Skip to main content


Log in

Stem Cells for Aging-Related Disorders

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript


This review captures recent advances in biological and translational research on stem cells. In particular, we discuss new discoveries and concepts regarding stem cell treatment of aging-related disorders. A myriad of stem cell sources exists, from hematopoietic to mesenchymal and neural cell lineages. We examine current applications of exogenous adult bone marrow-derived stem cells as an effective and safe transplantable cell source, as well as the use of electrical stimulation to promote endogenous neurogenesis for Parkinson’s disease. We also explore the potential of transplanting exogenous umbilical cord blood cells and mobilizing host resident stem cells in vascular dementia and aging. In addition, we assess the ability of small molecules to recruit resident stem cells in Alzheimer’s disease. Finally, we evaluate mechanisms of action recently implicated in stem cell therapy, such as the role of long non-coding RNAs, G-protein coupled receptor 5, and NeuroD1. Our goal is to provide a synopsis of recent milestones regarding the application of stem cells in aging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Material

No specific data sets are associated with this study.

Code Availability

Not Applicable.


  1. Argyrofthalmidou, M., Spathis, A. D., Maniati, M., Poula, A., Katsianou, M. A., Sotiriou, E., et al. (2021). Nurr1 repression mediates cardinal features of Parkinson’s disease in alpha-synuclein transgenic mice. Human Molecular Genetics, 30(16), 1469–1483.

  2. Maitra, U., Harding, T., Liang, Q., & Ciesla, L. (2021). GardeninA confers neuroprotection against environmental toxin in a Drosophila model of Parkinson’s disease. Commun Biol, 4(1), 162.

    Article  CAS  Google Scholar 

  3. Tan, A. H., Chong, C. W., Lim, S. Y., Yap, I. K. S., Teh, C. S. J., Loke, M. F., et al. (2021). Gut Microbial Ecosystem in Parkinson Disease: New Clinicobiological Insights from Multi-Omics. Annals of Neurology, 89(3), 546–559.

    Article  CAS  Google Scholar 

  4. McQuade, R. M., Singleton, L. M., Wu, H., Lee, S., Constable, R., Di Natale, M., et al. (2021). The association of enteric neuropathy with gut phenotypes in acute and progressive models of Parkinson’s disease. Scientific Reports, 11(1), 7934.

    Article  CAS  Google Scholar 

  5. De Miranda, B. R., Castro, S. L., Rocha, E. M., Bodle, C. R., Johnson, K. E., & Greenamyre, J. T. (2021). The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. Neurobiology of Disease, 153, 105312.

  6. Keane, P. C., Hanson, P. S., Patterson, L., Blain, P. G., Hepplewhite, P., Khundakar, A. A., et al. (2019). Trichloroethylene and its metabolite TaClo lead to degeneration of substantia nigra dopaminergic neurones: Effects in wild type and human A30P mutant alpha-synuclein mice. Neuroscience Letters, 711, 134437.

  7. He, J., Huang, Y., & Hu, Z. (2020). Effect of bone marrow stromal cells in Parkinson’s disease rodent model: A meta-analysis. Frontiers in Aging Neuroscience, 12, 539933.

  8. Van Den Berge, N., Ferreira, N., Mikkelsen, T. W., Alstrup, A. K. O., Tamguney. G., & Karlsson, P., et al. (2021). Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain, 144(6), 1853–1868.

  9. Marchetti, B., Tirolo, C., L’Episcopo, F., Caniglia, S., Testa, N., Smith, J. A., et al. (2020). Parkinson’s disease, aging and adult neurogenesis: Wnt/beta-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell, 19(3), e13101.

  10. Napoli, E., & Borlongan, C. V. (2017). Cell Therapy in Parkinson’s Disease: Host Brain Repair Machinery Gets a Boost From Stem Cell Grafts. Stem Cells, 35(6), 1443–1445.

    Article  Google Scholar 

  11. Daadi, M. M., Grueter, B. A., Malenka, R. C., Redmond, D. E., Jr., & Steinberg, G. K. (2012). Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PLoS One, 7(7), e41120.

  12. Yasuhara, T., Matsukawa, N., Hara, K., Yu, G., Xu, L., Maki, M., et al. (2006). Transplantation of human neural stem cells exerts neuroprotection in a rat model of Parkinson’s disease. Journal of Neuroscience, 26(48), 12497–12511.

    Article  CAS  Google Scholar 

  13. Rosati, J., Ferrari, D., Altieri, F., Tardivo, S., Ricciolini, C., Fusilli, C., et al. (2018). Establishment of stable iPS-derived human neural stem cell lines suitable for cell therapies. Cell Death & Disease, 9(10), 937.

    Article  Google Scholar 

  14. Steinbeck, J. A., Choi, S. J., Mrejeru, A., Ganat, Y., Deisseroth, K., Sulzer, D., et al. (2015). Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nature Biotechnology, 33(2), 204–209.

    Article  CAS  Google Scholar 

  15. Yang, C., Qiu, Y., Qing, Y., Xu, J., Dai, W., Hu, X., et al. (2020). Synergistic effect of electric stimulation and mesenchymal stem cells against Parkinson’s disease. Aging (Albany NY), 12(16), 16062–16071.

    Article  CAS  Google Scholar 

  16. Pahwa, R., Lyons, K. E., Wilkinson, S. B., Simpson, R. K., Jr., Ondo, W. G., Tarsy, D., et al. (2006). Long-term evaluation of deep brain stimulation of the thalamus. Journal of Neurosurgery, 104(4), 506–512.

    Article  Google Scholar 

  17. Okazaki, M., Sasaki, T., Yasuhara, T., Kameda, M., Agari, T., Kin, I., et al. (2018). Characteristics and prognostic factors of Parkinson’s disease patients with abnormal postures subjected to subthalamic nucleus deep brain stimulation. Parkinsonism & Related Disorders, 57, 44–49.

    Article  Google Scholar 

  18. Habets, J. G. V., Heijmans, M., Kuijf, M. L., Janssen, M. L. F., Temel, Y., & Kubben, P. L. (2018). An update on adaptive deep brain stimulation in Parkinson’s disease. Movement Disorders, 33(12), 1834–1843.

    Article  Google Scholar 

  19. Kuwahara, K., Sasaki, T., Yasuhara, T., Kameda, M., Okazaki, Y., Hosomoto, K., et al. (2020). Long-Term Continuous Cervical Spinal Cord Stimulation Exerts Neuroprotective Effects in Experimental Parkinson’s Disease. Front Aging Neurosci, 12, 164.

    Article  CAS  Google Scholar 

  20. He, J. Q., Sussman, E. S., & Steinberg, G. K. (2020). Revisiting stem cell-based clinical trials for ischemic stroke. Frontiers in Aging Neuroscience, 12, 575990.

  21. Weiss, M. L., Medicetty, S., Bledsoe, A. R., Rachakatla, R. S., Choi, M., Merchav, S., et al. (2006). Human umbilical cord matrix stem cells: Preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24(3), 781–792.

    Article  CAS  Google Scholar 

  22. Lee, J. Y., Tuazon, J. P., Corey, S., Bonsack, B., Acosta, S., Ehrhart, J., et al. (2019). A Gutsy Move for Cell-Based Regenerative Medicine in Parkinson’s Disease: Targeting the Gut Microbiome to Sequester Inflammation and Neurotoxicity. Stem Cell Rev Rep, 15(5), 690–702.

    Article  Google Scholar 

  23. Venkat, P., Culmone, L., Chopp, M., Landschoot-Ward, J., Wang, F., Zacharek, A., et al. (2020). HUCBC Treatment Improves Cognitive Outcome in Rats With Vascular Dementia. Front Aging Neurosci, 12, 258.

    Article  Google Scholar 

  24. Broxmeyer, H. E., Liu, Y., Kapur, R., Orschell, C. M., Aljoufi, A., Ropa, J. P., et al. (2020). Fate of hematopoiesis during aging. What do we really know, and what are its implications? Stem Cell Reviews and Reports, 16(6), 1020–1048.

  25. Nicaise, A. M., Willis, C. M., Crocker, S. J., & Pluchino, S. (2020). Stem Cells of the Aging Brain. Front Aging Neurosci, 12, 247.

    Article  CAS  Google Scholar 

  26. Qin, Y., An, D., Xu, W., Qi, X., Wang, X., Chen, L., et al. (2020). Estradiol Replacement at the Critical Period Protects Hippocampal Neural Stem Cells to Improve Cognition in APP/PS1 Mice. Front Aging Neurosci, 12, 240.

    Article  CAS  Google Scholar 

  27. Fan, J., Saft, M., Sadanandan, N., Gonzales-Portillo, B., Park, Y. J., Sanberg, P. R., et al. (2020). LncRNAs stand as potent biomarkers and therapeutic targets for stroke. Frontiers in Aging Neuroscience, 12, 594571.

  28. Jankovic, J., & Tan, E. K. (2020). Parkinson’s disease: Etiopathogenesis and treatment. Journal of Neurology, Neurosurgery and Psychiatry, 91(8), 795–808.

    Article  Google Scholar 

  29. Li, X., Tong, M., Wang, L., Qin, Y., Yu, H., & Yu, Y. (2020). Age-dependent activation and neuronal differentiation of Lgr5+ basal cells in injured olfactory epithelium via notch signaling pathway. Frontiers in Aging Neuroscience, 12, 602688.

  30. Jiang, M. Q., Yu, S. P., Wei, Z. Z., Zhong, W., Cao, W., Gu, X., et al. (2021). Conversion of reactive astrocytes to induced neurons enhances neuronal repair and functional recovery after ischemic stroke. Frontiers in Aging Neuroscience, 13, 612856.

  31. Shah, P. T., Stratton, J. A., Stykel, M. G., Abbasi, S., Sharma, S., Mayr, K. A., et al. (2018). Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell, 173(4), 1045–1057 e9.

  32. Sun, J., Huang, Y., Gong, J., Wang, J., Fan, Y., Cai, J., et al. (2020). Transplantation of hPSC-derived pericyte-like cells promotes functional recovery in ischemic stroke mice. Nature Communications, 11(1), 5196.

    Article  CAS  Google Scholar 

  33. d’Angelo, M., Cimini, A., & Castelli, V. (2020). Insights into the Effects of Mesenchymal Stem Cell-Derived Secretome in Parkinson’s Disease. International Journal of Molecular Sciences, 21(15), 5241.

    Article  Google Scholar 

  34. Sameri, S., Samadi, P., Dehghan, R., Salem, E., Fayazi, N., & Amini, R. (2020). Stem Cell Aging in Lifespan and Disease: A State-of-the-Art Review. Current Stem Cell Research & Therapy, 15(4), 362–378.

    Article  CAS  Google Scholar 

  35. Yu, Y. (2018). Application of Stem Cell Technology in Antiaging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, 1086, 255–265.

    Article  CAS  Google Scholar 

Download references


This work was Supported in part by NIH NINDS R01 NS058784 (GKS).

Author information

Authors and Affiliations



Mia C. Borlongan: Writing (original draft, review, and editing).

Jeffrey Farooq: Writing (original draft, review, and editing).

Nadia Sadanandan: Writing (original draft, review, and editing).

Zhen-Jie Wang: Writing (review, and editing).

Blaise Cozene: Writing (review, and editing).

Jea-Young Lee: Writing (review, and editing).

Gary K Steinberg: Conceptualization, Writing (original draft, review, and editing), Supervision.

Corresponding author

Correspondence to Gary K. Steinberg.

Ethics declarations

Conflicts of Interest/Competing Interests

The Authors declare no conflicts of interest, nor competing interests, in relation to this manuscript.

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borlongan, M.C., Farooq, J., Sadanandan, N. et al. Stem Cells for Aging-Related Disorders. Stem Cell Rev and Rep 17, 2054–2058 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: