Seymour, P. A. (2014). Sox9: A master regulator of the pancreatic program. The Review of Diabetic Studies, 11, 51–83.
Article
Google Scholar
Piper, K., Ball, S. G., Keeling, J. W., Mansoor, S., Wilson, D. I., & Hanley, N. A. (2002). Novel SOX9 expression during human pancreas development correlates to abnormalities in Campomelic dysplasia. Mechanisms of Development, 116, 223–226.
CAS
Article
Google Scholar
Seymour, P. A., Freude, K. K., Tran, M. N., Mayes, E. E., Jensen, J., Kist, R., Scherer, G., & Sander, M. (2007). SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA, 104, 1865–1870.
Lynn, F. C., Smith, S. B., Wilson, M. E., Yang, K. Y., Nekrep, N., & German, M. S. (2007). Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA, 104, 10500–10505.
CAS
Article
Google Scholar
Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., Hosokawa, S., Elbahrawy, A., Soeda, T., Koizumi, M., Masui, T., Kawaguchi, M., Takaori, K., Doi, R., Nishi, E., Kakinoki, R., Min Deng, J., Behringer, R. R., Nakamura, T., & Uemoto, S. (2011). Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genetics, 43, 34–41.
Kopp, J. L., Dubois, C. L., Schaffer, A. E., Hao, E., Shih, H. P., Seymour, P. A., Ma, J., & Sander, M. (2011). Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development, 138, 653–665.
Jennings, R. E., Berry, A. A., Strutt, J. P., Gerrard, D. T., & Hanley, N. A. (2015). Human pancreas development. Development, 142, 3126–3137.
CAS
Article
Google Scholar
Zhou, Q., Law, A. C., Rajagopal, J., Anderson, W. J., Gray, P. A., & Melton, D. A. (2007). A multipotent progenitor domain guides pancreatic organogenesis. Developmental Cell, 13, 103–114.
CAS
Article
Google Scholar
Mutskov, V., & Felsenfeld, G. (2009). The human insulin gene is part of a large open chromatin domain specific for human islets. Proc Natl Acad Sci USA, 106, 17419–17424.
CAS
Article
Google Scholar
Davenport, C., Diekmann, U., Budde, I., Detering, N., & Naujok, O. (2016). Anterior-posterior patterning of definitive endoderm generated from human embryonic stem cells depends on the differential signaling of retinoic acid, Wnt-, and BMP-signaling. Stem Cells, 34, 2635–2647.
CAS
Article
Google Scholar
Dettmer, R., Cirksena, K., Münchhoff, J., Kresse, J., Diekmann, U., Niwolik, I., Buettner, F.F.R., & Naujok, O. (2020). FGF2 inhibits early pancreatic lineage specification during differentiation of human embryonic stem cells. Cells, 9, 1927.
Haase, A., Göhring, G., & Martin, U. (2017). Generation of non-transgenic iPS cells from human cord blood CD34(+) cells under animal component-free conditions. Stem Cell Res, 21, 71–73.
CAS
Article
Google Scholar
Gurgul-Convey, E., Kaminski, M. T., & Lenzen, S. (2015). Physiological characterization of the human EndoC-βH1 β-cell line. Biochemical and Biophysical Research Communications, 464, 13–19.
CAS
Article
Google Scholar
Stemmer, M., Thumberger, T., del Sol Keyer, M., Wittbrodt, J., & Mateo, J. L. (2015). CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 10, e0124633.
Article
Google Scholar
Heckl, D., Kowalczyk, M. S., Yudovich, D., Belizaire, R., Puram, R. V., McConkey, M. E., Thielke, A., Aster, J. C., Regev, A., & Ebert, B. L. (2014). Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nature Biotechnology, 32, 941–946.
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.
Dettmer, R., & Naujok, O. (2020). Design and derivation of multi-reporter pluripotent stem cell lines via CRISPR/Cas9n-mediated homology-directed repair. Current Protocols in Stem Cell Biology, 54, e116.
CAS
Article
Google Scholar
Diekmann, U., Lenzen, S., & Naujok, O. (2015). A reliable and efficient protocol for human pluripotent stem cell differentiation into the definitive endoderm based on dispersed single cells. Stem Cells Development, 24, 190–204.
CAS
Article
Google Scholar
Nostro, M. C., Sarangi, F., Yang, C., Holland, A., Elefanty, A. G., Stanley, E. G., Greiner, D. L., & Keller, G. (2015). Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports, 4, 591–604.
Pagliuca, F. W., Millman, J. R., Gurtler, M., Segel, M., Van Dervort, A., Ryu, J. H., Peterson, Q. P., Greiner, D., & Melton, D. A. (2014). Generation of functional human pancreatic beta cells in vitro. Cell, 159, 428–439.
Jörns, A., Wedekind, D., Jähne, J., & Lenzen, S. (2020). Pancreas pathology of latent autoimmune diabetes in adults (LADA) in patients and in a LADA rat model compared with type 1 diabetes. Diabetes, 69, 624–633.
Article
Google Scholar
Wu, H., Kim, K. J., Mehta, K., Paxia, S., Sundstrom, A., Anantharaman, T., Kuraishy, A. I., Doan, T., Gosh, J., Pyle, A. D., Clark, A., Lowry, W., Fan, G., Baxter, T., Mishra, B., Sun, Y., & Teitell, M. A. (2008). Copy number variant analysis of human embryonic stem cells. Stem Cells, 26, 1484–1489.
Nguyen, H. T., Geens, M., Mertzanidou, A., Jacobs, K., Heirman, C., Breckpot, K., & Spits, C. (2014). Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. Molecular Human Reproduction, 20, 168–177.
Mahaddalkar, P. U., Scheibner, K., Pfluger, S., Ansarullah, Sterr, M., Beckenbauer, J., Irmler, M., Beckers, J., Knöbel, S., & Lickert, H. (2020). Generation of pancreatic β cells from CD177(+) anterior definitive endoderm. Nature Biotechnology, 38, 1061–1072.
Kelly, O. G., Chan, M. Y., Martinson, L. A., Kadoya, K., Ostertag, T. M., Ross, K. G., Richardson, M., Carpenter, M. K., D'Amour, K. A., Kroon, E., Moorman, M., Baetge, E. E., & Bang, A. G. (2011). Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nature Biotechnology, 29, 750–756.
Ameri, J., Borup, R., Prawiro, C., Ramond, C., Schachter, K. A., Scharfmann, R., & Semb, H. (2017). Efficient generation of glucose-responsive beta cells from isolated GP2(+) human pancreatic progenitors. Cell Reports, 19, 36–49.
Belo, J., Krishnamurthy, M., Oakie, A., & Wang, R. (2013). The role of SOX9 transcription factor in pancreatic and duodenal development. Stem Cells and Development, 22, 2935–2943.
CAS
Article
Google Scholar
Rezania, A., Bruin, J. E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y. H., Johnson, J. D., & Kieffer, T. J. (2014). Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology, 32, 1121–1133.
Sahabian, A., Sgodda, M., Naujok, O., Dettmer, R., Dahlmann, J., Manstein, F., Cantz, T., Zweigerdt, R., Martin, U., & Olmer, R. (2019). Chemically-defined, xeno-free, scalable production of hPSC-derived definitive endoderm aggregates with multi-lineage differentiation potential. Cells, 8, 1571.
Shih, H. P., Kopp, J. L., Sandhu, M., Dubois, C. L., Seymour, P. A., Grapin-Botton, A., & Sander, M. (2012). A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development, 139, 2488–2499.
Bouwens, L. (1998). Cytokeratins and cell differentiation in the pancreas. The Journal of Pathology, 184, 234–239.
CAS
Article
Google Scholar
Bruin, J. E., Erener, S., Vela, J., Hu, X., Johnson, J. D., Kurata, H. T., Lynn, F. C., Piret, J. M., Asadi, A., Rezania, A., & Kieffer, T. J. (2014). Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Research, 12, 194–208.
Rezania, A., Bruin, J. E., Riedel, M. J., Mojibian, M., Asadi, A., Xu, J., Gauvin, R., Narayan, K., Karanu, F., O'Neil, J. J., Ao, Z., Warnock, G. L., & Kieffer, T. J. (2012). Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes, 61, 2016–2029.
Kormish, J. D., Sinner, D., & Zorn, A. M. (2010). Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease. Developmental Dynamics, 239, 56–68.
CAS
PubMed
PubMed Central
Google Scholar
Seymour, P. A., Shih, H. P., Patel, N. A., Freude, K. K., Xie, R., Lim, C. J., & Sander, M. (2012). A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development, 139, 3363–3372.
Mead, T. J., Wang, Q., Bhattaram, P., Dy, P., Afelik, S., Jensen, J., & Lefebvre, V. (2013). A far-upstream (-70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration. Nucleic Acids Research, 41, 4459–4469.
Akiyama, H., Lyons, J. P., Mori-Akiyama, Y., Yang, X., Zhang, R., Zhang, Z., Deng, J. M., Taketo, M. M., Nakamura, T., Behringer, R. R., McCrea, P. D., & de Crombrugghe B. (2004). Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes & Development, 18, 1072–1087.
Topol, L., Chen, W., Song, H., Day, T. F., & Yang, Y. (2009). Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. Journal of Biological Chemistry, 284, 3323–3333.
CAS
Article
Google Scholar
Hill, T. P., Später, D., Taketo, M. M., Birchmeier, W., & Hartmann, C. (2005). Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Developmental Cell, 8, 727–738.
CAS
Article
Google Scholar
Sharon, N., Vanderhooft, J., Straubhaar, J., Mueller, J., Chawla, R., Zhou, Q., Engquist, E. N., Trapnell, C., Gifford, D. K., & Melton, D. A. (2019). Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Reports, 27, 2281–2291.e2285.
Ameri, J., Stahlberg, A., Pedersen, J., Johansson, J. K., Johannesson, M. M., Artner, I., & Semb, H. (2010). FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells, 28, 45–56.
Veres, A., Faust, A. L., Bushnell, H. L., Engquist, E. N., Kenty, J. H., Harb, G., Poh, Y. C., Sintov, E., Gürtler, M., Pagliuca, F. W., Peterson, Q. P., & Melton, D. A. (2019). Charting cellular identity during human in vitro beta-cell differentiation. Nature, 569, 368–373.
Nair, G. G., Liu, J. S., Russ, H. A., Tran, S., Saxton, M. S., Chen, R., Juang, C., Li, M. L., Nguyen, V. Q., Giacometti, S., Puri, S., Xing, Y., Wang, Y., Szot, G. L., Oberholzer, J., Bhushan, A., & Hebrok, M. (2019). Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nature Cell Biology, 21, 263–274.
Ackermann, M., Kempf, H., Hetzel, M., Hesse, C., Hashtchin, A. R., Brinkert, K., Schott, J. W., Haake, K., Kühnel, M. P., Glage, S., Figueiredo, C., Jonigk, D., Sewald, K., Schambach, A., Wronski, S., Moritz, T., Martin, U., Zweigerdt, R., Munder, A., & Lachmann, N. (2018). Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nature Communications, 9, 5088.
Halloin, C., Schwanke, K., Löbel, W., Franke, A., Szepes, M., Biswanath, S., Wunderlich, S., Mekert, S., Weber, N., Osten, F., de la Roche, J., Polten, F., Wollert, K. C., Kraft, T., Fischer, M., Martin, U., Gruh, I., Kempf, H., & Zweigerdt, R. (2019). Continuous WNT control enables advanced hPSC cardiac processing and prognostic surface marker identification in chemically defined suspension culture. Stem Cell Reports, 13, 775.
Nair, G. G., Tzanakakis, E. S., & Hebrok, M. (2020). Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nature Reviews. Endocrinology, 16, 506–518.
Article
Google Scholar
Furuyama, K., Chera, S., van Gurp, L., Oropeza, D., Ghila, L., Damond, N., et al. (2019). Diabetes relief in mice by glucose-sensing insulin-secreting human alpha-cells. Nature, 567, 43–48.
CAS
Article
Google Scholar
Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12, 207–218.
CAS
Article
Google Scholar
Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020). Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Reviews and Reports, 16, 3–32.
Article
Google Scholar
Ortmann, D., & Vallier, L. (2017). Variability of human pluripotent stem cell lines. Current Opinion in Genetics & Development, 46, 179–185.
CAS
Article
Google Scholar
Keller, A., Dziedzicka, D., Zambelli, F., Markouli, C., Sermon, K., Spits, C., & Geens, M. (2018). Genetic and epigenetic factors which modulate differentiation propensity in human pluripotent stem cells. Human Reproduction Update, 24, 162–175.
Micallef, S. J., Li, X., Schiesser, J. V., Hirst, C. E., Yu, Q. C., Lim, S. M., Nostro, M. C., Elliott, D. A., Sarangi, F., Harrison, L. C., Keller, G., Elefanty, A. G., & Stanley, E. G. (2012). INS(GFP/w) human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells. Diabetologia, 55, 694–706.
Micallef, S. J., Janes, M. E., Knezevic, K., Davis, R. P., Elefanty, A. G., & Stanley, E. G. (2005). Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes, 54, 301–305.
CAS
Article
Google Scholar
Gupta, S. K., Wesolowska-Andersen, A., Ringgaard, A. K., Jaiswal, H., Song, L., Hastoy, B., Ingvorsen, C., Taheri-Ghahfarokhi, A., Magnusson, B., Maresca, M., Jensen, R. R., Beer, N. L., Fels, J. J., Grunnet, L. G., Thomas, M. K., Gloyn, A. L., Hicks, R., McCarthy, M. I., Hansson, M., & Honoré, C. (2018). NKX6.1 induced pluripotent stem cell reporter lines for isolation and analysis of functionally relevant neuronal and pancreas populations. Stem Cell Research, 29, 220–231.
Blöchinger, A. K., Siehler, J., Wißmiller, K., Shahryari, A., Burtscher, I., & Lickert, H. (2020). Generation of an INSULIN-H2B-Cherry reporter human iPSC line. Stem Cell Research, 45, 101797.
Article
Google Scholar
Blache, P., van de Wetering, M., Duluc, I., Domon, C., Berta, P., Freund, J. N., Clevers, H., & Jay, P. (2004). SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. Journal of Cell Biology, 166, 37–47.
Kawaguchi, Y. (2013). Sox9 and programming of liver and pancreatic progenitors. The Journal of Clinical Investigation, 123, 1881–1886.
CAS
Article
Google Scholar