Skip to main content

Induced Neural Cells from Human Dental Pulp Ameliorate Functional Recovery in a Murine Model of Cerebral Infarction

Abstract

Human mesenchymal stem cells are a promising cell source for the treatment of stroke. Their primary mechanism of action occurs via neuroprotective effects by trophic factors, anti-inflammatory effects, and immunomodulation. However, the regeneration of damaged neuronal networks by cell transplantation remains challenging. We hypothesized that cells induced to neural lineages would fit the niche, replace the lesion, and be more effective in improving symptoms compared with stem cells themselves. We investigated the characteristics of induced neural cells from human dental pulp tissue and compared the transplantation effects between these induced neural cells and uninduced dental pulp stem cells. Induced neural cells or dental pulp stem cells were intracerebrally transplanted 5 days after cerebral infarction induced by permanent middle cerebral artery occlusion in immunodeficient mice. Effects on functional recovery were also assessed through behavior testing. We used immunohistochemistry and neuron tracing to analyze the differentiation, axonal extension, and connectivity of transplanted cells to the host’s neural circuit. Transplantation of induced neural cells from human dental pulp ameliorated functional recovery after cerebral infarction compared with dental pulp stem cells. The induced neural cells comprised both neurons and glia and expressed functional voltage, and they were more related to neurogenesis in terms of transcriptomics. Induced neural cells had a higher viability than did dental pulp stem cells in hypoxic culture. We showed that induced neural cells from dental pulp tissue offer a novel therapeutic approach for recovery after cerebral infarction.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request. Microarray data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE174260.

References

  1. 1.

    Virani, S. S., Alonso, A., Benjamin, E. J., Bittencourt, M. S., Callaway, C. W., & Carson, A. P. (2020). Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation, 141(9), e139–e596. https://doi.org/10.1161/CIR.0000000000000757

    Article  PubMed  Google Scholar 

  2. 2.

    Hess, D. C., Wechsler, L. R., Clark, W. M., Savitz, S. I., Ford, G. A., Chiu, D., & Mays, R. W. (2017). Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (masters): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurology, 16(5), 360–368. https://doi.org/10.1016/S1474-4422(17)30046-7

    Article  PubMed  Google Scholar 

  3. 3.

    Steinberg, G. K., Kondziolka, D., Wechsler, L. R., Lunsford, L. D., Coburn, M. L., Billigen, J. B., & Schwartz, N. E. (2016). Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: A phase 1/2a study. Stroke, 47(7), 1817–1824. https://doi.org/10.1161/STROKEAHA.116.012995

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Grade, S., & Götz, M. (2017). Neuronal replacement therapy: Previous achievements and challenges ahead. npj Regenerative Medicine, 2, 29. https://doi.org/10.1038/s41536-017-0033-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., & Takahashi, J. (2017). Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature, 548(7669), 592–596. https://doi.org/10.1038/nature23664

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Kawaguchi, S., Soma, Y., Nakajima, K., Kanazawa, H., Tohyama, S., Tabei, R., & Fujita, J. (2021). Intramyocardial transplantation of human iPS cell-derived cardiac spheroids improves cardiac function in heart failure animals. JACC: Basic to Translational Science, 6(3), 239–254. https://doi.org/10.1016/j.jacbts.2020.11.017

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Kalladka, D., Sinden, J., Pollock, K., Haig, C., McLean, J., Smith, W., & Muir, K. W. (2016). Human neural stem cells in patients with chronic ischaemic stroke (PISCES): A phase 1, first-in-man study. Lancet, 388(10046), 787–796. https://doi.org/10.1016/s0140-6736(16)30513-x

    Article  PubMed  Google Scholar 

  8. 8.

    Oki, K., Tatarishvili, J., Wood, J., Koch, P., Wattananit, S., Mine, Y., & Kokaia, Z. (2012). Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells, 30(6), 1120–1133. https://doi.org/10.1002/stem.1104

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Cui, L. L., Golubczyk, D., Tolppanen, A. M., Boltze, J., & Jolkkonen, J. (2019). Cell therapy for ischemic stroke: Are differences in preclinical and clinical study design responsible for the translational loss of efficacy? Annals of Neurology, 86(1), 5–16. https://doi.org/10.1002/ana.25493

    Article  PubMed  Google Scholar 

  10. 10.

    Mayor, R., & Theveneau, E. (2013). The neural crest. Development, 140(11), 2247–2251. https://doi.org/10.1242/dev.091751

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (dpscs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630. https://doi.org/10.1073/pnas.240309797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Yalvac, M. E., Ramazanoglu, M., Rizvanov, A. A., Sahin, F., Bayrak, O. F., Salli, U., & Kose, G. T. (2010). Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: Implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics Journal, 10(2), 105–113. https://doi.org/10.1038/tpj.2009.40

    Article  CAS  Google Scholar 

  13. 13.

    Alge, D. L., Zhou, D., Adams, L. L., Wyss, B. K., Shadday, M. D., Woods, E. J., & Goebel, W. S. (2010). Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 4(1), 73–81. https://doi.org/10.1002/term.220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Nito, C., Sowa, K., Nakajima, M., Sakamoto, Y., Suda, S., Nishiyama, Y., & Kimura, K. (2018). Transplantation of human dental pulp stem cells ameliorates brain damage following acute cerebral ischemia. Biomedicine & Pharmacotherapy, 108, 1005–1014. https://doi.org/10.1016/j.biopha.2018.09.084

    Article  CAS  Google Scholar 

  15. 15.

    Raza, S. S., Wagner, A. P., Hussain, Y. S., & Khan, M. A. (2018). Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Research and Therapy, 9(1), 245. https://doi.org/10.1186/s13287-018-1005-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Song, M., Lee, J. H., Bae, J., Bu, Y., & Kim, E. C. (2017). Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplantation, 26(6), 1001–1016. https://doi.org/10.3727/096368916X694391

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Leong, W. K., Henshall, T. L., Arthur, A., Kremer, K. L., Lewis, M. D., Helps, S. C., & Koblar, S. A. (2012). Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Translational Medicine, 1(3), 177–187. https://doi.org/10.5966/sctm.2011-0039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Karaöz, E. (2011). Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochemistry and Cell Biology, 136(4), 455–473. https://doi.org/10.1007/s00418-011-0858-3

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Kumar, A., Kumar, V., Rattan, V., Jha, V., & Bhattacharyya, S. (2017). Secretome cues modulate the neurogenic potential of bone marrow and dental stem cells. Molecular Neurobiology, 54(6), 4672–4682. https://doi.org/10.1007/s12035-016-0011-3

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Takahashi, H., Ishikawa, H., & Tanaka, A. (2017). Regenerative medicine for Parkinson’s disease using differentiated nerve cells derived from human buccal fat pad stem cells. Human Cell, 30(2), 60–71. https://doi.org/10.1007/s13577-017-0160-3

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Yuan, S. H., Martin, J., Elia, J., Flippin, J., Paramban, R. I., Hefferan, M. P., & Carson, C. T. (2011). Cell-surface marker signatures for the isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells. PLoS ONE, 6(3), e17540. https://doi.org/10.1371/journal.pone.0017540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). Nih image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Prentice, J. S., Homann, J., Simmons, K. D., Tkačik, G., Balasubramanian, V., & Nelson, P. C. (2011). Fast, scalable, bayesian spike identification for multi-electrode arrays. PLoS ONE, 6(7), e19884. https://doi.org/10.1371/journal.pone.0019884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using David bioinformatics resources. Nature Protocols, 4(1), 44–57. https://doi.org/10.1038/nprot.2008.211

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Taguchi, A., Kasahara, Y., Nakagomi, T., Stern, D. M., Fukunaga, M., Ishikawa, M., & Matsuyama, T. (2010). A reproducible and simple model of permanent cerebral ischemia in cb-17 and scid mice. Journal of Experimental Stroke and Translational Medicine, 3(1), 28–33. https://doi.org/10.6030/1939-067x-3.1.28

    Article  PubMed  Google Scholar 

  26. 26.

    Roome, R. B., & Vanderluit, J. L. (2015). Paw-dragging: A novel, sensitive analysis of the mouse cylinder test. Journal of Visualized Experiments: JoVE, 98(98), e52701. https://doi.org/10.3791/52701

    Article  Google Scholar 

  27. 27.

    Mei, T., Kim, A., Vong, L. B., Marushima, A., Puentes, S., Matsumaru, Y., & Nagasaki, Y. (2019). Encapsulation of tissue plasminogen activator in ph-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment—Synergistic effect of thrombolysis and antioxidant. Biomaterials, 215, 119209. https://doi.org/10.1016/j.biomaterials.2019.05.020

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Brundin, P., Karlsson, J., Emgård, M., Schierle, G. S., Hansson, O., Petersén, A., & Castilho, R. F. (2000). Improving the survival of grafted dopaminergic neurons: A review over current approaches. Cell Transplantation, 9(2), 179–195. https://doi.org/10.1177/096368970000900205

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Sakai, K., Yamamoto, A., Matsubara, K., Nakamura, S., Naruse, M., Yamagata, M., & Ueda, M. (2012). Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. Journal of Clinical Investigation, 122(1), 80–90. https://doi.org/10.1172/jci59251

    Article  CAS  Google Scholar 

  30. 30.

    Nuti, N., Corallo, C., Chan, B. M. F., Ferrari, M., & Gerami-Naini, B. (2016). Multipotent differentiation of human dental pulp stem cells: A literature review. Stem Cell Reviews and Reports, 12(5), 511–523. https://doi.org/10.1007/s12015-016-9661-9

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Kandasamy, M., Lehner, B., Kraus, S., Sander, P. R., Marschallinger, J., Rivera, F. J., & Aigner, L. (2014). TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. Journal of Cellular and Molecular Medicine, 18(7), 1444–1459. https://doi.org/10.1111/jcmm.12298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Close, J. L., Gumuscu, B., & Reh, T. A. (2005). Retinal neurons regulate proliferation of postnatal progenitors and Müller glia in the rat retina via tgf beta signaling. Development, 132(13), 3015–3026. https://doi.org/10.1242/dev.01882

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Pineda, J. R., Daynac, M., Chicheportiche, A., Cebrian-Silla, A., Sii Felice, K., Garcia-Verdugo, J. M., & Mouthon, M. A. (2013). Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Molecular Medicine, 5(4), 548–562. https://doi.org/10.1002/emmm.201202197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Wachs, F. P., Winner, B., Couillard-Despres, S., Schiller, T., Aigner, R., Winkler, J., & Aigner, L. (2006). Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. Journal of Neuropathology and Experimental Neurology, 65(4), 358–370. https://doi.org/10.1097/01.jnen.0000218444.53405.f0

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Ghashghaei, H. T., Weimer, J. M., Schmid, R. S., Yokota, Y., McCarthy, K. D., Popko, B., & Anton, E. S. (2007). Reinduction of erbb2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes and Development, 21(24), 3258–3271. https://doi.org/10.1101/gad.1580407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Patten, B. A., Peyrin, J. M., Weinmaster, G., & Corfas, G. (2003). Sequential signaling through notch1 and erbb receptors mediates radial glia differentiation. Journal of Neuroscience, 23(14), 6132–6140. https://doi.org/10.1523/JNEUROSCI.23-14-06132.2003

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Jinnou, H., Sawada, M., Kawase, K., Kaneko, N., Herranz-Pérez, V., Miyamoto, T., & Sawamoto, K. (2018). Radial glial fibers promote neuronal migration and functional recovery after neonatal brain injury. Cell Stem Cell, 22(1), 128-137.e9. https://doi.org/10.1016/j.stem.2017.11.005

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Herculano-Houzel, S. (2014). The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia, 62(9), 1377–1391. https://doi.org/10.1002/glia.22683

    Article  PubMed  Google Scholar 

  39. 39.

    Zhang, Q., & Haydon, P. G. (2005). Roles for gliotransmission in the nervous system. Journal of Neural Transmission, 112(1), 121–125. https://doi.org/10.1007/s00702-004-0119-x

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Ye, Y., Zeng, Y. M., Wan, M. R., & Lu, X. F. (2011). Induction of human bone marrow mesenchymal stem cells differentiation into neural-like cells using cerebrospinal fluid. Cell Biochemistry and Biophysics, 59(3), 179–184. https://doi.org/10.1007/s12013-010-9130-z

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Ponnaiyan, D., & Jegadeesan, V. (2014). Comparison of phenotype and differentiation marker gene expression profiles in human dental pulp and bone marrow mesenchymal stem cells. European Journal of Dentistry, 8(3), 307–313. https://doi.org/10.4103/1305-7456.137631

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Yamashita, T., Kawai, H., Tian, F., Ohta, Y., & Abe, K. (2011). Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain. Cell Transplantation, 20(6), 883–891. https://doi.org/10.3727/096368910x539092

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Murakoshi and Dr. Okabe from the Department of Cardiology, University of Tsukuba for a data acquirement of the multielectrode array, Ms. Tsukada and Ms. Miyakawa from Graduate School of Comprehensive Human Sciences, University of Tsukuba for their technical support.

Funding

This work was supported by Grant-in-Aid for Scientific Research (C) for Yuji Matsumaru (No. 19K09450), Scientific Research (B) for Aiki Marushima (no. 20H03787), and Grant-in-Aid for JSPS Fellows for Hideaki Matsumura (no. 20J12956) from the Japan Society for the Promotion of Science (JSPS), supported by Translational Research Program (University of Tsukuba, A18-36) for the Japan Agency for Medical Research and Development for Aiki Marushima.

Author information

Affiliations

Authors

Contributions

HM, AM, HI conceived and designed the experiments. HM, HI, JT, AO, MW, and ST performed the experiments and analyzed the data. Hideaki Matsumura wrote the manuscript. AM, HI, HB, AM, YM, and EI investigated and supervised the experiment. All authors read and approved the final version of the manuscript. All authors revised and approved the manuscript that must be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work is appropriately investigated and resolved.

Corresponding author

Correspondence to Aiki Marushima.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical Approval

The Ethics Committee of the University of Tsukuba Hospital approved this study (Approval Number: H30-181). The Institutional Animal Care and Use Committee of the University of Tsukuba approved all experimental mouse studies (Approval Number: 18-108).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file2 (MOV 5442 kb)

Supplementary file1 (PDF 736 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsumura, H., Marushima, A., Ishikawa, H. et al. Induced Neural Cells from Human Dental Pulp Ameliorate Functional Recovery in a Murine Model of Cerebral Infarction. Stem Cell Rev and Rep (2021). https://doi.org/10.1007/s12015-021-10223-w

Download citation

Keywords

  • Stroke
  • Cerebral infarction
  • Dental pulp
  • Stem cells
  • Cell therapy
  • Regenerative therapy