038/sj.emboj.7600476

  69. Zhang, X., Rielland, M., Yalcin, S., & Ghaffari, S. (2011). Regulation and function of FoxO transcription factors in normal and cancer stem cells: What have we learned? Current Drug Targets. https://doi.org/10.2174/138945011796150325

  70. Yalcin, S., Zhang, X., Luciano, J. P., Mungamuri, S. K., Marinkovic, D., Vercherat, C., Sarkar, A., Grisotto, M., Taneja, R., & Ghaffari, S. (2008). Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M800517200

  71. Zhang, X., Yalcin, S., Lee, D. F., Yeh, T. Y., Lee, S. M., Su, J., Mungamuri, S. K., Rimmele, P., Kennedy, M., Sellers, R., Landthaler, M., Tuschl, T., Chi, N. W., Lemischka, I., Keller, G., & Ghaffari, S. (2011). FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology. https://doi.org/10.1038/ncb2293

  72. Miyamoto, K., Araki, K. Y., Naka, K., Arai, F., Takubo, K., Yamazaki, S., Matsuoka, S., Miyamoto, T., Ito, K., Ohmura, M., Chen, C., Hosokawa, K., Nakauchi, H., Nakayama, K., Nakayama, K. I., Harada, M., Motoyama, N., Suda, T., & Hirao, A. (2007). Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. https://doi.org/10.1016/j.stem.2007.02.001

  73. Renault, V. M., Rafalski, V. A., Morgan, A. A., Salih, D. A., Brett, J. O., Webb, A. E., Villeda, S. A., Thekkat, P. U., Guillerey, C., Denko, N. C., Palmer, T. D., Butte, A. J., & Brunet, A. (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell. https://doi.org/10.1016/j.stem.2009.09.014

  74. Yu, Y., Liang, D., Tian, Q., Chen, X., Jiang, B., Chou, B. K., Hu, P., Cheng, L., Gao, P., Li, J., & Wang, G. (2014). Stimulation of somatic cell reprogramming by ERas-Akt-FoxO1 signaling axis. Stem Cells. https://doi.org/10.1002/stem.1447

  75. Yamagata, K., Daitoku, H., Takahashi, Y., Namiki, K., Hisatake, K., Kako, K., Mukai, H., Kasuya, Y., & Fukamizu, A. (2008). Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Molecular Cell. https://doi.org/10.1016/j.molcel.2008.09.013

  76. Wang, K., Zhang, T., Dong, Q., Nice, E. C., Huang, C., & Wei, Y. (2013). Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death & Disease. https://doi.org/10.1038/cddis.2013.50

  77. Zhang, C. C., & Sadek, H. A. (2014). Hypoxia and metabolic properties of hematopoietic stem cells. Antioxidants & Redox Signaling. https://doi.org/10.1089/ars.2012.5019

  78. Lee, H.J., Jung, Y.H., Choi, G.E., Kim, J.S., Chae, C.W., &Han, H.J. (2019). Role of HIF1alpha regulatory factors in stem cells. Int J stem cells, https://doi.org/10.15283/ijsc18109.

  79. Mathieu, J., Zhou, W., Xing, Y., Sperber, H., Ferreccio, A., Agoston, Z., Kuppusamy, K. T., Moon, R. T., & Ruohola-Baker, H. (2014). Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. https://doi.org/10.1016/j.stem.2014.02.012

  80. Arthur, S. A., Blaydes, J. P., & Houghton, F. D. (2019). Glycolysis regulates human embryonic stem cell self-renewal under hypoxia through HIF-2alpha and the glycolytic sensors CTBPs. Stem Cell Reports. https://doi.org/10.1016/j.stemcr.2019.02.005

  81. Prigione, A., Rohwer, N., Hoffmann, S., Mlody, B., Drews, K., Bukowiecki, R., Blumlein, K., Wanker, E. E., Ralser, M., Cramer, T., & Adjaye, J. (2014). HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells. https://doi.org/10.1002/stem.1552

  82. Jeong, C. H., Lee, H. J., Cha, J. H., Kim, J. H., Kim, K. R., Kim, J. H., Yoon, D. K., & Kim, K. W. (2007). Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M700534200

  83. Piruat, J. I., & Lopez-Barneo, J. (2005). Oxygen tension regulates mitochondrial DNA-encoded complex I gene expression. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M507044200

  84. Kaelin Jr., W. G., & Lopez-Barneo, J. (2008). Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Molecular Cell. https://doi.org/10.1016/j.molcel.2008.04.009

  85. Ward, P. S., & andThompson, C.B. (2012). Signaling in control of cell growth and metabolism. Cold Spring Harbor Perspectives in Biology. https://doi.org/10.1101/cshperspect.a006783

  86. Lee, J. V., Carrer, A., Shah, S., Snyder, N. W., Wei, S., Venneti, S., Worth, A. J., Yuan, Z. F., Lim, H. W., Liu, S., Jackson, E., Aiello, N. M., Haas, N. B., Rebbeck, T. R., Judkins, A., Won, K. J., Chodosh, L. A., Garcia, B. A., Stanger, B. Z., et al. (2014). Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metabolism. https://doi.org/10.1016/j.cmet.2014.06.004

  87. Watanabe, S., Umehara, H., Murayama, K., Okabe, M., Kimura, T., & Nakano, T. (2006). Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene. https://doi.org/10.1038/sj.onc.1209307

  88. Kennedy, S. G., Kandel, E. S., Cross, T. K., & Hay, N. (1999). Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.19.8.5800

  89. Gottlob, K., Majewski, N., Kennedy, S., Kandel, E., Robey, R. B., & Hay, N. (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes & Development. https://doi.org/10.1101/gad.889901

  90. Hossini, A. M., Quast, A. S., Plotz, M., Grauel, K., Exner, T., Kuchler, J., Stachelscheid, H., Eberle, J., Rabien, A., Makrantonaki, E., & Zouboulis, C. C. (2016). PI3K/AKT signaling pathway is essential for survival of induced pluripotent stem cells. PLoS One. https://doi.org/10.1371/journal.pone.0154770

  91. Tang, Y., Jiang, Z., Luo, Y., Zhao, X., Wang, L., Norris, C., & Tian, X. C. (2014). Differential effects of Akt isoforms on somatic cell reprogramming. Journal of Cell Science. https://doi.org/10.1242/jcs.150029

  92. Gangloff, Y. G., Mueller, M., Dann, S. G., Svoboda, P., Sticker, M., Spetz, J. F., Um, S. H., Brown, E. J., Cereghini, S., Thomas, G., & Kozma, S. C. (2004). Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Molecular and Cellular Biology. https://doi.org/10.1128/MCB.24.21.9508-9516.2004

  93. Murakami, M., Ichisaka, T., Maeda, M., Oshiro, N., Hara, K., Edenhofer, F., Kiyama, H., Yonezawa, K., & Yamanaka, S. (2004). mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Molecular and Cellular Biology. https://doi.org/10.1128/MCB.24.15.6710-6718.2004

  94. Lee, K. W., Yook, J. Y., Son, M. Y., Kim, M. J., Koo, D. B., Han, Y. M., & Cho, Y. S. (2010). Rapamycin promotes the osteoblastic differentiation of human embryonic stem cells by blocking the mTOR pathway and stimulating the BMP/Smad pathway. Stem Cells and Development. https://doi.org/10.1089/scd.2009.0147

  95. Zhou, J., Su, P., Wang, L., Chen, J., Zimmermann, M., Genbacev, O., Afonja, O., Horne, M. C., Tanaka, T., Duan, E., Fisher, S. J., Liao, J., Chen, J., & Wang, F. (2009). mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0901854106

  96. Ruiz, S., Panopoulos, A. D., Herrerias, A., Bissig, K. D., Lutz, M., Berggren, W. T., Verma, I. M., & Izpisua Belmonte, J. C. (2011). A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Current Biology. https://doi.org/10.1016/j.cub.2010.11.049

  97. Chen, T., Shen, L., Yu, J., Wan, H., Guo, A., Chen, J., Long, Y., Zhao, J., & Pei, G. (2011). Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell. https://doi.org/10.1111/j.1474-9726.2011.00722.x

  98. Wang, S., Xia, P., Ye, B., Huang, G., Liu, J., & Fan, Z. (2013). Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell. https://doi.org/10.1016/j.stem.2013.10.005

  99. Ball, H. J., Yuasa, H. J., Austin, C. J., Weiser, S., & Hunt, N. H. (2009). Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. The International Journal of Biochemistry & Cell Biology. https://doi.org/10.1016/j.biocel.2008.01.005

  100. Khan, J. A., Forouhar, F., Tao, X., & Tong, L. (2007). Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opinion on Therapeutic Targets. https://doi.org/10.1517/14728222.11.5.695

  101. Liu, X., Wang, M., Jiang, T., He, J., Fu, X., & &Xu, Y. (2019). IDO1 maintains pluripotency of primed human embryonic stem cells by promoting glycolysis. Stem Cells. https://doi.org/10.1002/stem.3044

  102. Kropp, E. M., Oleson, B. J., Broniowska, K. A., Bhattacharya, S., Chadwick, A. C., Diers, A. R., Hu, Q., Sahoo, D., Hogg, N., Boheler, K. R., Corbett, J. A., & Gundry, R. L. (2015). Inhibition of an NAD(+) salvage pathway provides efficient and selective toxicity to human pluripotent stem cells. Stem Cells Translational Medicine. https://doi.org/10.5966/sctm.2014-0163

  103. Wai, T., & Langer, T. (2016). Mitochondrial dynamics and metabolic regulation. Trends in Endocrinology and Metabolism. https://doi.org/10.1016/j.tem.2015.12.001

  104. Prieto, J., Ponsoda, X., Izpisua Belmonte, J. C., & Torres, J. (2020). Mitochondrial dynamics and metabolism in induced pluripotency. Experimental Gerontology. https://doi.org/10.1016/j.exger.2020.110870

  105. Hernandez-Aguilera, A., Rull, A., Rodriguez-Gallego, E., Riera-Borrull, M., Luciano-Mateo, F., Camps, J., Menendez, J. A., & Joven, J. (2013). Mitochondrial dysfunction: A basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators of Inflammation. https://doi.org/10.1155/2013/135698

  106. Suhr, S. T., Chang, E. A., Tjong, J., Alcasid, N., Perkins, G. A., Goissis, M. D., Ellisman, M. H., Perez, G. I., & Cibelli, J. B. (2010). Mitochondrial rejuvenation after induced pluripotency. PLoS One. https://doi.org/10.1371/journal.pone.0014095

  107. St John, J. C., Ramalho-Santos, J., Gray, H. L., Petrosko, P., Rawe, V. Y., Navara, C. S., Simerly, C. R., & Schatten, G. P. (2005). The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning and Stem Cells. https://doi.org/10.1089/clo.2005.7.141

  108. Cho, Y. M., Kwon, S., Pak, Y. K., Seol, H. W., Choi, Y. M., Park, D. J., Park, K. S., & Lee, H. K. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2006.08.020

  109. Spitkovsky, D., Sasse, P., Kolossov, E., Bottinger, C., Fleischmann, B. K., Hescheler, J., & Wiesner, R. J. (2004). Activity of complex III of the mitochondrial electron transport chain is essential for early heart muscle cell differentiation. The FASEB Journal. https://doi.org/10.1096/fj.03-0520fje

  110. Park, J., Lee, S. B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J. M., & Chung, J. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. https://doi.org/10.1038/nature04788

  111. Okatsu, K., Oka, T., Iguchi, M., Imamura, K., Kosako, H., Tani, N., Kimura, M., Go, E., Koyano, F., Funayama, M., Shiba-Fukushima, K., Sato, S., Shimizu, H., Fukunaga, Y., Taniguchi, H., Komatsu, M., Hattori, N., Mihara, K., Tanaka, K., & Matsuda, N. (2012). PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nature Communications. https://doi.org/10.1038/ncomms2016

  112. Ma, T., Li, J., Xu, Y., Yu, C., Xu, T., Wang, H., Liu, K., Cao, N., Nie, B. M., Zhu, S. Y., Xu, S., Li, K., Wei, W. G., Wu, Y., Guan, K. L., & Ding, S. (2015). Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nature Cell Biology. https://doi.org/10.1038/ncb3256

  113. Prieto, J., Leon, M., Ponsoda, X., Sendra, R., Bort, R., Ferrer-Lorente, R., Raya, A., Lopez-Garcia, C., & Torres, J. (2016). Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nature Communications. https://doi.org/10.1038/ncomms11124

  114. Wang, L., Xu, X., Jiang, C., Ma, G., Huang, Y., Zhang, H., Lai, Y., Wang, M., Ahmed, T., Lin, R., Guo, W., Luo, Z., Li, W., Zhang, M., Ward, C., Qian, M., Liu, B., Esteban, M. A., & Qin, B. (2020). mTORC1-PGC1 axis regulates mitochondrial remodeling during reprogramming. The FEBS Journal. https://doi.org/10.1111/febs.15024

  115. Folmes, C. D., Dzeja, P. P., Nelson, T. J., & Terzic, A. (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell. https://doi.org/10.1016/j.stem.2012.10.002

  116. Prigione, A., & andAdjaye, J. (2010). Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells. The International Journal of Developmental Biology. https://doi.org/10.1387/ijdb.103198ap

  117. Vessoni, A. T., Muotri, A. R., & Okamoto, O. K. (2012). Autophagy in stem cell maintenance and differentiation. Stem Cells and Development. https://doi.org/10.1089/scd.2011.0526

  118. Santel, A., & andFuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. Journal of Cell Science.

  119. Santel, A., Frank, S., Gaume, B., Herrler, M., Youle, R. J., & Fuller, M. T. (2003). Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. Journal of Cell Science. https://doi.org/10.1242/jcs.00479

  120. Eura, Y., Ishihara, N., Yokota, S., & Mihara, K. (2003). Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. Journal of Biochemistry. https://doi.org/10.1093/jb/mvg150

  121. Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., & Lenaers, G. (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.C200677200

  122. Cipolat, S., Martins de Brito, O., Dal Zilio, B., & Scorrano, L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0407043101

  123. Twig, G., Hyde, B., & Shirihai, O. S. (2008). Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochimica et Biophysica Acta. https://doi.org/10.1016/j.bbabio.2008.05.001

  124. Chen, H., & Chan, D. C. (2005). Emerging functions of mammalian mitochondrial fusion and fission. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddi270

  125. Kasahara, A., Cipolat, S., Chen, Y., Dorn 2nd, G. W., & Scorrano, L. (2013). Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and notch signaling. Science. https://doi.org/10.1126/science.1241359

  126. Son, M. J., Kwon, Y., Son, M. Y., Seol, B., Choi, H. S., Ryu, S. W., Choi, C., & Cho, Y. S. (2015). Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Cell Death and Differentiation. https://doi.org/10.1038/cdd.2015.43

  127. Wang, L., Ye, X., Zhao, Q., Zhou, Z., Dan, J., Zhu, Y., Chen, Q., & Liu, L. (2014). Drp1 is dispensable for mitochondria biogenesis in induction to pluripotency but required for differentiation of embryonic stem cells. Stem Cells and Development. https://doi.org/10.1089/scd.2014.0059

  128. Kim, H. J., Shaker, M. R., Cho, B., Cho, H. M., Kim, H., Kim, J. Y., & Sun, W. (2015). Dynamin-related protein 1 controls the migration and neuronal differentiation of subventricular zone-derived neural progenitor cells. Scientific Reports. https://doi.org/10.1038/srep15962

  129. Son, M. Y., Choi, H., Han, Y. M., & Cho, Y. S. (2013). Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. Stem Cells. https://doi.org/10.1002/stem.1509

  130. Hoque, A., Sivakumaran, P., Bond, S. T., Ling, N. X. Y., Kong, A. M., Scott, J. W., Bandara, N., Hernandez, D., Liu, G. S., Wong, R. C. B., Ryan, M. T., Hausenloy, D. J., Kemp, B. E., Oakhill, J. S., Drew, B. G., Pebay, A., & Lim, S. Y. (2018). Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells. Cell Death Discov. https://doi.org/10.1038/s41420-018-0042-9

  131. Xu, C., Bailly-Maitre, B., & Reed, J. C. (2005). Endoplasmic reticulum stress: Cell life and death decisions. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI26373

  132. Ulianich, L., Garbi, C., Treglia, A. S., Punzi, D., Miele, C., Raciti, G. A., Beguinot, F., Consiglio, E., & Di Jeso, B. (2008). ER stress is associated with dedifferentiation and an epithelial-to-mesenchymal transition-like phenotype in PC Cl3 thyroid cells. Journal of Cell Science. https://doi.org/10.1242/jcs.017202

  133. Saran, M., & Bors, W. (1990). Radical reactions in vivo--an overview. Radiation and Environmental Biophysics. https://doi.org/10.1007/BF01210406

  134. Oka, O. B., & Bulleid, N. J. (2013). Forming disulfides in the endoplasmic reticulum. Biochimica et Biophysica Acta. https://doi.org/10.1016/j.bbamcr.2013.02.007

  135. Marsboom, G., Zhang, G. F., Pohl-Avila, N., Zhang, Y., Yuan, Y., Kang, H., Hao, B., Brunengraber, H., Malik, A. B., & Rehman, J. (2016). Glutamine metabolism regulates the pluripotency transcription factor OCT4. Cell Reports. https://doi.org/10.1016/j.celrep.2016.05.089

  136. Nishitoh, H. (2012). CHOP is a multifunctional transcription factor in the ER stress response. Journal of Biochemistry. https://doi.org/10.1093/jb/mvr143

  137. Goldenberg-Cohen, N., Raiter, A., Gaydar, V., Dratviman-Storobinsky, O., Goldstein, T., Weizman, A., & Hardy, B. (2012). Peptide-binding GRP78 protects neurons from hypoxia-induced apoptosis. Apoptosis. https://doi.org/10.1007/s10495-011-0678-x

  138. Caballano-Infantes, E., Terron-Bautista, J., Beltran-Povea, A., Cahuana, G. M., Soria, B., Nabil, H., Bedoya, F. J., & Tejedo, J. R. (2017). Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells. World J Stem Cells. https://doi.org/10.4252/wjsc.v9.i2.26

  139. Luo, S., Mao, C., Lee, B., & Lee, A. S. (2006). GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and Cellular Biology. https://doi.org/10.1128/MCB.00779-06

  140. Varum, S., Rodrigues, A. S., Moura, M. B., Momcilovic, O., Easley, C. A. T., Ramalho-Santos, J., Van Houten, B., & Schatten, G. (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. https://doi.org/10.1371/journal.pone.0020914

  141. Kratochvilova, K., Moran, L., Padourova, S., Stejskal, S., Tesarova, L., Simara, P., Hampl, A., Koutna, I., & Vanhara, P. (2016). The role of the endoplasmic reticulum stress in stemness, pluripotency and development. European Journal of Cell Biology. https://doi.org/10.1016/j.ejcb.2016.02.002

  142. Bianco, C., Rangel, M. C., Castro, N. P., Nagaoka, T., Rollman, K., Gonzales, M., & Salomon, D. S. (2010). Role of Cripto-1 in stem cell maintenance and malignant progression. The American Journal of Pathology. https://doi.org/10.2353/ajpath.2010.100102

  143. Ding, J., Yang, L., Yan, Y. T., Chen, A., Desai, N., Wynshaw-Boris, A., & Shen, M. M. (1998). Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature. https://doi.org/10.1038/27215

  144. Miharada, K., Karlsson, G., Rehn, M., Rorby, E., Siva, K., Cammenga, J., & Karlsson, S. (2011). Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell. https://doi.org/10.1016/j.stem.2011.07.016

  145. Babaie, Y., Herwig, R., Greber, B., Brink, T. C., Wruck, W., Groth, D., Lehrach, H., Burdon, T., & Adjaye, J. (2007). Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells. https://doi.org/10.1634/stemcells.2006-0426

  146. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics. https://doi.org/10.1038/ng1760

  147. Bianco, C., Cotten, C., Lonardo, E., Strizzi, L., Baraty, C., Mancino, M., Gonzales, M., Watanabe, K., Nagaoka, T., Berry, C., Arai, A. E., Minchiotti, G., & Salomon, D. S. (2009). Cripto-1 is required for hypoxia to induce cardiac differentiation of mouse embryonic stem cells. The American Journal of Pathology. https://doi.org/10.2353/ajpath.2009.090218

  148. Chen, A., Muzzio, I. A., Malleret, G., Bartsch, D., Verbitsky, M., Pavlidis, P., Yonan, A. L., Vronskaya, S., Grody, M. B., Cepeda, I., Gilliam, T. C., & Kandel, E. R. (2003). Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron. https://doi.org/10.1016/s0896-6273(03)00501-4

  149. Del Vecchio, C. A., Feng, Y., Sokol, E. S., Tillman, E. J., Sanduja, S., Reinhardt, F., & Gupta, P. B. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biology. https://doi.org/10.1371/journal.pbio.1001945

  150. Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J., & Diehl, J. A. (2003). Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.23.20.7198-7209.2003

  151. Ogawa, Y., Saito, Y., Nishio, K., Yoshida, Y., Ashida, H., & Niki, E. (2008). Gamma-tocopheryl quinone, not alpha-tocopheryl quinone, induces adaptive response through up-regulation of cellular glutathione and cysteine availability via activation of ATF4. Free Radical Research. https://doi.org/10.1080/10715760802277396

  152. Sato, H., Nomura, S., Maebara, K., Sato, K., Tamba, M., & Bannai, S. (2004). Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2004.10.009

  153. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L., & Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes & Development. https://doi.org/10.1101/gad.12.7.982

  154. Tapia-Limonchi, R., Diaz, I., Cahuana, G. M., Bautista, M., Martin, F., Soria, B., Tejedo, J. R., & Bedoya, F. J. (2014). Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells. Islets. https://doi.org/10.1080/19382014.2014.995997

  155. Blanco-Gelaz, M. A., Suarez-Alvarez, B., Ligero, G., Sanchez, L., Vidal-Castineira, J. R., Coto, E., Moore, H., Menendez, P., & Lopez-Larrea, C. (2010). Endoplasmic reticulum stress signals in defined human embryonic stem cell lines and culture conditions. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-010-9135-4

  156. Puente, L. G., Borris, D. J., Carriere, J. F., Kelly, J. F., & Megeney, L. A. (2006). Identification of candidate regulators of embryonic stem cell differentiation by comparative phosphoprotein affinity profiling. Molecular & Cellular Proteomics. https://doi.org/10.1074/mcp.M500166-MCP200

  157. Canová, N. K., Kmoníčková, E., Martínek, J., Zídek, Z., & Farghali, H. (2007). Thapsigargin, a selective inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases, modulates nitric oxide production and cell death of primary rat hepatocytes in culture. Cell Biology and Toxicology. https://doi.org/10.1007/s10565-007-0185-6

  158. Ben-David, U., Gan, Q. F., Golan-Lev, T., Arora, P., Yanuka, O., Oren, Y. S., Leikin-Frenkel, A., Graf, M., Garippa, R., Boehringer, M., Gromo, G., & Benvenisty, N. (2013). Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell. https://doi.org/10.1016/j.stem.2012.11.015

  159. Chen, G., Xu, X., Zhang, L., Fu, Y., Wang, M., Gu, H., & Xie, X. (2014). Blocking autocrine VEGF signaling by sunitinib, an anti-cancer drug, promotes embryonic stem cell self-renewal and somatic cell reprogramming. Cell Research. https://doi.org/10.1038/cr.2014.112

  160. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. https://doi.org/10.1016/s0092-8674(01)00611-0

  161. Liu, L., Liu, C., Zhong, Y., Apostolou, A., & Fang, S. (2012). ER stress response during the differentiation of H9 cells induced by retinoic acid. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2011.12.026

  162. Simic, M. S., Moehle, E. A., Schinzel, R. T., Lorbeer, F. K., Halloran, J. J., Heydari, K., Sanchez, M., Jullie, D., Hockemeyer, D., & Dillin, A. (2019). Transient activation of the UPR(ER) is an essential step in the acquisition of pluripotency during reprogramming. Science Advances. https://doi.org/10.1126/sciadv.aaw0025

  163. Brambrink, T., Foreman, R., Welstead, G. G., Lengner, C. J., Wernig, M., Suh, H., & Jaenisch, R. (2008). Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2008.01.004

  164. Kornmann, B., & Walter, P. (2010). ERMES-mediated ER-mitochondria contacts: Molecular hubs for the regulation of mitochondrial biology. Journal of Cell Science. https://doi.org/10.1242/jcs.058636

  165. Raturi, A., & Simmen, T. (2013). Where the endoplasmic reticulum and the mitochondrion tie the knot: The mitochondria-associated membrane (MAM). Biochimica et Biophysica Acta. https://doi.org/10.1016/j.bbamcr.2012.04.013

  166. Hansford, R. G. (1985). Relation between mitochondrial calcium transport and control of energy metabolism. Reviews of Physiology, Biochemistry and Pharmacology. https://doi.org/10.1007/BFb0034084

  167. Csordas, G., Varnai, P., Golenar, T., Roy, S., Purkins, G., Schneider, T. G., Balla, T., & Hajnoczky, G. (2010). Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Molecular Cell. https://doi.org/10.1016/j.molcel.2010.06.029

  168. Gellerich, F. N., Gizatullina, Z., Trumbeckaite, S., Nguyen, H. P., Pallas, T., Arandarcikaite, O., Vielhaber, S., Seppet, E., & Striggow, F. (2010). The regulation of OXPHOS by extramitochondrial calcium. Biochimica et Biophysica Acta. https://doi.org/10.1016/j.bbabio.2010.02.005

  169. Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M. R., Cavagna, D., Nagy, A. I., Balla, T., & Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. The Journal of Cell Biology. https://doi.org/10.1083/jcb.200608073

  170. Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K. F., Balla, T., Mannella, C. A., & Hajnoczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. The Journal of Cell Biology. https://doi.org/10.1083/jcb.200604016

  171. Simmen, T., Aslan, J. E., Blagoveshchenskaya, A. D., Thomas, L., Wan, L., Xiang, Y., Feliciangeli, S. F., Hung, C. H., Crump, C. M., & Thomas, G. (2005). PACS-2 controls endoplasmic reticulum-mitochondria communication and bid-mediated apoptosis. The EMBO Journal. https://doi.org/10.1038/sj.emboj.7600559

  172. Golshani-Hebroni, S. G., & Bessman, S. P. (1997). Hexokinase binding to mitochondria: A basis for proliferative energy metabolism. Journal of Bioenergetics and Biomembranes. https://doi.org/10.1023/a:1022442629543

  173. Majewski, N., Nogueira, V., Robey, R. B., & Hay, N. (2004). Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Molecular and Cellular Biology. https://doi.org/10.1128/mcb.24.2.730-740.2004

  174. Sheridan, C., & Martin, S. J. (2010). Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion. https://doi.org/10.1016/j.mito.2010.08.005

  175. Friedman, J. R., Lackner, L. L., West, M., DiBenedetto, J. R., Nunnari, J., & Voeltz, G. K. (2011). ER tubules mark sites of mitochondrial division. Science. https://doi.org/10.1126/science.1207385

  176. de Brito, O. M., & Scorrano, L. (2008). Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. https://doi.org/10.1038/nature07534

  177. Delmotte, P., & Sieck, G. C. (2019). Endoplasmic reticulum stress and mitochondrial function in airway smooth muscle. Frontiers in Cell and Development Biology. https://doi.org/10.3389/fcell.2019.00374

  178. Youngman, M. J., Hobbs, A. E., Burgess, S. M., Srinivasan, M., & Jensen, R. E. (2004). Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. The Journal of Cell Biology. https://doi.org/10.1083/jcb.200308012

  179. Lewis, S. C., Uchiyama, L. F., & Nunnari, J. (2016). ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science. https://doi.org/10.1126/science.aaf5549

  180. Basso, V., Marchesan, E., Peggion, C., Chakraborty, J., von Stockum, S., Giacomello, M., Ottolini, D., Debattisti, V., Caicci, F., Tasca, E., Pegoraro, V., Angelini, C., Antonini, A., Bertoli, A., Brini, M., & Ziviani, E. (2018). Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacological Research. https://doi.org/10.1016/j.phrs.2018.09.006

  181. McLelland, G. L., Goiran, T., Yi, W., Dorval, G., Chen, C. X., Lauinger, N. D., Krahn, A. I., Valimehr, S., Rakovic, A., Rouiller, I., Durcan, T. M., Trempe, J. F., & Fon, E. A. (2018). Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife. https://doi.org/10.7554/eLife.32866

Download references

Author information

Authors and Affiliations

Authors

Contributions

Babaei-Abraki: conceptualization, literature search, original draft writing, and editing. Karamali: contributed to the study conception, design, and editing. Nasr-Esfahani: critically reviewed the manuscript, supervision it, and approved the final version to be published. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Hossein Nasr-Esfahani.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei-Abraki, S., Karamali, F. & Nasr-Esfahani, M.H. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev and Rep 18, 1789–1808 (2022). https://doi.org/10.1007/s12015-022-10338-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10338-8

Keywords

Navigation