Skip to main content

The 9aaTAD Activation Domains in the Yamanaka Transcription Factors Oct4, Sox2, Myc, and Klf4

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    CAS  Article  Google Scholar 

  2. 2.

    Piskacek, M., Havelka, M., Jendruchova, K., Knight, A., & Keegan, L. P. (2019). The evolution of the 9aaTAD domain in Sp2 proteins: Inactivation with valines and intron reservoirs. Cellular and Molecular Life Sciences. https://doi.org/10.1007/s00018-019-03251-w

    Article  PubMed  Google Scholar 

  3. 3.

    Sandholzer, J., Hoeth, M., Piskacek, M., Mayer, H., & de Martin, R. (2007). A novel 9-amino-acid transactivation domain in the C-terminal part of Sox18. Biochemical and Biophysical Research Communications, 360, 370–374.

    CAS  Article  Google Scholar 

  4. 4.

    Piskacek, M., Vasku, A., Hajek, R., & Knight, A. (2015). Shared structural features of the 9aaTAD family in complex with CBP. Molecular BioSystems, 11, 844–851.

    CAS  Article  Google Scholar 

  5. 5.

    Hofrova, A., Lousa, P., Kubickova, M., Hritz, J., Otasevic, T., Repko, M., Knight, A., & Piskacek, M. (2021). Universal two-point interaction of mediator KIX with 9aaTAD activation domains. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.30075

    Article  PubMed  Google Scholar 

  6. 6.

    Haseeb, A., & Lefebvre, V. (2019). The SOXE transcription factors—SOX8, SOX9 and SOX10—share a bi-partite transactivation mechanism. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz523

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Piskacek, M., Havelka, M., Rezacova, M., & Knight, A. (2016). The 9aaTAD transactivation domains: From Gal4 to p53. PLoS ONE, 11, e0162842.

    Article  Google Scholar 

  8. 8.

    Teufel, D. P., Freund, S. M., Bycroft, M., & Fersht, A. R. (2007). Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proceedings of the National academy of Sciences of the United States of America, 104, 7009–7014.

    CAS  Article  Google Scholar 

  9. 9.

    De Guzman, R. N., Goto, N. K., Dyson, H. J., & Wright, P. E. (2006). Structural basis for cooperative transcription factor binding to the CBP coactivator. Journal of Molecular Biology, 355, 1005–1013.

    Article  Google Scholar 

  10. 10.

    Denis, C. M., Chitayat, S., Plevin, M. J., Wang, F., Thompson, P., Liu, S., Spencer, H. L., Ikura, M., LeBrun, D. P., & Smith, S. P. (2012). Structural basis of CBP/p300 recruitment in leukemia induction by E2A-PBX1. Blood, 120, 3968–3977.

    CAS  Article  Google Scholar 

  11. 11.

    Piskacek, M., Havelka, M., Rezacova, M., & Knight, A. (2017). Gal4 activation domain 9aaTAD could be inactivated by adjacent mini-inhibitory domain and reactivated by distal re-activation domain. bioRxiv. https://doi.org/10.1101/110882

  12. 12.

    Lam, C. S., Mistri, T. K., Foo, Y. H., Sudhaharan, T., Gan, H. T., Rodda, D., Lim, L. H., Chou, C., Robson, P., Wohland, T., et al. (2012). DNA-dependent Oct4-Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy. The Biochemical Journal, 448, 21–33.

    CAS  Article  Google Scholar 

  13. 13.

    Adikusuma, F., Pederick, D., McAninch, D., Hughes, J., & Thomas, P. (2017). Functional equivalence of the SOX2 and SOX3 transcription factors in the developing mouse brain and testes. Genetics, 206, 1495–1503.

    CAS  Article  Google Scholar 

  14. 14.

    Niwa, H., Nakamura, A., Urata, M., Shirae-Kurabayashi, M., Kuraku, S., Russell, S., & Ohtsuka, S. (2016). The evolutionally-conserved function of group B1 Sox family members confers the unique role of Sox2 in mouse ES cells. BMC Evolutionary Biology, 16, 1–12.

    Article  Google Scholar 

  15. 15.

    Narayan, S., Bryant, G., Shah, S., Berrozpe, G., & Ptashne, M. (2017). OCT4 and SOX2 work as transcriptional activators in reprogramming human fibroblasts. Cell Reports, 20, 1585–1596.

    CAS  Article  Google Scholar 

  16. 16.

    Lefebvre, V., Angelozzi, M., & Haseeb, A. (2019). SOX9 in cartilage development and disease. Current Opinion in Cell Biology, 61, 39–47.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Health of the Czech Republic AZV NV19-05-00410.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Martin Piskacek or Andrea Knight.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piskacek, M., Otasevic, T., Repko, M. et al. The 9aaTAD Activation Domains in the Yamanaka Transcription Factors Oct4, Sox2, Myc, and Klf4. Stem Cell Rev and Rep (2021). https://doi.org/10.1007/s12015-021-10225-8

Download citation

Keywords

  • Stem cell
  • iPSCs
  • SoxE
  • Sox9
  • KIX
  • CBP
  • MED15