Skip to main content
Log in

Stem Cell-based Therapy Strategy for Hepatic Fibrosis by Targeting Intrahepatic Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The whole liver transplantation is the most effective treatment for end-stage fibrosis. However, the lack of available donors, immune rejection and total cost of surgery remain as the key challenges in advancing liver fibrosis therapeutics. Due to the multi-differentiation and low immunogenicity of stem cells, treatment of liver fibrosis with stem cells has been considered as a valuable new therapeutic modality. The pathological progression of liver fibrosis is closely related to the changes in the activities of intrahepatic cells. Damaged hepatocytes, activated Kupffer cells and other inflammatory cells lead to hepatic stellate cells (HSCs) activation, further promoting apoptosis of damaged hepatocytes, while stem cells can work on fibrosis-related intrahepatic cells through relevant transduction pathways. Herein, this article elucidates the phenomena and the mechanisms of the crosstalk between various types of stem cells and intrahepatic cells including HSCs and hepatocytes in the treatment of liver fibrosis. Then, the important influences of chemical compositions, mechanical properties and blood flow on liver fibrosis models with stem cell treatment are emphasized. Clinical trials on stem cell-based therapy for liver fibrosis are also briefly summarized. Finally, continuing challenges and future directions of stem cell-based therapy for hepatic fibrosis are discussed. In short, stem cells play an important advantage and have a great potential in treating liver fibrosis by interacting with intrahepatic cells. Clarifying how stem cells interact with intrahepatic cells to change the progression of liver fibrosis is of great significance for a deeper understanding of liver fibrosis mechanisms and targeted therapy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Molokanova, O., Schönig, K., Weng, S. Y., Wang, X., Bros, M., Diken, M., et al. (2018). Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biology, 66, 34–49

    Article  CAS  PubMed  Google Scholar 

  2. Carvalho, A. B., Quintanilha, L. F., Dias, J. V., Paredes, B. D., Mannheimer, E. G., Carvalho, F. G., et al. (2008). Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells, 26(5), 1307–1314

    Article  CAS  PubMed  Google Scholar 

  3. Mederacke, I., Hsu, C. C., Troeger, J. S., Huebener, P., Mu, X., Dapito, D. H., et al. (2013). Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature Communications, 4, 2823

    Article  PubMed  Google Scholar 

  4. Seki, A., Sakai, Y., Komura, T., Nasti, A., Yoshida, K., Higashimoto, M., et al. (2013). Adipose tissue-derived stem cells as a regenerative therapy for a mouse steatohepatitis-induced cirrhosis model. Hepatology, 58(3), 1133–1142

    Article  CAS  PubMed  Google Scholar 

  5. Qian, H., Deng, X., Huang, Z. W., Wei, J., Ding, C. H., Feng, R. X., et al. (2015). An HNF1α-regulated feedback circuit modulates hepatic fibrogenesis via the crosstalk between hepatocytes and hepatic stellate cells. Cell Research, 25(8), 930–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, L., Yannam, G. R., Nishikawa, T., Yamamoto, T., Basma, H., Ito, R., et al. (2012). The microenvironment in hepatocyte regeneration and function in rats with advanced cirrhosis. Hepatology, 55(5), 1529–1539

    Article  PubMed  Google Scholar 

  7. Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. (2019). Human multilineage 3D spheroids as a model of liver steatosis and fibrosis. International Journal of Molecular Sciences, 20(7), 1629

    Article  CAS  PubMed Central  Google Scholar 

  8. Jones, R., Lebkowski, J., & McNiece, I. (2010). Stem cells. Biology of Blood and Marrow Transplantation, 16(1 Suppl), S115–S118

    Article  CAS  PubMed  Google Scholar 

  9. Cai, X., Wang, J., Wang, J., Zhou, Q., Yang, B., He, Q., et al. (2020). Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacological Research, 155, 104720

    Article  CAS  PubMed  Google Scholar 

  10. Najimi, M., Berardis, S., El-Kehdy, H., Rosseels, V., Evraerts, J., Lombard, C., et al. (2017). Human liver mesenchymal stem/progenitor cells inhibit hepatic stellate cell activation: in vitro and in vivo evaluation. Stem Cell Research & Therapy, 8(1), 131

    Article  Google Scholar 

  11. Park, M., Kim, Y. H., Woo, S. Y., Lee, H. J., Yu, Y., Kim, H. S., et al. (2015). Tonsil-derived mesenchymal stem cells ameliorate CCl4-induced liver fibrosis in mice via autophagy activation. Scientific Reports, 5, 8616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, Y., Li, Y., Zhang, L., Li, J., & Zhu, C. (2018). Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis. Stem Cell Research & Therapy, 9(1), 59

    Article  CAS  Google Scholar 

  13. Yang, X., Han, Z. P., Zhang, S. S., Zhu, P. X., Hao, C., Fan, T. T., et al. (2014). Chronic restraint stress decreases the repair potential from mesenchymal stem cells on liver injury by inhibiting TGF-β1 generation. Cell Death and Disease, 5(6), e1308

  14. Jang, Y. O., Jun, B. G., Baik, S. K., Kim, M. Y., & Kwon, S. O. (2015). Inhibition of hepatic stellate cells by bone marrow-derived mesenchymal stem cells in hepatic fibrosis. Clinical and Molecular Hepatology, 21(2), 141–149

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang, B., Cheng, X., Wang, H., Huang, W., la Ga Hu, Z., Wang, D., et al. (2016). Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. Journal of Translational Medicine, 14, 45

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ribot, E. J., Gaudet, J. M., Chen, Y., Gilbert, K. M., & Foster, P. J. (2014). In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. International Journal of Nanomedicine, 9, 1731-1739

  17. Eggenhofer, E., Luk, F., Dahlke, M. H., & Hoogduijn, M. J. (2014). The life and fate of mesenchymal stem cells. Frontiers in Immunology, 5, 148

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen, Y., Xiang, L. X., Shao, J. Z., Pan, R. L., Wang, Y. X., Dong, X. J., et al. (2010). Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. Journal of Cellular and Molecular Medicine, 14(6B), 1494–1508

    Article  PubMed  Google Scholar 

  19. Lou, G., Yang, Y., Liu, F., Ye, B., Chen, Z., Zheng, M., et al. (2017). MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis. Journal of Cellular and Molecular Medicine, 21(11), 2963–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Al Ghrbawy, N. M., Afify, R. A., Dyaa, N., & El Sayed, A. A. (2016). Differentiation of bone marrow: derived mesenchymal stem cells into hepatocyte-like cells. Indian J Hematol Blood Transfus, 32(3), 276–283

    Article  PubMed  Google Scholar 

  21. Ewida, S. F., Abdou, A. G., El-Rasol Elhosary, A. A., & El-Ghane Metawe, S. A. (2017). Hepatocyte-like versus mesenchymal stem cells in CCl4-induced liver fibrosis. Applied Immunohistochemistry & Molecular Morphology, 25(10), 736–745

    Article  CAS  Google Scholar 

  22. Kim, M. D., Kim, S. S., Cha, H. Y., Jang, S. H., Chang, D. Y., Kim, W., et al. (2014). Therapeutic effect of hepatocyte growth factor-secreting mesenchymal stem cells in a rat model of liver fibrosis. Experimental & Molecular Medicine, 46(8), e110

  23. Li, C., Kong, Y., Wang, H., Wang, S., Yu, H., Liu, X., et al. (2009). Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. Journal of Hepatology, 50(6), 1174–1183

    Article  CAS  PubMed  Google Scholar 

  24. Russo, F. P., Alison, M. R., Bigger, B. W., Amofah, E., Florou, A., Amin, F., et al. (2006). The bone marrow functionally contributes to liver fibrosis. Gastroenterology, 130(6), 1807–1821

    Article  PubMed  Google Scholar 

  25. di Bonzo, L. V., Ferrero, I., Cravanzola, C., Mareschi, K., Rustichell, D., Novo, E., et al. (2008). Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut, 57(2), 223–231

    Article  PubMed  Google Scholar 

  26. Overi, D., Carpino, G., Franchitto, A., Onori, P., & Gaudio, E. (2020). Hepatocyte injury and hepatic stem cell niche in the progression of non-alcoholic steatohepatitis. Cells, 9(3), 590

    Article  CAS  PubMed Central  Google Scholar 

  27. Hao, T., Chen, J., Zhi, S., Zhang, Q., Chen, G., & Yu, F. (2017). Comparison of bone marrow-vs. adipose tissue-derived mesenchymal stem cells for attenuating liver fibrosis. Experimental and Therapeutic Medicine, 14(6), 5956–5964

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Meier, R. P., Mahou, R., Morel, P., Meyer, J., Montanari, E., Muller, Y. D., et al. (2015). Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. Journal of Hepatology, 62(3), 634–641

    Article  CAS  PubMed  Google Scholar 

  29. Rambhatla, L., Chiu, C. P., Kundu, P., Peng, Y., & Carpenter, M. K. (2003). Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplantation, 12(1), 1–11

    Article  PubMed  Google Scholar 

  30. Takayama, K., Inamura, M., Kawabata, K., Katayama, K., Higuchi, M., Tashiro, K., et al. (2012). Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Molecular Therapy, 20(1), 127–137

    Article  CAS  PubMed  Google Scholar 

  31. Tolosa, L., Caron, J., Hannoun, Z., Antoni, M., López, S., Burks, D., et al. (2015). Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Research & Therapy, 6, 246

    Article  Google Scholar 

  32. Yamamoto, H., Quinn, G., Asari, A., Yamanokuchi, H., Teratani, T., Terada, M., et al. (2003). Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology, 37(5), 983–993

    Article  CAS  PubMed  Google Scholar 

  33. Teratani, T., Yamamoto, H., Aoyagi, K., Sasaki, H., Asari, A., Quinn, G., et al. (2005). Direct hepatic fate specification from mouse embryonic stem cells. Hepatology, 41(4), 836–846

    Article  CAS  PubMed  Google Scholar 

  34. Woo, D. H., Kim, S. K., Lim, H. J., Heo, J., Park, H. S., Kang, G. Y., et al. (2012). Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology, 142(3), 602–611

    Article  CAS  PubMed  Google Scholar 

  35. Li, Q., Hutchins, A. P., Chen, Y., Li, S., Shan, Y., Liao, B., et al. (2017). A sequential EMT-MET mechanism drives the differentiation of human embryonic stem cells towards hepatocytes. Nature Communications, 8, 15166

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu, H., Kim, Y., Sharkis, S., Marchionni, L., & Jang, Y. Y. (2011). In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Science Translational Medicine, 3(82), 8239

    Article  Google Scholar 

  37. Dianat, N., Dubois-Pot-Schneider, H., Steichen, C., Desterke, C., Leclerc, P., Raveux, A., et al. (2014). Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology, 60(2), 700–714

    Article  CAS  PubMed  Google Scholar 

  38. Li, X., Chen, R., Kemper, S., & Brigstock, D. R. (2020). Extracellular vesicles from hepatocytes are therapeutic for toxin-mediated fibrosis and gene expression in the liver. Frontiers in Cell and Developmental Biology, 7, 368

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J. P., Primdal-Bengtson, B., et al. (2016). Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 113(8), E968–E977

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Povero, D., Pinatel, E. M., Leszczynska, A., Goyal, N. P., Nishio, T., Kim, J., et al. (2019). Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight, 5(14), e125652

  41. Rengasamy, M., Singh, G., Fakharuzi, N. A., Siddikuzzaman, Balasubramanian, S., Swamynathan, P., et al. (2017). Transplantation of human bone marrow mesenchymal stromal cells reduces liver fibrosis more effectively than Wharton’s jelly mesenchymal stromal cells. Stem Cell Research & Therapy, 8(1), 143

    Article  Google Scholar 

  42. Rong, X., Liu, J., Yao, X., Jiang, T., Wang, Y., & Xie, F. (2019). Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway. Stem Cell Research & Therapy, 10(1), 98

    Article  CAS  Google Scholar 

  43. Li, T., Yan, Y., Wang, B., Qian, H., Zhang, X., Shen, L., et al. (2013). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev, 22(6), 845–854

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Y., Xu, J., Liu, S., Lim, M., Zhao, S., Cui, K., et al. (2019). Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells. Theranostics, 9(23), 6976–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mardpour, S., Ghanian, M. H., Sadeghi-Abandansari, H., Mardpour, S., Nazari, A., Shekari, F., et al. (2019). Hydrogel-mediated sustained systemic delivery of mesenchymal stem cell-derived extracellular vesicles improves hepatic regeneration in chronic liver failure. ACS Applied Materials & Interfaces, 11(41), 37421–37433

    Article  CAS  Google Scholar 

  46. Pan, R. L., Wang, P., Xiang, L. X., & Shao, J. Z. (2011). Delta-like 1 serves as a new target and contributor to liver fibrosis down-regulated by mesenchymal stem cell transplantation. The Journal of Biological Chemistry, 286(14), 12340–12348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, C. K., Lee, S. O., Lai, K. P., Ma, W. L., Lin, T. H., Tsai, M. Y., et al. (2013). Targeting androgen receptor in bone marrow mesenchymal stem cells leads to better transplantation therapy efficacy in liver cirrhosis. Hepatology, 57(4), 1550–1563

    Article  CAS  PubMed  Google Scholar 

  48. An, S. Y., Jang, Y. J., Lim, H. J., Han, J., Lee, J., Lee, G., et al. (2017). Milk fat globule-EGF factor 8, secreted by mesenchymal stem cells, protects against liver fibrosis in mice. Gastroenterology, 152(5), 1174–1186

    Article  CAS  PubMed  Google Scholar 

  49. Dooley, S., Hamzavi, J., Breitkopf, K., Wiercinska, E., Said, H. M., Lorenzen, J., et al. (2003). Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology, 125(1), 178–191

    Article  CAS  PubMed  Google Scholar 

  50. Derynck, R., & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature, 425(6958), 577–584

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, L. T., Fang, X. Q., Chen, Q. F., Chen, H., Xiao, P., Peng, X. B., et al. (2015). Bone marrow-derived mesenchymal stem cells inhibit the proliferation of hepatic stellate cells by inhibiting the transforming growth factor β pathway. Molecular Medicine Reports, 12(5), 7227–7232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qu, Y., Zhang, Q., Cai, X., Li, F., Ma, Z., Xu, M., et al. (2017). Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. Journal of Cellular and Molecular Medicine, 21(10), 2491–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Contreras-Jurado, C., Alonso-Merino, E., Saiz-Ladera, C., Valiño, A. J., Regadera, J., Alemany, S., et al. (2016). The thyroid hormone receptors inhibit hepatic interleukin-6 signaling during endotoxemia. Scientific Reports, 6, 30990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qiao, H., Zhou, Y., Qin, X., Cheng, J., He, Y., & Jiang, Y. (2018). NADPH oxidase signaling pathway mediates mesenchymal stem cell-induced inhibition of hepatic stellate cell activation. Stem Cells International, 2018, 1239143

  55. Lin, N., Tang, Z., Deng, M., Zhong, Y., Lin, J., Yang, X., et al. (2008). Hedgehog-mediated paracrine interaction between hepatic stellate cells and marrow-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 372(1), 260–265

    Article  CAS  PubMed  Google Scholar 

  56. Wang, P. P., Xie, D. Y., Liang, X. J., Peng, L., Zhang, G. L., Ye, Y. N., et al. (2012). HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-kB pathway. PLoS One, 7(8), e43408

  57. Chillakuri, C. R., Sheppard, D., Lea, S. M., & Handford, P. A. (2012). Notch receptor-ligand binding and activation: insights from molecular studies. Seminars in Cell & Developmental Biology, 23(4), 421–428

    Article  CAS  Google Scholar 

  58. Hurlbut, G. D., Kankel, M. W., Lake, R. J., & Artavanis-Tsakonas, S. (2007). Crossing paths with Notch in the hyper-network. Current Opinion in Cell Biology, 19(2), 166–175

    Article  CAS  PubMed  Google Scholar 

  59. Chen, S., Xu, L., Lin, N., Pan, W., Hu, K., & Xu, R. (2011). Activation of Notch1 signaling by marrow-derived mesenchymal stem cells through cell-cell contact inhibits proliferation of hepatic stellate cells. Life Sciences, 89(25–26), 975–981.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, J., Corciulo, C., Liu, H., Wilder, T., Ito, M., & Cronstein, B. (2017). Adenosine A2a receptor blockade diminishes Wnt/β-Catenin signaling in a murine model of bleomycin-induced dermal fibrosis. The American Journal of Pathology, 187(9), 1935–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rahmani, F., Avan, A., Hashemy, S. I., & Hassanian, S. M. (2018). Role of Wnt/β-catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. Journal of Cellular Physiology, 233(2), 811–817

    Article  CAS  PubMed  Google Scholar 

  62. So, J., Khaliq, M., Evason, K., Ninov, N., Martin, B. L., Stainier, D. Y. R., et al. (2018). Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating notch activity. Hepatology, 67(6), 2352–2366

    Article  CAS  PubMed  Google Scholar 

  63. Nakhaei-Rad, S., Nakhaeizadeh, H., Götze, S., Kordes, C., Sawitza, I., Hoffmann, M. J., et al. (2016). The role of embryonic stem cell-expressed RAS (ERAS) in the maintenance of quiescent hepatic stellate cells. The Journal of Biological Chemistry, 291(16), 8399–8413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, Z., Zhou, X., Shen, H., Wang, D., & Wang, Y. (2009). Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC Medicine, 7, 41

    Article  PubMed  PubMed Central  Google Scholar 

  65. Simonetto, D. A., Yang, H. Y., Yin, M., de Assuncao, T. M., Kwon, J. H., Hilscher, M., et al. (2015). Chronic passive venous congestion drives hepatic fibrogenesis via sinusoidal thrombosis and mechanical forces. Hepatology, 61(2), 648–659

    Article  CAS  PubMed  Google Scholar 

  66. Ehling, J., Bartneck, M., Wei, X., Gremse, F., Fech, V., Möckel, D., et al. (2014). CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut, 63(12), 1960–1971

    Article  CAS  PubMed  Google Scholar 

  67. Yanagawa, T., Sumiyoshi, H., Higashi, K., Nakao, S., Higashiyama, R., Fukumitsu, H., et al. (2019). Identification of a novel bone marrow cell-derived accelerator of fibrotic liver regeneration through mobilization of hepatic progenitor cells in mice. Stem Cells, 37(1), 89–101

    Article  CAS  PubMed  Google Scholar 

  68. Liu, Y., Yang, X., Jing, Y., Zhang, S., Zong, C., Jiang, J., et al. (2015). Contribution and mobilization of mesenchymal stem cells in a mouse model of carbon tetrachloride-induced liver fibrosis. Scientific Reports, 5, 17762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, L. T., Peng, X. B., Fang, X. Q., Li, J. F., Chen, H., & Mao, X. R. (2018). Human umbilical cord mesenchymal stem cells inhibit proliferation of hepatic stellate cells in vitro. International Journal of Molecular Medicine, 41(5), 2545–2552

    CAS  PubMed  PubMed Central  Google Scholar 

  70. De Minicis, S., Seki, E., Uchinami, H., Kluwe, J., Zhang, Y., Brenner, D. A., et al. (2007). Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology, 132(5), 1937–1946

    Article  PubMed  Google Scholar 

  71. Pampaloni, F., Reynaud, E. G., & Stelzer, E. H. (2007). The third dimension bridges the gap between cell culture and live tissue. Nature Reviews. Molecular Cell Biology, 8(10), 839–845

    Article  CAS  PubMed  Google Scholar 

  72. Leite, S. B., Roosens, T., El Taghdouini, A., Mannaerts, I., Smout, A. J., Najimi, M., et al. (2016). Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials, 78, 1–10

    Article  CAS  PubMed  Google Scholar 

  73. Olinga, P., & Schuppan, D. (2013). Precision-cut liver slices: a tool to model the liver ex vivo. Journal of Hepatology, 58(6), 1252–1253

    Article  PubMed  Google Scholar 

  74. Wang, S., Wang, X., Tan, Z., Su, Y., Liu, J., Chang, M., et al. (2019). Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Research, 29(12), 1009–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coll, M., Perea, L., Boon, R., Leite, S. B., Vallverdú, J., Mannaerts, I., et al. (2018). Generation of hepatic stellate cells from human pluripotent stem cells enables in vitro modeling of liver fibrosis. Cell Stem Cell, 23(1), 101–1137

    Article  CAS  PubMed  Google Scholar 

  76. Morales-Ibanez, O., Affò, S., Rodrigo-Torres, D., Blaya, D., Millán, C., Coll, M., et al. (2016). Kinase analysis in alcoholic hepatitis identifies p90RSK as a potential mediator of liver fibrogenesis. Gut, 65(5), 840–851

    Article  CAS  PubMed  Google Scholar 

  77. Novoseletskaya, E. S., Grigorieva, O. A., Efimenko, A. Y., & Kalinina, N. I. (2019). Extracellular matrix in the regulation of stem cell differentiation. Biochemistry (Mosc), 84(3), 232–240

    Article  CAS  Google Scholar 

  78. Ji, R., Zhang, N., You, N., Li, Q., Liu, W., Jiang, N., et al. (2012). The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials, 33(35), 8995–9008

    Article  CAS  PubMed  Google Scholar 

  79. Iwakiri, Y. (2014). Pathophysiology of portal hypertension. Clinics in Liver Disease, 18(2), 281–291

    Article  PubMed  PubMed Central  Google Scholar 

  80. Brückner, S., Zipprich, A., Hempel, M., Thonig, A., Schwill, F., Roderfeld, M., et al. (2017). Improvement of portal venous pressure in cirrhotic rat livers by systemic treatment with adipose tissue-derived mesenchymal stromal cells. Cytotherapy, 19(12), 1462–1473

    Article  PubMed  Google Scholar 

  81. Friedman, S. L. (2000). Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. The Journal of Biological Chemistry, 275(4), 2247–2250

    Article  CAS  PubMed  Google Scholar 

  82. Suk, K. T., Yoon, J. H., Kim, M. Y., Kim, C. W., Kim, J. K., Park, H., et al. (2016). Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology, 64(6), 2185–2197

    Article  CAS  PubMed  Google Scholar 

  83. Uygun, B. E., Soto-Gutierrez, A., Yagi, H., Izamis, M. L., Guzzardi, M. A., Shulman, C., et al. (2010). Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 16(7), 814–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kojima, H., Yasuchika, K., Fukumitsu, K., Ishii, T., Ogiso, S., Miyauchi, Y., et al. (2018). Establishment of practical recellularized liver graft for blood perfusion using primary rat hepatocytes and liver sinusoidal endothelial cells. American Journal of Transplantation, 18(6), 1351–1359

    Article  PubMed  Google Scholar 

  85. Mazza, G., Al-Akkad, W., Telese, A., Longato, L., Urbani, L., Robinson, B., et al. (2017). Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization. Scientific Reports, 7(1), 5534

    Article  PubMed  PubMed Central  Google Scholar 

  86. Banaeiyan, A. A., Theobald, J., Paukštyte, J., Wölfl, S., Adiels, C. B., & Goksör, M. (2017). Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication, 9(1), 015014

    Article  PubMed  Google Scholar 

  87. Yen, M. H., Wu, Y. Y., Liu, Y. S., Rimando, M., Ho, J. H., & Lee, O. K. (2016). Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device. Stem Cell Research & Therapy, 7(1), 120

    Article  Google Scholar 

  88. Van der Helm, D., Groenewoud, A., de Jonge-Muller, E. S. M., Barnhoorn, M. C., Schoonderwoerd, M. J. A., Coenraad, M. J., et al. (2018). Mesenchymal stromal cells prevent progression of liver fibrosis in a novel zebrafish embryo model. Scientific Reports, 8(1), 16005

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tuñón, M. J., Alvarez, M., Culebras, J. M., & González-Gallego, J. (2009). An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World Journal of Gastroenterology, 15(25), 3086–3098

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yuan, L., Jiang, J., Liu, X., Zhang, Y., Zhang, L., Xin, J., et al. (2019). HBV infection-induced liver cirrhosis development in dual-humanised mice with human bone mesenchymal stem cell transplantation. Gut, 68(11), 2044–2056

    Article  CAS  PubMed  Google Scholar 

  91. Goessling, W., & Sadler, K. C. (2015). Zebrafish: an important tool for liver disease research. Gastroenterology, 149(6), 1361–1377

    Article  PubMed  Google Scholar 

  92. Jang, Y. O., Kim, Y. J., Baik, S. K., Kim, M. Y., Eom, Y. W., Cho, M. Y., et al. (2014). Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver International, 34(1), 33–41

    Article  CAS  PubMed  Google Scholar 

  93. Andreone, P., Catani, L., Margini, C., Brodosi, L., Lorenzini, S., Sollazzo, D., et al. (2015). Reinfusion of highly purified CD133+ bone marrow-derived stem/progenitor cells in patients with end-stage liver disease: A phase I clinical trial. Digestive and Liver Disease, 47(12), 1059–1066

    Article  PubMed  Google Scholar 

  94. Zekri, A. R., Salama, H., Medhat, E., Musa, S., Abdel-Haleem, H., Ahmed, O. S., et al. (2015). The impact of repeated autologous infusion of haematopoietic stem cells in patients with liver insufficiency. Stem Cell Research & Therapy, 6(1), 118

    Article  Google Scholar 

  95. Garg, V., Garg, H., Khan, A., Trehanpati, N., Kumar, A., Sharma, B. C., et al. (2012). Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology, 142(3), 505–5121

    Article  CAS  PubMed  Google Scholar 

  96. Mohamadnejad, M., Alimoghaddam, K., Bagheri, M., Ashrafi, M., Abdollahzadeh, L., Akhlaghpoor, S., et al. (2013). Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis. Liver International, 33(10), 1490–1496

    Article  CAS  PubMed  Google Scholar 

  97. Lanthier, N., Lin-Marq, N., Rubbia-Brandt, L., Clément, S., Goossens, N., & Spahr, L. (2017). Autologous bone marrow-derived cell transplantation in decompensated alcoholic liver disease: what is the impact on liver histology and gene expression patterns? Stem Cell Research & Therapy, 8(1), 88

    Article  Google Scholar 

  98. Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of Hematology & Oncology, 5, 19

    Article  Google Scholar 

  99. Liang, J., Zhang, H., Zhao, C., Wang, D., Ma, X., Zhao, S., et al. (2017). Effects of allogeneic mesenchymal stem cell transplantation in the treatment of liver cirrhosis caused by autoimmune diseases. International Journal of Rheumatic Diseases, 20(9), 1219–1226

    Article  CAS  PubMed  Google Scholar 

  100. Detry, O., Vandermeulen, M., Delbouille, M. H., Somja, J., Bletard, N., Briquet, A., et al. (2017). Infusion of mesenchymal stromal cells after deceased liver transplantation: A phase I-II, open-label, clinical study. Journal of Hepatology, 67(1), 47–55

    Article  PubMed  Google Scholar 

  101. Cernigliaro, V., Peluso, R., Zedda, B., Silengo, L., Tolosano, E., Pellicano, R., et al. (2020). Evolving cell-based and cell-free clinical strategies for treating severe human liver diseases. Cells, 9(2), 386

    Article  CAS  PubMed Central  Google Scholar 

  102. Sakiyama, R., Blau, B. J., & Miki, T. (2017). Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells. World Journal of Gastroenterology, 23(11), 1974–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Eom, Y. W., Yoon, Y., & Baik, S. K. (2021). Mesenchymal stem cell therapy for liver disease: current status and future perspectives. Current Opinion in Gastroenterology, 37(3), 216–223

    Article  CAS  PubMed  Google Scholar 

  104. Yang, X., Meng, Y., Han, Z., Ye, F., Wei, L., & Zong, C. (2020). Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell & Bioscience, 10, 123

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (11702044, 11902061), Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0350), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201901114), Visiting Scholar Foundation of Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education (CQKLBST-2020-001), Scientific Research Foundation of Chongqing University of Technology (2019ZD49), and Scientific Research Foundation of Chongqing Technology and Business University (1956016).

Availability of Data and Material

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

G. C. and Y. D. conceptualized the idea. Y. D., B. X., Z. C., F. W., Y. L. and G. C. wrote the manuscript and approved the final version of the manuscript.

Corresponding author

Correspondence to Guobao Chen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Xia, B., Chen, Z. et al. Stem Cell-based Therapy Strategy for Hepatic Fibrosis by Targeting Intrahepatic Cells. Stem Cell Rev and Rep 18, 77–93 (2022). https://doi.org/10.1007/s12015-021-10286-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10286-9

Keywords

Navigation