An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells

Abstract

Human induced Pluripotent Stem Cells (iPSCs) have enormous potential in understanding developmental biology, disease modeling, drug discovery, and regenerative medicine. The initial human iPSC studies used fibroblasts as a starting cell source to reprogram them; however, it has been identified to be a less appealing somatic cell source by numerous studies due to various reasons. One of the important criteria to achieve efficient reprogramming is determining an appropriate starting somatic cell type to induce pluripotency since the cellular source has a major influence on the reprogramming efficiency, kinetics, and quality of iPSCs. Therefore, numerous groups have explored various somatic cell sources to identify the promising sources for reprogramming into iPSCs with different reprogramming factor combinations. This review provides an overview of promising easily accessible somatic cell sources isolated in non-invasive or minimally invasive manner such as keratinocytes, urine cells, and peripheral blood mononuclear cells used for the generation of human iPSCs derived from healthy and diseased subjects. Notably, iPSCs generated from one of these cell types derived from the patient will offer ethical and clinical advantages. In addition, these promising somatic cell sources have the potential to efficiently generate bona fide iPSCs with improved reprogramming efficiency and faster kinetics. This knowledge will help in establishing strategies for safe and efficient reprogramming and the generation of patient-specific iPSCs from these cell types.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156. https://doi.org/10.1038/292154a0

    CAS  Article  Google Scholar 

  2. 2.

    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638. https://doi.org/10.1073/pnas.78.12.7634

    CAS  Article  Google Scholar 

  3. 3.

    Thomson, J. A. (1998). Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 282(5391), 1145–1147. https://doi.org/10.1126/science.282.5391.1145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Takahashi, K., & Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131(5), 861–872. https://doi.org/10.1016/j.cell.2007.11.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., & Thomson, J. A. (2007). Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science, 318(5858), 1917–1920. https://doi.org/10.1126/science.1151526

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Omole, A. E., & Fakoya, A. O. J. (2018). Ten years of progress and promise of induced pluripotent stem cells: Historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ, 2018 (MAY), 1–47. https://doi.org/10.7717/peerj.4370

    CAS  Article  Google Scholar 

  8. 8.

    Haridhasapavalan, K. K., Borgohain, M. P., Dey, C., Saha, B., Narayan, G., Kumar, S., & Thummer, R. P. (2019). An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene, 686. https://doi.org/10.1016/j.gene.2018.11.069

  9. 9.

    Borgohain, M. P., Haridhasapavalan, K. K., Dey, C., Adhikari, P., & Thummer, R. P. (2019). An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Reviews and Reports, 15(2), 286–313. https://doi.org/10.1007/s12015-018-9861-6

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Haridhasapavalan, K. K., Raina, K., Dey, C., Adhikari, P., & Thummer, R. P. (2020). An Insight into Reprogramming Barriers to iPSC Generation. Stem Cell Reviews and Reports, 16(1), 56–81. https://doi.org/10.1007/s12015-019-09931-1

    Article  PubMed  Google Scholar 

  11. 11.

    Dey, C., Raina, K., Haridhasapavalan, K. K., Thool, M., Sundaravadivelu, P. K., Adhikari, P., Thummer, R. P. (2021). An overview of reprogramming approaches to derive integration-free induced pluripotent stem cells for prospective biomedical applications. In Recent Advances in iPSC Technology (pp. 231–287). Elsevier. https://doi.org/10.1016/B978-0-12-822231-7.00011-4

  12. 12.

    Singh, V. K., Kalsan, M., Kumar, N., Saini, A., & Chandra, R. (2015). Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 3. https://doi.org/10.3389/fcell.2015.00002

  13. 13.

    Menon, S., Shailendra, S., Renda, A., Longaker, M., & Quarto, N. (2016). An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs. International Journal of Molecular Sciences, 17(1), 141. https://doi.org/10.3390/ijms17010141

    CAS  Article  PubMed Central  Google Scholar 

  14. 14.

    Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020). Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 16(1), 3–32. https://doi.org/10.1007/s12015-019-09935-x

    Article  PubMed  Google Scholar 

  15. 15.

    Winder, M. L., & Trokovic, R. (2021). Induced pluripotent stem cell derivation from myoblasts. In Cell Sources for iPSCs (pp. 37–55). Elsevier. https://doi.org/10.1016/B978-0-12-822135-8.00009-4

  16. 16.

    Raab, S., Klingenstein, M., Liebau, S., & Linta, L. (2014). A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells International, 2014. https://doi.org/10.1155/2014/768391

  17. 17.

    Saha, B., Krishna Kumar, H., Borgohain, M. P., & Thummer, R. P. (2018). Prospective applications of induced pluripotent stem cells in military medicine. Medical Journal Armed Forces India, 74(4), 313–320. https://doi.org/10.1016/j.mjafi.2018.03.005

    Article  Google Scholar 

  18. 18.

    Petzendorfer, E., & Guillot, P. V. (2021). Induced pluripotent stem cells derived from amniotic fluid stem cells. In Cell Sources for iPSCs (pp. 1–13). Elsevier. https://doi.org/10.1016/B978-0-12-822135-8.00010-0

  19. 19.

    Chahine, M. (2021). Lymphoblastoid-derived human-induced pluripotent stem cells. In Cell Sources for iPSCs (pp. 57–70). Elsevier. https://doi.org/10.1016/B978-0-12-822135-8.00005-7

  20. 20.

    Jamal, M., Bashir, A., Al-Sayegh, M., & Huang, G. T.-J. (2021). Oral tissues as sources for induced pluripotent stem cell derivation and their applications for neural, craniofacial, and dental tissue regeneration. In Cell Sources for iPSCs (pp. 71–106). Elsevier. https://doi.org/10.1016/B978-0-12-822135-8.00007-0

  21. 21.

    Disler, E. R., Ng, N. W., Nguyen, T. G., Anchan, C. J., Waldman, I. N., & Anchan, R. M. (2021). Induced pluripotent stem cell derived from ovarian tissue. In Cell Sources for iPSCs (pp. 107–135). Elsevier. https://doi.org/10.1016/B978-0-12-822135-8.00011-2

  22. 22.

    Li, G., Wakao, S., Kuroda, Y., Kushida, Y., & Dezawa, M. (2021). Muse cells as a robust source of induced pluripotent stem cells. In Cell Sources for iPSCs (Vol. 13, pp. 137–161). Elsevier. https://doi.org/10.1016/B978-0-12-822135-8.00006-9

  23. 23.

    Pellicano, R., Caviglia, G. P., Ribaldone, D. G., Altruda, F., & Fagoonee, S. (2021). Induced pluripotent stem cells from spermatogonial stem cells. In Cell Sources for iPSCs (pp. 15–35). Elsevier. https://doi.org/10.1016/B978-0-12-822135-8.00001-X

  24. 24.

    Khazaei, M., Ahuja, C. S., & Fehlings, M. G. (2017). Induced pluripotent stem cells for traumatic spinal cord injury. Frontiers in Cell and Developmental Biology, 4(JAN), 1–9. https://doi.org/10.3389/fcell.2016.00152

  25. 25.

    Streckfuss-Bömeke, K., Wolf, F., Azizian, A., Stauske, M., Tiburcy, M., Wagner, S., & Guan, K. (2013). Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. European Heart Journal, 34(33), 2618–2629. https://doi.org/10.1093/eurheartj/ehs203

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Rohani, L., Johnson, A. A., Arnold, A., & Stolzing, A. (2014). The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell, 13(1), 2–7. https://doi.org/10.1111/acel.12182

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Diecke, S., Lu, J., Lee, J., Termglinchan, V., Kooreman, N. G., Burridge, P. W., & Wu, J. C. (2015). Novel codon-optimized mini-intronic plasmid for efficient, inexpensive and xeno-free induction of pluripotency. Scientific Reports, 5(1), 8081. https://doi.org/10.1038/srep08081

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Driskell, R. R., & Watt, F. M. (2015). Understanding fibroblast heterogeneity in the skin. Trends in Cell Biology, 25(2), 92–99. https://doi.org/10.1016/j.tcb.2014.10.001

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Eminli, S., Utikal, J., Arnold, K., Jaenisch, R., & Hochedlinger, K. (2008). Reprogramming of Neural Progenitor Cells into Induced Pluripotent Stem Cells in the Absence of Exogenous Sox2 Expression. Stem Cells, 26(10), 2467–2474. https://doi.org/10.1634/stemcells.2008-0317

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., & Pei, D. (2010). A mesenchymal-to-Epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7(1), 51–63. https://doi.org/10.1016/j.stem.2010.04.014

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H., Beyer, T. A., Datti, A., & Wrana, J. L. (2010). Functional Genomics Reveals a BMP-Driven Mesenchymal-to-Epithelial Transition in the Initiation of Somatic Cell Reprogramming. Cell Stem Cell, 7(1), 64–77. https://doi.org/10.1016/j.stem.2010.04.015

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Gore, A., Li, Z., Fung, H.-L., Young, J. E., Agarwal, S., Antosiewicz-Bourget, J., & Zhang, K. (2011). Somatic coding mutations in human induced pluripotent stem cells. Nature, 471(7336), 63–67. https://doi.org/10.1038/nature09805

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Abyzov, A., Mariani, J., Palejev, D., Zhang, Y., Haney, M. S., Tomasini, L., & Vaccarino, F. M. (2012). Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 492(7429), 438–442. https://doi.org/10.1038/nature11629

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Young, M. A., Larson, D. E., Sun, C.-W., George, D. R., Ding, L., Miller, C. A., & Ley, T. J. (2012). Background Mutations in Parental Cells Account for Most of the Genetic Heterogeneity of Induced Pluripotent Stem Cells. Cell Stem Cell, 10(5), 570–582. https://doi.org/10.1016/j.stem.2012.03.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Zhang, Y., Hu, W., Ma, K., Zhang, C., & Fu, X. (2019). Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Reviews and Reports, 15(5), 680–689. https://doi.org/10.1007/s12015-019-09900-8

    Article  PubMed  Google Scholar 

  36. 36.

    Fuchs, E. (2007). Scratching the surface of skin development. Nature, 445(7130), 834–842. https://doi.org/10.1038/nature05659

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Aasen, T., & Belmonte, J. C. I. (2010). Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols, 5(2), 371–382. https://doi.org/10.1038/nprot.2009.241

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Alonso, L., & Fuchs, E. (2006). The hair cycle. Journal of Cell Science, 119(3), 391–393. https://doi.org/10.1242/jcs02793

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Hung, S. S. C., Pébay, A., & Wong, R. C. B. (2015). Generation of integration-free human induced pluripotent stem cells using hair-derived keratinocytes. Journal of Visualized Experiments, 2015(102), 1–6. https://doi.org/10.3791/53174

    Article  Google Scholar 

  40. 40.

    Klingenstein, S., Klingenstein, M., Kleger, A., & Liebau, S. (2020). From Hair to iPSCs—A Guide on How to Reprogram Keratinocytes and Why. Current Protocols in Stem Cell Biology, 55(1). https://doi.org/10.1002/cpsc.121

  41. 41.

    Elsholz, F., Harteneck, C., Muller, W., & Friedland, K. (2014). Calcium - A central regulator of keratinocyte differentiation in health and disease. European Journal of Dermatology, 24(6), 650–661. https://doi.org/10.1684/ejd.2014.2452

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Aasen, T., Raya, A., Barrero, M. J., Garreta, E., Consiglio, A., Gonzalez, F., & Belmonte, J. C. I. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284. https://doi.org/10.1038/nbt.1503

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Re, S., Dogan, A. A., Ben-Shachar, D., Berger, G., Werling, A. M., Walitza, S., & Grünblatt, E. (2018). Improved generation of induced pluripotent stem cells from hair derived keratinocytes – A tool to study neurodevelopmental disorders as ADHD. Frontiers in Cellular Neuroscience, 12(September). https://doi.org/10.3389/fncel.2018.00321

  44. 44.

    Piao, Y., Hung, S.S.-C., Lim, S. Y., Wong, R.C.-B., & Ko, M. S. H. (2014). Efficient Generation of Integration-Free Human Induced Pluripotent Stem Cells From Keratinocytes by Simple Transfection of Episomal Vectors. STEM CELLS Translational Medicine, 3(7), 787–791. https://doi.org/10.5966/sctm.2013-0036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lim, S. J., Ho, S. C., Mok, P. L., Tan, K. L., Ong, A. H. K., & Gan, S. C. (2016). Induced pluripotent stem cells from human hair follicle keratinocytes as a potential source for in vitro hair follicle cloning. PeerJ, 2016(11), 1–17. https://doi.org/10.7717/peerj.2695

    CAS  Article  Google Scholar 

  46. 46.

    Giorgetti, A., Montserrat, N., Aasen, T., Gonzalez, F., Rodríguez-Pizà, I., Vassena, R., & Belmonte, J. C. I. (2009). Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 5(4), 353–357. https://doi.org/10.1016/j.stem.2009.09.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Maherali, N., Ahfeldt, T., Rigamonti, A., Utikal, J., Cowan, C., & Hochedlinger, K. (2008). A High-Efficiency System for the Generation and Study of Human Induced Pluripotent Stem Cells. Cell Stem Cell, 3(3), 340–345. https://doi.org/10.1016/j.stem.2008.08.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Li, W., Zhou, H., Abujarour, R., Zhu, S., Joo, J. Y., Lin, T., & Ding, S. (2009). Generation of Human Induced Pluripotent Stem Cells in the Absence of Exogenous Sox2. Stem Cells, N/A-N/A. https://doi.org/10.1002/stem.240

    Article  Google Scholar 

  49. 49.

    Novak, A., Shtrichman, R., Germanguz, I., Segev, H., Zeevi-Levin, N., Fishman, B., & Itskovitz-Eldor, J. (2010). Enhanced Reprogramming and Cardiac Differentiation of Human Keratinocytes Derived from Plucked Hair Follicles, Using a Single Excisable Lentivirus. Cellular Reprogramming, 12(6), 665–678. https://doi.org/10.1089/cell.2010.0027

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Sommer, C. A., & Mostoslavsky, G. (2013). The evolving field of induced pluripotency: Recent progress and future challenges. Journal of Cellular Physiology, 228(2), 267–275. https://doi.org/10.1002/jcp.24155

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Brouwer, M., Zhou, H., & Nadif Kasri, N. (2016). Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Reviews and Reports, 12(1), 54–72. https://doi.org/10.1007/s12015-015-9622-8

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Kadari, A., Lu, M., Li, M., Sekaran, T., Thummer, R. P., Guyette, N., & Edenhofer, F. (2014). Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Stem Cell Research & Therapy, 5(2), 47. https://doi.org/10.1186/scrt435

    Article  Google Scholar 

  53. 53.

    Sułkowski, M., Konieczny, P., Chlebanowska, P., & Majka, M. (2018). Introduction of exogenous HSV-TK suicide gene increases safety of keratinocyte-derived induced pluripotent stem cells by providing genetic “emergency exit” switch. International Journal of Molecular Sciences, 19(1), 1–16. https://doi.org/10.3390/ijms19010197

    CAS  Article  Google Scholar 

  54. 54.

    Li, C., Ding, L., Sun, C. W., Wu, L. C., Zhou, D., Pawlik, K. M., & Townes, T. M. (2016). Novel HDAd/EBV Reprogramming Vector and Highly Efficient Ad/CRISPR-Cas Sickle Cell Disease Gene Correction. Scientific Reports, 6(July), 1–10. https://doi.org/10.1038/srep30422

    CAS  Article  Google Scholar 

  55. 55.

    Peters, A., & Zambidis, E. T. (2011). Generation of Nonviral Integration-Free Induced Pluripotent Stem Cells from Plucked Human Hair Follicles, (3), 203–227. https://doi.org/10.1007/978-1-61779-267-0_16

  56. 56.

    Park, T. S., Huo, J. S., Peters, A., Talbot, C. C., Verma, K., Zimmerlin, L., Zambidis, E. T. (2012). Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors. PLoS One, 7(8). https://doi.org/10.1371/journal.pone.0042838

  57. 57.

    Li, D., Wang, L., Hou, J., Shen, Q., Chen, Q., Wang, X., & Pan, G. (2016). Optimized Approaches for Generation of Integration-free iPSCs from Human Urine-Derived Cells with Small Molecules and Autologous Feeder. Stem Cell Reports, 6(5), 717–728. https://doi.org/10.1016/j.stemcr.2016.04.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Linta, L., Stockmann, M., Kleinhans, K. N., Böckers, A., Storch, A., Zaehres, H., & Liebau, S. (2012). Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells. Stem Cells and Development, 21(6), 965–976. https://doi.org/10.1089/scd.2011.0026

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Llames, S., García-Pérez, E., Meana, Á., Larcher, F., & Del Río, M. (2015). Feeder Layer Cell Actions and Applications. Tissue Engineering - Part B: Reviews, 21(4), 345–353. https://doi.org/10.1089/ten.teb.2014.0547

    CAS  Article  Google Scholar 

  60. 60.

    Ohmine, S., Dietz, A. B., Deeds, M. C., Hartjes, K. A., Miller, D. R., Thatava, T., & Ikeda, Y. (2011). Induced pluripotent stem cells from GMP-grade hematopoietic progenitor cells and mononuclear myeloid cells. Stem Cell Research and Therapy, 2(6), 46. https://doi.org/10.1186/scrt87

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Lowry, W. E., Richter, L., Yachechko, R., Pyle, A. D., Tchieu, J., Sridharan, R., & Plath, K. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences, 105(8), 2883–2888. https://doi.org/10.1073/pnas.0711983105

    Article  Google Scholar 

  62. 62.

    Nefzger, C. M., Rossello, F. J., Chen, J., Liu, X., Knaupp, A. S., Firas, J., & Polo, J. M. (2017). Cell Type of Origin Dictates the Route to Pluripotency. Cell Reports, 21(10), 2649–2660. https://doi.org/10.1016/j.celrep.2017.11.029

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Mikkelsen, T. S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., & Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454(7200), 49–55. https://doi.org/10.1038/nature07056

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Barrero, M. J., Berdasco, M., Paramonov, I., Bilic, J., Vitaloni, M., Esteller, M., & Belmonte, J. C. I. (2012). DNA hypermethylation in somatic cells correlates with higher reprogramming efficiency. Stem Cells, 30(8), 1696–1702. https://doi.org/10.1002/stem.1138

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Panopoulos, A. D., Yanes, O., Ruiz, S., Kida, Y. S., Diep, D., Tautenhahn, R., & Belmonte, J. C. I. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22(1), 168–177. https://doi.org/10.1038/cr.2011.177

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Khoo, T. S., Jamal, R., Abdul Ghani, N. A., Alauddin, H., Hussin, N. H., & Abdul Murad, N. A. (2020). Retention of Somatic Memory Associated with Cell Identity, Age and Metabolism in Induced Pluripotent Stem (iPS) Cells Reprogramming. Stem Cell Reviews and Reports, 16(2), 251–261. https://doi.org/10.1007/s12015-020-09956-x

    Article  PubMed  Google Scholar 

  67. 67.

    Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., & Belmonte, J. C. I. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460(7259), 1140–1144. https://doi.org/10.1038/nature08311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Li, H., Collado, M., Villasante, A., Strati, K., Ortega, S., Cãamero, M., & Serrano, M. (2009). The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature, 460(7259), 1136–1139. https://doi.org/10.1038/nature08290

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Ruiz, S., Panopoulos, A. D., Herrerías, A., Bissig, K. D., Lutz, M., Berggren, W. T., & Izpisua Belmonte, J. C. (2011). A high proliferation rate is required for cell reprogramming and maintenance of human embryonic stem cell identity. Current Biology, 21(1), 45–52. https://doi.org/10.1016/j.cub.2010.11.049

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Utikal, J., Polo, J. M., Stadtfeld, M., Maherali, N., Kulalert, W., Walsh, R. M., & Hochedlinger, K. (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460(7259), 1145–1148. https://doi.org/10.1038/nature08285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Weber, J., Weber, M., Steinle, H., Schlensak, C., Wendel, H. P., & Avci-Adali, M. (2021). An alternative in vivo model to evaluate pluripotency of patient-specific iPSCs. ALTEX. https://doi.org/10.14573/altex.2005221

  72. 72.

    Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y.-H., Li, H., Lau, F., & Rossi, D. J. (2010). Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 7(5), 618–630. https://doi.org/10.1016/j.stem.2010.08.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Hohwieler, M., Renz, S., Liebau, S., Lin, Q., Lechel, A., Klaus, J., & Kleger, A. (2016). “Miniguts” from plucked human hair meet Crohn’s disease. Zeitschrift für Gastroenterologie, 54(08), 748–759. https://doi.org/10.1055/s-0042-105520

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., & Daley, G. Q. (2011). Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 29(12), 1117–1119. https://doi.org/10.1038/nbt.2052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Boonkaew, B., Tapeng, L., Netsrithong, R., Vatanashevanopakorn, C., Pattanapanyasat, K., & Wattanapanitch, M. (2018). Induced pluripotent stem cell line MUSIi006-A derived from hair follicle keratinocytes as a non-invasive somatic cell source. Stem Cell Research, 31(July), 79–82. https://doi.org/10.1016/j.scr.2018.07.007

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Nakayama, C., Fujita, Y., Matsumura, W., Ujiie, I., Takashima, S., Shinkuma, S., & Shimizu, H. (2018). The development of induced pluripotent stem cell-derived mesenchymal stem/stromal cells from normal human and RDEB epidermal keratinocytes. Journal of Dermatological Science, 91(3), 301–310. https://doi.org/10.1016/j.jdermsci.2018.06.004

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Shrestha, R., Wen, Y.-T., Ding, D.-C., & Tsai, R.-K. (2019). Aberrant hiPSCs-Derived from Human Keratinocytes Differentiates into 3D Retinal Organoids that Acquire Mature Photoreceptors. Cells, 8(1), 36. https://doi.org/10.3390/cells8010036

    CAS  Article  PubMed Central  Google Scholar 

  78. 78.

    Chlebanowska, P., Sułkowski, M., Skrzypek, K., Tejchman, A., Muszyńska, A., Noroozi, R., & Majka, M. (2020). Origin of the induced pluripotent stem cells affects their differentiation into dopaminergic neurons. International Journal of Molecular Sciences, 21(16), 1–23. https://doi.org/10.3390/ijms21165705

    CAS  Article  Google Scholar 

  79. 79.

    Fleischer, A., Lorenzo, I. M., Palomino, E., Aasen, T., Gómez, F., Servera, M., & Bachiller, D. (2018). Generation of two induced pluripotent stem cell (iPSC) lines from p. F508del Cystic Fibrosis patients. Stem Cell Research, 29, 1–5. https://doi.org/10.1016/j.scr.2018.03.004

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Kolundzic, N., Khurana, P., Devito, L., Donne, M., Hobbs, C., Jeriha, J., Ilic, D. (2019). Induced pluripotent stem cell line heterozygous for p.R2447X mutation in filaggrin: KCLi002-A. Stem Cell Research, 38 (March), 101462. https://doi.org/10.1016/j.scr.2019.101462

  81. 81.

    Zhou, T., Benda, C., Duzinger, S., Huang, Y., Li, X., Li, Y., & Esteban, M. A. (2011). Generation of Induced Pluripotent Stem Cells from Urine. Journal of the American Society of Nephrology, 22(7), 1221–1228. https://doi.org/10.1681/ASN.2011010106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Benda, C., Zhou, T., Wang, X., Tian, W., Grillari, J., Tse, H. F., Esteban, M. A. (2013). Urine as a source of stem cells. In Advances in Biochemical Engineering/Biotechnology, 129, 19–32. https://doi.org/10.1007/10_2012_157

  83. 83.

    Rahmoune, H., Thompson, P. W., Ward, J. M., Smith, C. D., Hong, G., & Brown, J. (2005). Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes, 54(12), 3427–3434. https://doi.org/10.2337/diabetes.54.12.3427

    CAS  Article  Google Scholar 

  84. 84.

    Guan, X., Mack, D. L., Moreno, C. M., Strande, J. L., Mathieu, J., Shi, Y., & Childers, M. K. (2014). Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery. Stem Cell Research, 12(2), 467–480. https://doi.org/10.1016/j.scr.2013.12.004

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    Drozd, A. M., Walczak, M. P., Piaskowski, S., Stoczynska-Fidelus, E., Rieske, P., & Grzela, D. P. (2015). Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA-1 episomal reprogramming system. Stem Cell Research and Therapy, 6(1), 1–17. https://doi.org/10.1186/s13287-015-0112-3

    CAS  Article  Google Scholar 

  86. 86.

    Bharadwaj, S., Liu, G., Shi, Y., Markert, C., Andersson, K. E., Atala, A., & Zhang, Y. (2011). Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Engineering - Part A, 17(15–16), 2123–2132. https://doi.org/10.1089/ten.tea.2010.0637

    Article  PubMed  Google Scholar 

  87. 87.

    Lang, R., Liu, G., Shi, Y., Bharadwaj, S., Leng, X., Zhou, X., & Zhang, Y. (2013). Self-Renewal and Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours. PLoS ONE, 8(1), e53980. https://doi.org/10.1371/journal.pone.0053980

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Sutherland, G. R., & Bain, A. D. (1972). Culture of Cells from the Urine of Newborn Children. Nature, 239(5369), 231–231. https://doi.org/10.1038/239231a0

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Xue, Y., Cai, X., Wang, L., Liao, B., Zhang, H., Shan, Y., Pan, G. (2013). Generating a Non-Integrating Human Induced Pluripotent Stem Cell Bank from Urine-Derived Cells. PLoS One, 8(8). https://doi.org/10.1371/journal.pone.0070573

  90. 90.

    Sauer, V., Tchaikovskaya, T., Wang, X., Li, Y., Zhang, W., Tar, K., & Roy-Chowdhury, J. (2016). Human urinary epithelial cells as a source of engraftable hepatocyte-like cells using stem cell technology. Cell Transplantation, 25(12), 2221–2243. https://doi.org/10.3727/096368916X692014

    Article  PubMed  Google Scholar 

  91. 91.

    Mulder, J., Sharmin, S., Chow, T., Rodrigues, D. C., Hildebrandt, M. R., D’Cruz, R., & Rosenblum, N. D. (2020). Generation of infant- and pediatric-derived urinary induced pluripotent stem cells competent to form kidney organoids. Pediatric Research, 87(4), 647–655. https://doi.org/10.1038/s41390-019-0618-y

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Afzal, M. Z., & Strande, J. L. (2015). Generation of induced pluripotent stem cells from muscular dystrophy patients: Efficient integration-free reprogramming of urine derived cells. Journal of Visualized Experiments, 95, 1–8. https://doi.org/10.3791/52032

    CAS  Article  Google Scholar 

  93. 93.

    Gaignerie, A., Lefort, N., Rousselle, M., Forest-Choquet, V., Flippe, L., Francois-Campion, V., & David, L. (2018). Urine-derived cells provide a readily accessible cell type for feeder-free mRNA reprogramming. Scientific Reports, 8(1), 2–11. https://doi.org/10.1038/s41598-018-32645-2

    CAS  Article  Google Scholar 

  94. 94.

    Steinle, H., Weber, M., Behring, A., Mau-Holzmann, U., von Ohle, C., Popov, A. F., & Avci-Adali, M. (2019). Reprogramming of Urine-Derived Renal Epithelial Cells into iPSCs Using srRNA and Consecutive Differentiation into Beating Cardiomyocytes. Molecular Therapy - Nucleic Acids, 17 (September), 907–921. https://doi.org/10.1016/j.omtn.2019.07.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Bouma, M. J., Arendzen, C. H., Mummery, C. L., Mikkers, H., & Freund, C. (2020). Reprogramming Urine-Derived Cells using Commercially Available Self-Replicative RNA and a Single Electroporation. Current Protocols in Stem Cell Biology, 55(1), 1–17. https://doi.org/10.1002/cpsc.124

    CAS  Article  Google Scholar 

  96. 96.

    Lee, K.-I., Kim, H.-T., & Hwang, D.-Y. (2014). Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based culture conditions. Biomaterials, 35(29), 8330–8338. https://doi.org/10.1016/j.biomaterials.2014.05.059

    CAS  Article  PubMed  Google Scholar 

  97. 97.

    Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(8), 2506–2519. https://doi.org/10.1016/j.bbagen.2014.01.010

  98. 98.

    Sun, W., Zhang, S., Zhou, T., Shan, Y., Gao, F., Zhang, Y., & Zhang, X. (2020). Human Urinal Cell Reprogramming: Synthetic 3D Peptide Hydrogels Enhance Induced Pluripotent Stem Cell Population Homogeneity. ACS Biomaterials Science and Engineering, 6(11), 6263–6275. https://doi.org/10.1021/acsbiomaterials.0c00667

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Shi, L., Cui, Y., Luan, J., Zhou, X., & Han, J. (2016). Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases. Intractable and Rare Diseases Research, 5(3), 192–201. https://doi.org/10.5582/irdr.2016.01062

    Article  PubMed  Google Scholar 

  100. 100.

    Pioner, J. M., Guan, X., Klaiman, J. M., Racca, A. W., Pabon, L., Muskheli, V., & Regnier, M. (2020). Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. Cardiovascular Research, 116(2), 368–382. https://doi.org/10.1093/cvr/cvz109

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Cao, Y., Xu, J., Wen, J., Ma, X., Liu, F., Li, Y., & Huang, G. (2018). Generation of a Urine-Derived Ips Cell Line from a Patient with a Ventricular Septal Defect and Heart Failure and the Robust Differentiation of These Cells to Cardiomyocytes via Small Molecules. Cellular Physiology and Biochemistry, 50(2), 473–488. https://doi.org/10.1159/000494167

    CAS  Article  Google Scholar 

  102. 102.

    Jia, B., Chen, S., Zhao, Z., Liu, P., Cai, J., Qin, D., & Pan, G. (2014). Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells. Life Sciences, 108(1), 22–29. https://doi.org/10.1016/j.lfs.2014.05.004

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Tang, L., Wang, H., Dai, B., Wang, X., Zhou, D., Shen, J., & Liang, P. (2020). Human induced pluripotent stem cell-derived cardiomyocytes reveal abnormal TGFβ signaling in type 2 diabetes mellitus. Journal of Molecular and Cellular Cardiology, 142 (April), 53–64. https://doi.org/10.1016/j.yjmcc.2020.03.016

    CAS  Article  PubMed  Google Scholar 

  104. 104.

    Overeem, A. W., Klappe, K., Parisi, S., Klöters-Planchy, P., Mataković, L., du Teil Espina, M., & van IJzendoorn, S. C. D. . (2019). Pluripotent stem cell-derived bile canaliculi-forming hepatocytes to study genetic liver diseases involving hepatocyte polarity. Journal of Hepatology, 71(2), 344–356. https://doi.org/10.1016/j.jhep.2019.03.031

    Article  PubMed  Google Scholar 

  105. 105.

    Chen, Y., Luo, R., Xu, Y., Cai, X., Li, W., Tan, K., & Dai, Y. (2013). Generation of systemic lupus erythematosus-specific induced pluripotent stem cells from urine. Rheumatology International, 33(8), 2127–2134. https://doi.org/10.1007/s00296-013-2704-5

    CAS  Article  PubMed  Google Scholar 

  106. 106.

    Song, J., Yang, X., Zhou, Y., Chen, L., Zhang, X., Liu, Z., & Li, W. (2019). Dysregulation of neuron differentiation in an autistic savant with exceptional memory. Molecular Brain, 12(1), 1–12. https://doi.org/10.1186/s13041-019-0507-7

    CAS  Article  Google Scholar 

  107. 107.

    Yang, X., Liu, Y., Zhou, T., Zhang, H., Dong, R., Li, Y., Gai, Z. (2019). An induced pluripotent stem cells line (SDQLCHi014-A) derived from urine cells of a patient with ASD and hyperactivity carrying a 303 kb de novo deletion at chr3p26.1 implicating GRM7 gene. Stem Cell Research, 41 (September), 2–5. https://doi.org/10.1016/j.scr.2019.101635

  108. 108.

    Massa, M. G., Gisevius, B., Hirschberg, S., Hinz, L., Schmidt, M., Gold, R., & Haghikia, A. (2016). Multiple sclerosis patient-specific primary neurons differentiated from urinary renal epithelial cells via induced pluripotent stem cells. PLoS ONE, 11(5), 1–14. https://doi.org/10.1371/journal.pone.0155274

    CAS  Article  Google Scholar 

  109. 109.

    Neumeyer, J., Lin, R. Z., Wang, K., Hong, X., Hua, T., Croteau, S. E., & Melero-Martin, J. M. (2019). Bioengineering hemophilia a-specific microvascular grafts for delivery of full-length factor VIII into the bloodstream. Blood Advances, 3(24), 4166–4176. https://doi.org/10.1182/bloodadvances.2019000848

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Cai, J., Zhang, Y., Liu, P., Chen, S., Wu, X., Sun, Y., Pei, D. (2013). Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regeneration, 2(1), 2:6. https://doi.org/10.1186/2045-9769-2-6

  111. 111.

    Li, G., Xie, B., He, L., Zhou, T., Gao, G., Liu, S., Zhong, X. (2018). Generation of retinal organoids with mature rods and cones from urine-derived human induced pluripotent stem cells. Stem Cells International, 2018. https://doi.org/10.1155/2018/4968658

  112. 112.

    Liu, Y., Zheng, Y., Li, S., Xue, H., Schmitt, K., Hergenroeder, G. W., & Cao, Q. (2017). Human neural progenitors derived from integration-free iPSCs for SCI therapy. Stem Cell Research, 19, 55–64. https://doi.org/10.1016/j.scr.2017.01.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Lin, V. J. T., Hu, J., Zolekar, A., Yan, L. J., & Wang, Y. C. (2020). Urine Sample-Derived Cerebral Organoids Suitable for Studying Neurodevelopment and Pharmacological Responses. Frontiers in Cell and Developmental Biology, 8 (May), 1–18. https://doi.org/10.3389/fcell.2020.00304

    Article  Google Scholar 

  114. 114.

    Wang, L., Wang, L., Huang, W., Su, H., Xue, Y., Su, Z., & Pei, D. (2013). Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods, 10(1), 84–89. https://doi.org/10.1038/nmeth.2283

    CAS  Article  PubMed  Google Scholar 

  115. 115.

    Rossbach, B., Hildebrand, L., El-Ahmad, L., Stachelscheid, H., Reinke, P., & Kurtz, A. (2016). Generation of a human induced pluripotent stem cell line from urinary cells of a healthy donor using an integration free vector. Stem Cell Research, 16(2), 314–317. https://doi.org/10.1016/j.scr.2015.12.018

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Steichen, C., Si-Tayeb, K., Wulkan, F., Crestani, T., Rosas, G., Dariolli, R., Krieger, J. E. (2017). Human Induced Pluripotent Stem (hiPS) Cells from Urine Samples: A Non-Integrative and Feeder-Free Reprogramming Strategy. Current Protocols in Human Genetics, 2017 (January), 21.7.1-21.7.22. https://doi.org/10.1002/cphg.26

  117. 117.

    Uhm, K. O., Jo, E. H., Go, G. Y., Kim, S. J., Choi, H. Y., Im, Y. S., & Koo, S. K. (2017). Generation of human induced pluripotent stem cells from urinary cells of a healthy donor using a non-integration system. Stem Cell Research, 21, 44–46. https://doi.org/10.1016/j.scr.2017.03.019

    CAS  Article  PubMed  Google Scholar 

  118. 118.

    Wang, L., Chen, Y., Guan, C., Zhao, Z., Li, Q., Yang, J., & Li, J. (2017). Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells. Stem Cell Research and Therapy, 8(1), 1–13. https://doi.org/10.1186/s13287-017-0698-8

    CAS  Article  Google Scholar 

  119. 119.

    Shi, L., Cui, Y., Zhang, G., Zhou, X., Luan, J., & Han, J. (2020). Establishment of a control induced pluripotent stem cell line SMBCi006-A from a healthy male donor. Stem Cell Research, 49 (September), 102025. https://doi.org/10.1016/j.scr.2020.102025

    CAS  Article  PubMed  Google Scholar 

  120. 120.

    Hildebrand, L., Rossbach, B., Kühnen, P., Gossen, M., Kurtz, A., Reinke, P., & Stachelscheid, H. (2016). Generation of integration free induced pluripotent stem cells from fibrodysplasia ossificans progressiva (FOP) patients from urine samples. Stem Cell Research, 16(1), 54–58. https://doi.org/10.1016/j.scr.2015.11.017

    CAS  Article  PubMed  Google Scholar 

  121. 121.

    Sochacki, J., Devalle, S., Reis, M., Mattos, P., & Rehen, S. (2016). Generation of urine iPS cell lines from patients with Attention Deficit Hyperactivity Disorder (ADHD) using a non-integrative method. Stem Cell Research, 17(1), 102–106. https://doi.org/10.1016/j.scr.2016.05.015

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Li, S., Zhao, H., Huang, R., He, L., Tian, C., Huang, H., & Li, Z. (2019). Generation of iPSC line (GIBHi001-A) from a patient with autism spectrum disorder. Stem Cell Research, 40 (September), 101571. https://doi.org/10.1016/j.scr.2019.101571

    CAS  Article  PubMed  Google Scholar 

  123. 123.

    Dong, Y., Peng, T., Wu, W., Tan, D., Liu, X., & Xie, D. (2019). Efficient introduction of an isogenic homozygous mutation to induced pluripotent stem cells from a hereditary hearing loss family using CRISPR/Cas9 and single-stranded donor oligonucleotides. Journal of International Medical Research, 47(4), 1717–1730. https://doi.org/10.1177/0300060519829990

    CAS  Article  Google Scholar 

  124. 124.

    Jouni, M., Si-Tayeb, K., Es-Salah-Lamoureux, Z., Latypova, X., Champon, B., Caillaud, A., & Gaborit, N. (2015). Toward personalized medicine: Using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of type 2 long QT syndrome. Journal of the American Heart Association, 4(9), 1–13. https://doi.org/10.1161/JAHA.115.002159

    CAS  Article  Google Scholar 

  125. 125.

    He, L., Zhao, H., Li, S., Han, X., Chen, Z., Wang, C., & Jiang, H. (2020). Generation of induced pluripotent stem cell line (CSUXHi002-A) from a patient with spinocerebellar ataxia type 1. Stem Cell Research, 45 (April), 101816. https://doi.org/10.1016/j.scr.2020.101816

    CAS  Article  PubMed  Google Scholar 

  126. 126.

    Higdon, L. E., Lee, K., Tang, Q., & Maltzman, J. S. (2016). Virtual Global Transplant Laboratory Standard Operating Procedures for Blood Collection, PBMC Isolation, and Storage. Transplantation Direct, 2(9), e101. https://doi.org/10.1097/txd.0000000000000613

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Hanna, J., Markoulaki, S., Schorderet, P., Carey, B. W., Beard, C., Wernig, M., & Jaenisch, R. (2008). Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency. Cell, 133(2), 250–264. https://doi.org/10.1016/j.cell.2008.03.028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Brown, M. E., Rondon, E., Rajesh, D., Mack, A., Lewis, R., Feng, X., Nuwaysir, E. F. (2010). Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One, 5(6). https://doi.org/10.1371/journal.pone.0011373

  129. 129.

    Loh, Y. H., Hartung, O., Li, H., Guo, C., Sahalie, J. M., Manos, P. D., & Daley, G. Q. (2010). Reprogramming of T cells from human peripheral blood. Cell Stem Cell, 7(1), 15–19. https://doi.org/10.1016/j.stem.2010.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., & Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature, 460(7259), 1132–1135. https://doi.org/10.1038/nature08235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Seki, T., Yuasa, S., Oda, M., Egashira, T., Yae, K., Kusumoto, D., & Fukuda, K. (2010). Generation of induced pluripotent stem cells from human terminally differentiated circulating t cells. Cell Stem Cell, 7(1), 11–14. https://doi.org/10.1016/j.stem.2010.06.003

    CAS  Article  PubMed  Google Scholar 

  132. 132.

    Choi, S. M., Liu, H., Chaudhari, P., Kim, Y., Cheng, L., Feng, J., & Jang, Y.-Y. (2011). Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood, 118(7), 1801–1805. https://doi.org/10.1182/blood-2011-03-340620

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Rajesh, D., Dickerson, S. J., Yu, J., Brown, M. E., Thomson, J. A., & Seay, N. J. (2011). Human lymphoblastoid B-cell lines reprogrammed to EBV-free induced pluripotent stem cells. Blood, 118(7), 1797–1800. https://doi.org/10.1182/blood-2011-01-332064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Barrett, R., Ornelas, L., Yeager, N., Mandefro, B., Sahabian, A., Lenaeus, L., & Sareen, D. (2014). Reliable Generation of Induced Pluripotent Stem Cells From Human Lymphoblastoid Cell Lines. STEM CELLS Translational Medicine, 3(12), 1429–1434. https://doi.org/10.5966/sctm.2014-0121

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Kishino, Y., Seki, T., Fujita, J., Yuasa, S., Tohyama, S., Kunitomi, A., & Fukuda, K. (2014). Derivation of transgene-free human induced pluripotent stem cells from human peripheral T cells in defined culture conditions. PLoS ONE, 9(5), 1–8. https://doi.org/10.1371/journal.pone.0097397

    CAS  Article  Google Scholar 

  136. 136.

    Muñoz-López, Á., Van Roon, E. H. J., Romero-Moya, D., López-Millan, B., Stam, R. W., Colomer, D., & Menendez, P. (2016). Cellular ontogeny and hierarchy influence the reprogramming efficiency of human B cells into induced pluripotent stem cells. Stem Cells, 34(3), 581–587. https://doi.org/10.1002/stem.2303

    CAS  Article  PubMed  Google Scholar 

  137. 137.

    Chou, B.-K., Gu, H., Gao, Y., Dowey, S. N., Wang, Y., Shi, J., & Cheng, L. (2015). A Facile Method to Establish Human Induced Pluripotent Stem Cells From Adult Blood Cells Under Feeder-Free and Xeno-Free Culture Conditions: A Clinically Compliant Approach. STEM CELLS Translational Medicine, 4(4), 320–332. https://doi.org/10.5966/sctm.2014-0214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Serwold, T., Hochedlinger, K., Swindle, J., Hedgpeth, J., Jaenisch, R., & Weissman, I. L. (2010). T-cell receptor-driven lymphomagenesis in mice derived from a reprogrammed T cell. Proceedings of the National Academy of Sciences, 107(44), 18939–18943. https://doi.org/10.1073/pnas.1013230107

    Article  Google Scholar 

  139. 139.

    Dowey, S. N., Huang, X., Chou, B. K., Ye, Z., & Cheng, L. (2012). Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nature Protocols, 7(11), 2013–2021. https://doi.org/10.1038/nprot.2012.121

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Loh, Y. H., Agarwal, S., Park, I. H., Urbach, A., Huo, H., Heffner, G. C., & Daley, G. Q. (2009). Generation of induced pluripotent stem cells from human blood. Blood, 113(22), 5476–5479. https://doi.org/10.1182/blood-2009-02-204800

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. 141.

    Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D. M., Jang, Y. Y., & Cheng, L. (2009). Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 114(27), 5473–5480. https://doi.org/10.1182/blood-2009-04-217406

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Merling, R. K., Sweeney, C. L., Choi, U., De Ravin, S. S., Myers, T. G., Otaizo-Carrasquero, F., & Malech, H. L. (2013). Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells. Blood, 121(14), e98–e107. https://doi.org/10.1182/blood-2012-03-420273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Mack, A. A., Kroboth, S., Rajesh, D., & Wang, W. B. (2011). Generation of Induced Pluripotent Stem Cells from CD34+ Cells across Blood Drawn from Multiple Donors with Non-Integrating Episomal Vectors. PLoS ONE, 6(11), e27956. https://doi.org/10.1371/journal.pone.0027956

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    de Leeuw, V. C., van Oostrom, C. T. M., Imholz, S., Piersma, A. H., Hessel, E. V. S., & Dollé, M. E. T. (2020). Going Back and Forth: Episomal Vector Reprogramming of Peripheral Blood Mononuclear Cells to Induced Pluripotent Stem Cells and Subsequent Differentiation into Cardiomyocytes and Neuron-Astrocyte Co-cultures. Cellular Reprogramming, 22(6), 300–310. https://doi.org/10.1089/cell.2020.0040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Sohn, S. K., Kim, J. G., Seo, K. W., Chae, Y. S., Jung, J. T., Suh, J. S., & Lee, K. B. (2002). GM-CSF-based mobilization effect in normal healthy donors for allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplantation, 30(2), 81–86. https://doi.org/10.1038/sj.bmt.1703598

    CAS  Article  PubMed  Google Scholar 

  146. 146.

    Cashen, A. F., Lazarus, H. M., & Devine, S. M. (2007). Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplantation, 39(10), 577–588. https://doi.org/10.1038/sj.bmt.1705616

    CAS  Article  PubMed  Google Scholar 

  147. 147.

    Szilvassy, S. J., Meyerrose, T. E., Ragland, P. L., & Grimes, B. (2001). Differential homing and engraftment properties of hematopoietic progenitor cells from murine bone marrow, mobilized peripheral blood, and fetal liver. Blood, 98(7), 2108–2115. https://doi.org/10.1182/blood.V98.7.2108

    CAS  Article  PubMed  Google Scholar 

  148. 148.

    Nagler, A., Korenstein-Ilan, A., Amiel, A., & Avivi, L. (2004). Granulocyte colony-stimulating factor generates epigenetic and genetic alterations in lymphocytes of normal volunteer donors of stem cells. Experimental Hematology, 32(1), 122–130. https://doi.org/10.1016/j.exphem.2003.09.007

    CAS  Article  PubMed  Google Scholar 

  149. 149.

    Hernández, J. M., Castilla, C., Gutiérrez, N. C., Isidro, I. M., Delgado, M., & de las Rivas, J., San Miguel, J. F. . (2005). Mobilisation with G-CSF in healthy donors promotes a high but temporal deregulation of genes. Leukemia, 19(6), 1088–1091. https://doi.org/10.1038/sj.leu.2403753

    CAS  Article  PubMed  Google Scholar 

  150. 150.

    Kunisato, A., Wakatsuki, M., Shinba, H., Ota, T., Ishida, I., & Nagao, K. (2011). Direct generation of induced pluripotent stem cells from human nonmobilized blood. Stem Cells and Development, 20(1), 159–168. https://doi.org/10.1089/scd.2010.0063

    CAS  Article  PubMed  Google Scholar 

  151. 151.

    Zheng, W., Wang, Y., Chang, T., Huang, H., & Yee, J.-K. (2013). Significant differences in genotoxicity induced by retrovirus integration in human T cells and induced pluripotent stem cells. Gene, 519(1), 142–149. https://doi.org/10.1016/j.gene.2013.01.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Potirat, P., Wattanapanitch, M., Kheolamai, P., & Issaragrisil, S. (2018). Establishment of a human iPSC line (MUSIi007-A) from peripheral blood of normal individual using Sendai viral vectors. Stem Cell Research, 32 (July), 43–46. https://doi.org/10.1016/j.scr.2018.08.014

    CAS  Article  PubMed  Google Scholar 

  153. 153.

    Okumura, T., Horie, Y., Lai, C. Y., Lin, H. T., Shoda, H., Natsumoto, B., & Otsu, M. (2019). Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Research and Therapy, 10(1), 4–6. https://doi.org/10.1186/s13287-019-1273-2

    CAS  Article  Google Scholar 

  154. 154.

    Vlahos, K., Sourris, K., Mayberry, R., McDonald, P., Bruveris, F. F., Schiesser, J. V., Elefanty, A. G. (2019). Generation of iPSC lines from peripheral blood mononuclear cells from 5 healthy adults. Stem Cell Research, 34 (November 2018), 101380. https://doi.org/10.1016/j.scr.2018.101380

  155. 155.

    Hamada, A., Akagi, E., Obayashi, F., Yamasaki, S., Koizumi, K., Ohtaka, M., & Okamoto, T. (2020). Induction of Noonan syndrome-specific human-induced pluripotent stem cells under serum-, feeder-, and integration-free conditions. Vitro Cellular and Developmental Biology - Animal, 56(10), 888–895. https://doi.org/10.1007/s11626-020-00515-9

    CAS  Article  Google Scholar 

  156. 156.

    Ye, L., Muench, M. O., Fusaki, N., Beyer, A. I., Wang, J., Qi, Z., & Kan, Y. W. (2013). Blood Cell-Derived Induced Pluripotent Stem Cells Free of Reprogramming Factors Generated by Sendai Viral Vectors. STEM CELLS Translational Medicine, 2(8), 558–566. https://doi.org/10.5966/sctm.2013-0006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Tan, H.-K., Toh, C.-X.D., Ma, D., Yang, B., Liu, T. M., Lu, J., & Loh, Y.-H. (2014). Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking. STEM CELLS Translational Medicine, 3(5), 586–598. https://doi.org/10.5966/sctm.2013-0195

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Su, R. J., Neises, A., & Zhang, X.-B. (2016). Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors. In Methods in Molecular Biology (pp. 57–69). https://doi.org/10.1007/7651_2014_139

  159. 159.

    Sharma, A., Mücke, M., & Seidman, C. E. (2018). Human Induced Pluripotent Stem Cell Production and Expansion from Blood using a Non‐Integrating Viral Reprogramming Vector. Current Protocols in Molecular Biology, 122(1). https://doi.org/10.1002/cpmb.58

  160. 160.

    Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., & Yamanaka, S. (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 31(3), 458–466. https://doi.org/10.1002/stem.1293

    CAS  Article  PubMed  Google Scholar 

  161. 161.

    Su, R. J., Baylink, D. J., Neises, A., Kiroyan, J. B., Meng, X., Payne, K. J., & Zhang, X. B. (2013). Efficient Generation of Integration-Free iPS Cells from Human Adult Peripheral Blood Using BCL-XL Together with Yamanaka Factors. PLoS ONE, 8(5), 1–12. https://doi.org/10.1371/journal.pone.0064496

    CAS  Article  Google Scholar 

  162. 162.

    Nakagawa, M., Taniguchi, Y., Senda, S., Takizawa, N., Ichisaka, T., Asano, K., & Yamanaka, S. (2014). A novel efficient feeder-Free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports, 4, 1–7. https://doi.org/10.1038/srep03594

    Article  Google Scholar 

  163. 163.

    Agu, C. A., Soares, F. A. C., Alderton, A., Patel, M., Ansari, R., Patel, S., & Kirton, C. M. (2015). Successful generation of human induced pluripotent stem cell lines from blood samples held at room temperature for up to 48 hr. Stem Cell Reports, 5(4), 660–671. https://doi.org/10.1016/j.stemcr.2015.08.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Liu, J., Brzeszczynska, J., Samuel, K., Black, J., Palakkan, A., Anderson, R. A., & Ross, J. A. (2015). Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Experimental Cell Research, 338(2), 203–213. https://doi.org/10.1016/j.yexcr.2015.08.004

    CAS  Article  PubMed  Google Scholar 

  165. 165.

    Zhou, H., Martinez, H., Sun, B., Li, A., Zimmer, M., Katsanis, N., & Chang, S. (2015). Rapid and efficient generation of transgene-free iPSC from a small volume of cryopreserved blood. Stem Cell Reviews and Reports, 11(4), 652–665. https://doi.org/10.1007/s12015-015-9586-8

    Article  PubMed  Google Scholar 

  166. 166.

    Sommer, A. G., Rozelle, S. S., Sullivan, S., Mills, J. A., Park, S. M., Smith, B. W., & Mostoslavsky, G. (2012). Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector. Journal of visualized experiments : JoVE, 68, 1–5. https://doi.org/10.3791/4327

    CAS  Article  Google Scholar 

  167. 167.

    Chen, I. P., Fukuda, K., Fusaki, N., Iida, A., Hasegawa, M., Lichtler, A., & Reichenberger, E. J. (2013). Induced pluripotent stem cell reprogramming by integration-free sendai virus vectors from peripheral blood of patients with craniometaphyseal dysplasia. Cellular Reprogramming, 15(6), 503–513. https://doi.org/10.1089/cell.2013.0037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Quintana-Bustamante, O., & Segovia, J. C. (2016). Generation of patient-specific induced pluripotent stem cell from peripheral blood mononuclear cells by sendai reprogramming vectors. Methods in Molecular Biology, 1353(17), 1–11. https://doi.org/10.1007/7651_2014_170

    CAS  Article  PubMed  Google Scholar 

  169. 169.

    Kim, Y., Rim, Y. A., Yi, H., Park, N., Park, S. H., & Ju, J. H. (2016). The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation. Stem Cells International, 2016. https://doi.org/10.1155/2016/1329459

  170. 170.

    Ali, M., Kabir, F., Thomson, J. J., Ma, Y., Qiu, C., Delannoy, M., & Riazuddin, S. A. (2019). Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-54258-z

    CAS  Article  Google Scholar 

  171. 171.

    Isogai, S., Yamamoto, N., Hiramatsu, N., Goto, Y., Hayashi, M., Kondo, M., & Imaizumi, K. (2018). Preparation of induced pluripotent stem cells using human peripheral blood monocytes. Cellular Reprogramming, 20(6), 347–355. https://doi.org/10.1089/cell.2018.0024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Ye, H., & Wang, Q. (2018). Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai Virus. Cellular Physiology and Biochemistry, 50(4), 1318–1331. https://doi.org/10.1159/000494589

    CAS  Article  PubMed  Google Scholar 

  173. 173.

    Guan, J., Liu, X., Zhang, H., Yang, X., Ma, Y., Li, Y., Liu, Y. (2020). Reprogramming of human Peripheral Blood Mononuclear Cell (PBMC) from a Chinese patient suffering Duchenne muscular dystrophy to iPSC line (SDQLCHi007-A) carrying deletion of 49–50 exons in the DMD gene. Stem Cell Research, 42 (September 2019). https://doi.org/10.1016/j.scr.2019.101666

  174. 174.

    Trokovic, R., Weltner, J., Nishimura, K., Ohtaka, M., Nakanishi, M., Salomaa, V., & Kyttälä, A. (2014). Advanced Feeder-Free Generation of Induced Pluripotent Stem Cells Directly From Blood Cells. STEM CELLS Translational Medicine, 3(12), 1402–1409. https://doi.org/10.5966/sctm.2014-0113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. 175.

    Chou, B. K., Mali, P., Huang, X., Ye, Z., Dowey, S. N., Resar, L. M. S., & Cheng, L. (2011). Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 21(3), 518–529. https://doi.org/10.1038/cr.2011.12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Morales Pantoja, I. E., Smith, M. D., Rajbhandari, L., Cheng, L., Gao, Y., Mahairaki, V., & Whartenby, K. A. (2020). IPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS ONE, 15(6), 1–19. https://doi.org/10.1371/journal.pone.0233980

    CAS  Article  Google Scholar 

  177. 177.

    Wen, W., Zhang, J. P., Xu, J., Su, R. J., Neises, A., Ji, G. Z., & Zhang, X. B. (2016). Enhanced generation of integration-free iPSCs from human adult peripheral blood mononuclear cells with an optimal combination of episomal vectors. Stem Cell Reports, 6(6), 873–884. https://doi.org/10.1016/j.stemcr.2016.04.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Ustyantseva, E. I., Medvedev, S. P., Vetchinova, A. S., Illarioshkin, S. N., Leonov, S. V., & Zakian, S. M. (2020). Generation of an induced pluripotent stem cell line, ICGi014-A, by reprogramming peripheral blood mononuclear cells from a patient with homozygous D90A mutation in SOD1 causing Amyotrophic lateral sclerosis. Stem Cell Research, 42 (September 2019), 101675. https://doi.org/10.1016/j.scr.2019.101675

  179. 179.

    Staerk, J., Dawlaty, M. M., Gao, Q., Maetzel, D., Hanna, J., Sommer, C. A., & Jaenisch, R. (2010). Reprogramming of Human Peripheral Blood Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 7(1), 20–24. https://doi.org/10.1016/j.stem.2010.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Riedel, M., Jou, C. J., Lai, S., Lux, R. L., Moreno, A. P., Spitzer, K. W., & Benjamin, I. J. (2014). Functional and pharmacological analysis of cardiomyocytes differentiated from human peripheral blood mononuclear-derived pluripotent stem cells. Stem Cell Reports, 3(1), 131–141. https://doi.org/10.1016/j.stemcr.2014.04.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  181. 181.

    Fuerstenau-Sharp, M., Zimmermann, M. E., Stark, K., Jentsch, N., Klingenstein, M., Drzymalski, M., & Hengstenberg, C. (2015). Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS ONE, 10(5), 1–21. https://doi.org/10.1371/journal.pone.0126596

    CAS  Article  Google Scholar 

  182. 182.

    Hanatani, T., & Takasu, N. (2021). CiRA iPSC seed stocks (CiRA’s iPSC Stock Project). Stem Cell Research, 50 (April 2019), 102033. https://doi.org/10.1016/j.scr.2020.102033

  183. 183.

    Churko, J. M., Burridge, P. W., & Wu, J. C. (2013). Generation of human iPSCs from human peripheral blood mononuclear cells using non-integrative sendai virus in chemically defined conditions. In Methods in Molecular Biology (Vol. 1036, pp. 81–88). https://doi.org/10.1007/978-1-62703-511-8_7

  184. 184.

    Varga, E., Hansen, M., Wüst, T., von Lindern, M., & van den Akker, E. (2017). Generation of human erythroblast-derived iPSC line using episomal reprogramming system. Stem Cell Research, 25, 30–33. https://doi.org/10.1016/j.scr.2017.10.001

    CAS  Article  PubMed  Google Scholar 

  185. 185.

    Varga, E., Nemes, C., Bock, I., Varga, N., Fehér, A., Dinnyés, A., & Kobolák, J. (2016). Generation of Mucopolysaccharidosis type II (MPS II) human induced pluripotent stem cell (iPSC) line from a 1-year-old male with pathogenic IDS mutation. Stem Cell Research, 17(3), 482–484. https://doi.org/10.1016/j.scr.2016.09.033

    CAS  Article  PubMed  Google Scholar 

  186. 186.

    Lopez-Onieva, L., Montes, R., Lamolda, M., Romero, T., Ayllon, V., Lozano, M. L., & Real, P. J. (2016). Generation of induced pluripotent stem cells (iPSCs) from a Bernard-Soulier syndrome patient carrying a W71R mutation in the GPIX gene. Stem Cell Research, 16(3), 692–695. https://doi.org/10.1016/j.scr.2016.04.013

    CAS  Article  PubMed  Google Scholar 

  187. 187.

    Marsoner, F., Marcatili, M., Karnavas, T., Bottai, D., D’Agostino, A., Scarone, S., & Conti, L. (2016). Generation and characterization of an induced pluripotent stem cell (iPSC) line from a patient with clozapine-resistant Schizophrenia. Stem Cell Research, 17(3), 661–664. https://doi.org/10.1016/j.scr.2016.11.005

    CAS  Article  PubMed  Google Scholar 

  188. 188.

    Lee, H.-K., Morin, P., & Xia, W. (2016). Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs) from an early onset Alzheimer’s patient. Stem Cell Research, 16(2), 213–215. https://doi.org/10.1016/j.scr.2015.12.050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Táncos, Z., Varga, E., Kovács, E., Dinnyés, A., & Kobolák, J. (2016). Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer’s disease (LOAD). Stem Cell Research, 17(1), 81–83. https://doi.org/10.1016/j.scr.2016.05.013

    CAS  Article  PubMed  Google Scholar 

  190. 190.

    Griscelli, F., Oudrirhi, N., Feraud, O., Divers, D., Portier, L., Turhan, A. G., & Bennaceur Griscelli, A. (2017). Generation of induced pluripotent stem cell (iPSC) line from a patient with triple negative breast cancer with hereditary exon 17 deletion of BRCA1 gene. Stem Cell Research, 24, 135–138. https://doi.org/10.1016/j.scr.2017.09.003

    CAS  Article  PubMed  Google Scholar 

  191. 191.

    Zhang, S., Liu, L., Hu, Y., Lv, Z., Li, Q., Gong, W., & Wu, H. (2017). Derivation of human induced pluripotent stem cell (iPSC) line from a 79 year old sporadic male Parkinson’s disease patient. Stem Cell Research, 19, 43–45. https://doi.org/10.1016/j.scr.2016.12.025

    Article  PubMed  Google Scholar 

  192. 192.

    Bhargava, N., Jaitly, S., Goswami, S. G., Jain, S., Chakraborty, D., & Ramalingam, S. (2019). Generation and characterization of induced pluripotent stem cell line (IGIBi001-A) from a sickle cell anemia patient with homozygous β-globin mutation. Stem Cell Research, 39 (June), 101484. https://doi.org/10.1016/j.scr.2019.101484

    CAS  Article  PubMed  Google Scholar 

  193. 193.

    Bozaoglu, K., Gao, Y., Stanley, E., Fanjul-Fernández, M., Brown, N. J., Pope, K., & Lockhart, P. J. (2019). Generation of seven iPSC lines from peripheral blood mononuclear cells suitable to investigate Autism Spectrum Disorder. Stem Cell Research, 39 (June), 101516. https://doi.org/10.1016/j.scr.2019.101516

    CAS  Article  PubMed  Google Scholar 

  194. 194.

    Gatinois, V., Desprat, R., Becker, F., Pichard, L., Bernex, F., Corsini, C., & Lemaitre, J. M. (2019). Reprogramming of Human Peripheral Blood Mononuclear Cell (PBMC) from a patient suffering of a Werner syndrome resulting in iPSC line (REGUi003-A) maintaining a short telomere length. Stem Cell Research, 39 (July), 101515. https://doi.org/10.1016/j.scr.2019.101515

    CAS  Article  PubMed  Google Scholar 

  195. 195.

    Gubert, F., Vasques, J. F., Cozendey, T. D., Domizi, P., Toledo, M. F., Kasai-Brunswick, T. H., & Mendez-Otero, R. (2019). Generation of four patient-specific pluripotent induced stem cell lines from two Brazilian patients with amyotrophic lateral sclerosis and two healthy subjects. Stem Cell Research, 37 (February), 101448. https://doi.org/10.1016/j.scr.2019.101448

    Article  PubMed  Google Scholar 

  196. 196.

    Lamolda, M., Montes, R., Simón, I., Perales, S., Martínez-Navajas, G., Lopez-Onieva, L., Real, P. J. (2019). GENYOi005-A: An induced pluripotent stem cells (iPSCs) line generated from a patient with Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM) carrying a p.Thr196Ala variant. Stem Cell Research, 41 (September), 101603. https://doi.org/10.1016/j.scr.2019.101603

  197. 197.

    Montes, R., Mollinedo, P., Perales, S., Gonzalez-Lamuño, D., Ramos-Mejía, V., Fernandez-Luna, J. L., & Real, P. J. (2019). GENYOi004-A: An induced pluripotent stem cells (iPSCs) line generated from a patient with autism-related ADNP syndrome carrying a pTyr719* mutation. Stem Cell Research, 37, 101446. https://doi.org/10.1016/j.scr.2019.101446

    CAS  Article  PubMed  Google Scholar 

  198. 198.

    Piovani, G., Lanzi, G., Ferraro, R. M., Masneri, S., Barisani, C., Savio, G., & Giliani, S. C. (2019). Generation of induced pluripotent stem cells (iPSCs) from patient with Cri du Chat Syndrome. Stem Cell Research, 35 (December 2018), 101393. https://doi.org/10.1016/j.scr.2019.101393

  199. 199.

    Tong, J., Lee, K. M., Liu, X., Nefzger, C. M., Vijayakumar, P., Hawi, Z., Bellgrove, M. A. (2019). Generation of four iPSC lines from peripheral blood mononuclear cells (PBMCs) of an attention deficit hyperactivity disorder (ADHD) individual and a healthy sibling in an Australia-Caucasian family. Stem Cell Research, 34 (November 2018), 101353. https://doi.org/10.1016/j.scr.2018.11.014

  200. 200.

    Zhang, Y., Li, A., Huang, C. L. H., Wang, G., & Wang, D. (2019). Generation of induced pluripotent stem cells (iPSCs) from an infant with catecholaminergic polymorphic ventricular tachycardia carrying the double heterozygous mutations A1855D in RyR2 and Q1362H in SCN10A. Stem Cell Research, 39 (December 2018), 101509. https://doi.org/10.1016/j.scr.2019.101509

  201. 201.

    Zhu, Y.-J., Zhang, S.-J., Wu, X.-H., Lian, T.-Y., He, Y.-Z., Zhang, Z.-J., Jing, Z.-C. (2020). Generation of an induced pluripotent stem cell line (PUMCHi006-A) derived from a patient with pulmonary arterial hypertension carrying heterozygous c.1339 G > A mutation in PTGIS gene. Stem Cell Research, 49, 102088. https://doi.org/10.1016/j.scr.2020.102088

  202. 202.

    Thakur, P., Bhargava, N., Jaitly, S., Gupta, P., Kumar Bhattacharya, S., Padma, G., & Ramalingam, S. (2021). Establishment and characterization of induced pluripotent stem cell line (IGIBi002-A) from a β-thalassemia patient with IVS1-5 mutation by non-integrating reprogramming approach. Stem Cell Research, 50, 102124. https://doi.org/10.1016/j.scr.2020.102124

    CAS  Article  Google Scholar 

  203. 203.

    Wang, Y., Yu, H., Chen, Y., Li, G., Lei, Y., & Zhao, J. (2018). Derivation of induced pluripotent stem cells TUSMi006 from an 87-year old Chinese Han Alzheimer’s disease patient carrying GRINB and SORL1 mutations. Stem Cell Research, 31 (July), 127–130. https://doi.org/10.1016/j.scr.2018.07.018

    CAS  Article  PubMed  Google Scholar 

  204. 204.

    Zhang, L., Xu, M., Liu, G., Wu, R., Meng, S., Xiahou, K., & Zhou, W. (2019). Generation of induced pluripotent stem cell line (IPTi001-A) from a 62-year old sporadic Alzheimer’s disease patient with APOE3 (ε3/ε3) genotype. Stem Cell Research, 41 (September), 101589. https://doi.org/10.1016/j.scr.2019.101589

    CAS  Article  PubMed  Google Scholar 

  205. 205.

    Zhao, Z., Ji, S., Shi, Z., & Liu, H. (2018). Generation of CSi001-A, a transgene-free, induced pluripotent stem cell line derived from a Parkinson Disease (PD) patient. Stem Cell Research, 33 (September), 1–5. https://doi.org/10.1016/j.scr.2018.09.020

    CAS  Article  PubMed  Google Scholar 

  206. 206.

    Kamath, A., Ternes, S., McGowan, S., & Moy, A. B. (2018). Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease. Regenerative Medicine, 13(8), 899–915. https://doi.org/10.2217/rme-2018-0041

    CAS  Article  Google Scholar 

  207. 207.

    Paredes, B. D., Martins, G. L. S., Azevedo, C. M., de Sampaio, G. L., & A., Nonaka, C. K. V., Silva, K. N. da, Souza, B. S. de F. . (2019). Generation of three control iPS cell lines for sickle cell disease studies by reprogramming erythroblasts from individuals without hemoglobinopathies. Stem Cell Research, 38 (March), 101454. https://doi.org/10.1016/j.scr.2019.101454

    CAS  Article  PubMed  Google Scholar 

  208. 208.

    Laperle, A. H., Sances, S., Yucer, N., Dardov, V. J., Garcia, V. J., Ho, R., & Svendsen, C. N. (2020). iPSC modeling of young-onset Parkinson’s disease reveals a molecular signature of disease and novel therapeutic candidates. Nature Medicine, 26(2), 289–299. https://doi.org/10.1038/s41591-019-0739-1

    CAS  Article  PubMed  Google Scholar 

  209. 209.

    Gao, X., Liao, X., Zhang, J., Lin, J., & Tan, M. (2021). Derivation of an induced pluripotent stem cell line (GWCMCi001-A) from PBMCs of a four-year-old male patient with Immunoglobulin A nephropathy. Stem Cell Research, 50, 102123. https://doi.org/10.1016/j.scr.2020.102123

    Article  Google Scholar 

  210. 210.

    Wang, B., Liu, C., Zhang, H., Gai, Z., & Liu, Y. (2021). An induced pluripotent stem cell line (SDQLCHi033-A) derived from a patient with maple syrup urine disease type Ib carrying a homozygous mutation in BCKDHB gene. Stem Cell Research, 50, 102146. https://doi.org/10.1016/j.scr.2020.102146

    CAS  Article  Google Scholar 

  211. 211.

    Saha, B., Borgohain, M., Dey, C., & Thummer, R. (2018). Annals of Stem Cell Research & Therapy iPS Cell Generation : Current and Future Challenges. Annals of Stem Cell Research & Therapy, 1(2), 2–5.

    Google Scholar 

  212. 212.

    Dey, C., Narayan, G., Krishna Kumar, H., Borgohain, M., & Lenka, N. (2017). Cell-Penetrating Peptides as a Tool to Deliver Biologically Active Recombinant Proteins to Generate Transgene-Free Induced Pluripotent Stem Cells. Studies on Stem Cells Research and Therapy, 3(1), 006–015. https://doi.org/10.17352/sscrt.000011

  213. 213.

    Ebrahimi, B. (2015). Reprogramming of adult stem/progenitor cells into iPSCs without reprogramming factors. Journal of Medical Hypotheses and Ideas, 9(2), 99–103. https://doi.org/10.1016/j.jmhi.2015.09.003

    Article  Google Scholar 

  214. 214.

    Geti, I., Ormiston, M. L., Rouhani, F., Toshner, M., Movassagh, M., Nichols, J., & Morrell, N. W. (2012). A Practical and Efficient Cellular Substrate for the Generation of Induced Pluripotent Stem Cells from Adults: Blood-Derived Endothelial Progenitor Cells. STEM CELLS Translational Medicine, 1(12), 855–865. https://doi.org/10.5966/sctm.2012-0093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  215. 215.

    Naujok, O., Kaldrack, J., Taivankhuu, T., Jörns, A., & Lenzen, S. (2010). Selective Removal of Undifferentiated Embryonic Stem Cells from Differentiation Cultures Through HSV1 Thymidine Kinase and Ganciclovir Treatment. Stem Cell Reviews and Reports, 6(3), 450–461. https://doi.org/10.1007/s12015-010-9148-z

    CAS  Article  PubMed  Google Scholar 

  216. 216.

    Ben-David, U., Mayshar, Y., & Benvenisty, N. (2011). Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell Stem Cell, 9(2), 97–102. https://doi.org/10.1016/j.stem.2011.06.013

    CAS  Article  PubMed  Google Scholar 

  217. 217.

    Lee, M.-O., Moon, S. H., Jeong, H.-C., Yi, J.-Y., Lee, T.-H., Shim, S. H., & Cha, H.-J. (2013). Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proceedings of the National Academy of Sciences, 110(35), E3281–E3290. https://doi.org/10.1073/pnas.1303669110

    Article  Google Scholar 

  218. 218.

    Mohseni, R. (2014). Safe Transplantation Of Pluripotent Stem Cell By Preventing Teratoma Formation. Journal of Stem Cell Research & Therapy, 04(06). https://doi.org/10.4172/2157-7633.1000212

  219. 219.

    Parr, C. J. C., Katayama, S., Miki, K., Kuang, Y., Yoshida, Y., Morizane, A., & Saito, H. (2016). MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Scientific Reports, 6(1), 32532. https://doi.org/10.1038/srep32532

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  220. 220.

    Kuang, Y., Miki, K., Parr, C. J. C., Hayashi, K., Takei, I., Li, J., & Saito, H. (2017). Efficient, Selective Removal of Human Pluripotent Stem Cells via Ecto-Alkaline Phosphatase-Mediated Aggregation of Synthetic Peptides. Cell Chemical Biology, 24(6), 685-694.e4. https://doi.org/10.1016/j.chembiol.2017.04.010

    CAS  Article  PubMed  Google Scholar 

  221. 221.

    Sperling., E. L. (2013). Embryonic Stem Cell Therapy – From Bench to Bed. In Pluripotent Stem Cells. InTech. https://doi.org/10.5772/54368

  222. 222.

    Borgohain, M. P., Narayan, G., Krishna Kumar, H., Dey, C., & Thummer, R. P. (2018). Maximizing Expression and Yield of Human Recombinant Proteins from Bacterial Cell Factories for Biomedical Applications. In P. Kumar, J. K. Patra, & P. Chandra (Eds.), Advances in Microbial Biotechnology (1st Edition, pp. 447–486). New York: Apple Academic Press. https://doi.org/10.1201/9781351248914

Download references

Acknowledgements

We thank all the members of the Laboratory for Stem Cell Engineering and Regenerative Medicine (SCERM) for their excellent support. This work was supported by North Eastern Region – Biotechnology Programme Management Cell (NERBPMC), Department of Biotechnology, Government of India (BT/PR16655/NER/95/132/2015), and also by IIT Guwahati Institutional Top-Up on Start-Up Grant.

Author information

Affiliations

Authors

Contributions

All authors contributed to the conception and design of this manuscript. Data collection and interpretation were performed by all the authors. The first draft of the manuscript was written by Arnab Ray (wrote the section on urine cells) and Jahnavy Madhukar Joshi (wrote the section on PBMCs) and Pradeep Kumar Sundaravadivelu (wrote the section on keratinocytes) and thoroughly cross-checked by Khyati Raina. All the authors commented on the previous versions of the manuscript. All authors read and approved the final draft of the manuscript.

Corresponding authors

Correspondence to Vishwas Kaveeshwar or Rajkumar P Thummer.

Ethics declarations

Conflict of Interest

The authors declare that they have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Joshi, J.M., Sundaravadivelu, P.K. et al. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells. Stem Cell Rev and Rep (2021). https://doi.org/10.1007/s12015-021-10200-3

Download citation

Keywords

  • Induced pluripotent stem cells
  • Somatic cells
  • Keratinocytes
  • Urine cells
  • Peripheral blood mononuclear cells