Characterization of Tendon-Derived Stem Cells and Rescue Tendon Injury

Abstract

The natural healing ability of tendon is limited, and it cannot restore the native structure and function of tendon injuries. Tendon-derived stem cells (TDSCs) are a new type of pluripotent stem cells with multi-directional differentiation potential and are expected to become a promising cell-seed for the treatment of tendon injuries in the future. In this review, we outline the latest advances in the culture and identification of TDSCs. In addition, the influencing factors on the differentiation of TDSCs are discussed. Moreover, we aim to discuss recent studies to enhance TDSCs treatment of injured tendons. Finally, we identify the limitations of the current understanding of TDSCs biology, the main challenges of using their use, and potential therapeutic strategies to inform cell-based tendon repair.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data Availability

Not applicable.

References

  1. 1.

    Holladay, C., Abbah, S. A., O'Dowd, C., Pandit, A., & Zeugolis, D. I. (2016). Preferential tendon stem cell response to growth factor supplementation. Journal of Tissue Engineering and Regenerative Medicine, 10(9), 783–798. https://doi.org/10.1002/term.1852.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Schneider, M., Angele, P., Järvinen, T. A. H., & Docheva, D. (2018). Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing. Advanced Drug Delivery Reviews, 129, 352–375. https://doi.org/10.1016/j.addr.2017.12.016.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Walia, B., & Huang, A. H. (2019). Tendon stem progenitor cells: Understanding the biology to inform therapeutic strategies for tendon repair. Journal of Orthopaedic Research, 37(6), 1270–1280. https://doi.org/10.1002/jor.24156.

    Article  PubMed  Google Scholar 

  4. 4.

    Komatsu, I., Wang, J. H. C., Iwasaki, K., Shimizu, T., & Okano, T. (2016). The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomaterialia, 42, 136–146. https://doi.org/10.1016/j.actbio.2016.06.026.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Yan, Z., Yin, H., Brochhausen, C., Pfeifer, C. G., Alt, V., & Docheva, D. (2020). Aged tendon stem/progenitor cells are less competent to form 3D tendon Organoids due to cell autonomous and matrix production deficits. Frontiers in Bioengineering and Biotechnology, 8, 406. https://doi.org/10.3389/fbioe.2020.00406.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Liu, Y., Feng, L., Xu, J., Yang, Z., Wu, T., Zhang, J., Shi, L., Zhu, D., Zhang, J., & Li, G. (2019). MiR-378a suppresses tenogenic differentiation and tendon repair by targeting at TGF-beta2. Stem Cell Research & Therapy, 10(1), 108. https://doi.org/10.1186/s13287-019-1216-y.

    CAS  Article  Google Scholar 

  7. 7.

    Docheva, D., Müller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222–239. https://doi.org/10.1016/j.addr.2014.11.015.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Yin, H., Strunz, F., Yan, Z., Lu, J., Brochhausen, C., Kiderlen, S., Clausen-Schaumann, H., Wang, X., Gomes, M. E., Alt, V., & Docheva, D. (2020). Three-dimensional self-assembling nanofiber matrix rejuvenates aged/degenerative human tendon stem/progenitor cells. Biomaterials, 236, 119802. https://doi.org/10.1016/j.biomaterials.2020.119802.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yan, Z., Yin, H., Nerlich, M., Pfeifer, C. G., & Docheva, D. (2018). Boosting tendon repair: Interplay of cells, growth factors and scaffold-free and gel-based carriers. J Exp Orthop, 5(1), 1. https://doi.org/10.1186/s40634-017-0117-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tempfer, H., & Traweger, A. (2015). Tendon vasculature in health and disease. Frontiers in Physiology, 6, 330. https://doi.org/10.3389/fphys.2015.00330.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wang, Y., He, G., Tang, H., Shi, Y., Zhu, M., Kang, X., Bian, X., Lyu, J., Zhou, M., Yang, M., Mu, M., Chen, W., Zhou, B., Yuan, C., Zhang, J., & Tang, K. (2020). Aspirin promotes tenogenic differentiation of tendon stem cells and facilitates tendinopathy healing through regulating the GDF7/Smad1/5 signaling pathway. Journal of Cellular Physiology, 235(5), 4778–4789. https://doi.org/10.1002/jcp.29355.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Chen, E., Yang, L., Ye, C., Zhang, W., Ran, J., Xue, D., Wang, Z., Pan, Z., & Hu, Q. (2018). An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells. Acta Biomaterialia, 73, 377–387. https://doi.org/10.1016/j.actbio.2018.04.027.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Kiderlen, S., Polzer, C., Rädler, J. O., Docheva, D., Clausen-Schaumann, H., & Sudhop, S. (2019). Age related changes in cell stiffness of tendon stem/progenitor cells and a rejuvenating effect of ROCK-inhibition. Biochemical and Biophysical Research Communications, 509(3), 839–844. https://doi.org/10.1016/j.bbrc.2019.01.027.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Tarafder, S., Ricupero, C., Minhas, S., Yu, R. J., Alex, A. D., & Lee, C. H. (2019). A combination of Oxo-M and 4-PPBP as a potential regenerative therapeutics for tendon injury. Theranostics, 9(14), 4241–4254. https://doi.org/10.7150/thno.35285.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shen, H., Jayaram, R., Yoneda, S., Linderman, S. W., Sakiyama-Elbert, S. E., Xia, Y., Gelberman, R. H., & Thomopoulos, S. (2018). The effect of adipose-derived stem cell sheets and CTGF on early flexor tendon healing in a canine model. Scientific Reports, 8(1), 11078. https://doi.org/10.1038/s41598-018-29474-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Bi, Y., Ehirchiou, D., Kilts, T. M., Inkson, C. A., Embree, M. C., Sonoyama, W., Li, L., Leet, A. I., Seo, B. M., Zhang, L., Shi, S., & Young, M. F. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 13(10), 1219–1227. https://doi.org/10.1038/nm1630.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wu, Y. F., Chen, C., Tang, J. B., & Mao, W. F. (2020). Growth and stem cell characteristics of tendon-derived cells with different initial seeding densities: An in vitro study in mouse flexor tendon cells. Stem Cells and Development, 29(15), 1016–1025. https://doi.org/10.1089/scd.2020.0036.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Youngstrom, D. W., LaDow, J. E., & Barrett, J. G. (2016). Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor. Connective Tissue Research, 57(6), 454–465. https://doi.org/10.3109/03008207.2015.1117458.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Guo, J., Chan, K. M., Zhang, J. F., & Li, G. (2016). Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Experimental Cell Research, 341(1), 1–7. https://doi.org/10.1016/j.yexcr.2016.01.007.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Li, K., Deng, Y., Deng, G., Chen, P., Wang, Y., Wu, H., Ji, Z., Yao, Z., Zhang, X., Yu, B., & Zhang, K. (2020). High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells. Stem Cell Research & Therapy, 11(1), 131. https://doi.org/10.1186/s13287-020-01643-5.

    CAS  Article  Google Scholar 

  21. 21.

    Shi, L., et al. (2019). Impaired function of tendon-derived stem cells in experimental diabetes mellitus rat tendons: Implications for cellular mechanism of diabetic tendon disorder. Stem Cell Research & Therapy, 10(1), 27. https://doi.org/10.1186/s13287-018-1108-6.

    CAS  Article  Google Scholar 

  22. 22.

    Han, P., Cui, Q., Lu, W., Yang, S., Shi, M., Li, Z., Gao, P., Xu, B., & Li, Z. (2019). Hepatocyte growth factor plays a dual role in tendon-derived stem cell proliferation, migration, and differentiation. Journal of Cellular Physiology, 234(10), 17382–17391. https://doi.org/10.1002/jcp.28360.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Liu, Q., Zhu, Y., Amadio, P. C., Moran, S. L., Gingery, A., & Zhao, C. (2018). Isolation and characterization of multipotent Turkey tendon-derived stem cells. Stem Cells International, 2018, 3697971–3697910. https://doi.org/10.1155/2018/3697971.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yang, J., Zhao, Q., Wang, K., Ma, C., Liu, H., Liu, Y., & Guan, W. (2018). Isolation, culture and biological characteristics of multipotent porcine tendon-derived stem cells. International Journal of Molecular Medicine, 41(6), 3611–3619. https://doi.org/10.3892/ijmm.2018.3545.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Chen, P., Chen, Z., Mitchell, C., Gao, J., Chen, L., Wang, A., Leys, T., Landao-Bassonga, E., Zheng, Q., Wang, T., & Zheng, M. (2021). Intramuscular injection of Botox causes tendon atrophy by induction of senescence of tendon-derived stem cells. Stem Cell Research & Therapy, 12(1), 38. https://doi.org/10.1186/s13287-020-02084-w.

    CAS  Article  Google Scholar 

  26. 26.

    Rui, Y. F., Lui, P. P. Y., Wong, Y. M., Tan, Q., & Chan, K. M. (2013). Altered fate of tendon-derived stem cells isolated from a failed tendon-healing animal model of tendinopathy. Stem Cells and Development, 22(7), 1076–1085. https://doi.org/10.1089/scd.2012.0555.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zhang, C., Zhu, J., Zhou, Y., Thampatty, B. P., & Wang, J. H. C. (2019). Tendon stem/progenitor cells and their interactions with extracellular matrix and mechanical loading. Stem Cells International, 2019, 3674647–3674610. https://doi.org/10.1155/2019/3674647.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Thampatty, B. P., & Wang, J. H. (2018). Mechanobiology of young and aging tendons: In vivo studies with treadmill running. Journal of Orthopaedic Research, 36(2), 557–565. https://doi.org/10.1002/jor.23761.

    Article  PubMed  Google Scholar 

  29. 29.

    Zheng, Z., Ran, J., Chen, W., Hu, Y., Zhu, T., Chen, X., Yin, Z., Heng, B. C., Feng, G., le, H., Tang, C., Huang, J., Chen, Y., Zhou, Y., Dominique, P., Shen, W., & Ouyang, H. W. (2017). Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair. Acta Biomaterialia, 51, 317–329. https://doi.org/10.1016/j.actbio.2017.01.041.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Wu, H., Zhao, G., Zu, H., Wang, J. H. C., & Wang, Q. M. (2015). Aging-related viscoelasticity variation of tendon stem cells (TSCs) characterized by quartz thickness shear mode (TSM) resonators. Sens Actuators (Warrendale Pa), 210, 369–380. https://doi.org/10.1016/j.snb.2014.12.117.

    CAS  Article  Google Scholar 

  31. 31.

    Lui, P. P. Y., & Wong, C. M. (2019). Biology of tendon stem cells and tendon in aging. Frontiers in Genetics, 10, 1338. https://doi.org/10.3389/fgene.2019.01338.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Rui, Y. F., Chen, M. H., Li, Y. J., Xiao, L. F., Geng, P., Wang, P., Xu, Z. Y., Zhang, X. P., & Dai, G. C. (2019). CTGF attenuates tendon-derived stem/progenitor cell aging. Stem Cells International, 2019, 6257537–6257512. https://doi.org/10.1155/2019/6257537.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Zhang, J., & Wang, J. H. (2015). Moderate exercise mitigates the detrimental effects of aging on tendon stem cells. PLoS One, 10(6), e0130454. https://doi.org/10.1371/journal.pone.0130454.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Popov, C., Kohler, J., & Docheva, D. (2015). Activation of EphA4 and EphB2 reverse signaling restores the age-associated reduction of self-renewal, migration, and actin turnover in human tendon stem/progenitor cells. Frontiers in Aging Neuroscience, 7, 246. https://doi.org/10.3389/fnagi.2015.00246.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Han, W., Wang, B., Liu, J., & Chen, L. (2017). The p16/miR-217/EGR1 pathway modulates age-related tenogenic differentiation in tendon stem/progenitor cells. Acta Biochim Biophys Sin (Shanghai), 49(11), 1015–1021. https://doi.org/10.1093/abbs/gmx104.

    CAS  Article  Google Scholar 

  36. 36.

    Chen, L., Liu, J., Tao, X., Wang, G., Wang, Q., & Liu, X. (2015). The role of Pin1 protein in aging of human tendon stem/progenitor cells. Biochemical and Biophysical Research Communications, 464(2), 487–492. https://doi.org/10.1016/j.bbrc.2015.06.163.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hu, C., Zhang, Y., Tang, K., Luo, Y., Liu, Y., & Chen, W. (2017). Downregulation of CITED2 contributes to TGFbeta-mediated senescence of tendon-derived stem cells. Cell and Tissue Research, 368(1), 93–104. https://doi.org/10.1007/s00441-016-2552-1.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Chen, M., Li, Y., Xiao, L., Dai, G., Lu, P., Wang, Y., & Rui, Y. (2020). AQP1 modulates tendon stem/progenitor cells senescence during tendon aging. Cell Death & Disease, 11(3), 193. https://doi.org/10.1038/s41419-020-2386-3.

    Article  Google Scholar 

  39. 39.

    Xu, H., & Liu, F. (2018). Downregulation of FOXP1 correlates with tendon stem/progenitor cells aging. Biochemical and Biophysical Research Communications, 504(1), 96–102. https://doi.org/10.1016/j.bbrc.2018.08.136.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Kim, S. J., Tatman, P. D., Song, D. H., Gee, A. O., Kim, D. H., & Kim, S. J. (2018). Nanotopographic cues and stiffness control of tendon-derived stem cells from diverse conditions. International Journal of Nanomedicine, 13, 7217–7227. https://doi.org/10.2147/IJN.S181743.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Lu, C. C., Zhang, T., Reisdorf, R. L., Amadio, P. C., An, K. N., Moran, S. L., Gingery, A., & Zhao, C. (2019). Biological analysis of flexor tendon repair-failure stump tissue: A potential recycling of tissue for tendon regeneration. Bone Joint Res, 8(6), 232–245. https://doi.org/10.1302/2046-3758.86.BJR-2018-0239.R1.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Yang, D., Wei, Y., Lu, Q., Qin, D., Zhang, M., du, X., Xu, W., Yu, X., He, C., Li, N., Peng, S., Li, G., & Hua, J. (2020). Melatonin alleviates LPS-induced endoplasmic reticulum stress and inflammation in spermatogonial stem cells. Journal of Cellular Physiology. https://doi.org/10.1002/jcp.30088.

  43. 43.

    Ha, T. W., Jeong, J. H., Shin, H. S., Kim, H. K., Im, J. S., Song, B. H., Hanna, J., Oh, J. S., Woo, D. H., Han, J., & Lee, M. R. (2020). Characterization of endoplasmic reticulum (ER) in human pluripotent stem cells revealed increased susceptibility to cell death upon ER stress. Cells, 9(5). https://doi.org/10.3390/cells9051078.

  44. 44.

    Tan, Q., Lui, P. P. Y., Rui, Y. F., & Wong, Y. M. (2012). Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Engineering. Part A, 18(7–8), 840–851. https://doi.org/10.1089/ten.TEA.2011.0362.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Qi, F., et al. (2020). From the perspective of embryonic tendon development: Various cells applied to tendon tissue engineering. Ann Transl Med, 8(4), 131. https://doi.org/10.21037/atm.2019.12.78.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zheng, Y. L. (2016). Some ethical concerns about human induced pluripotent stem cells. Science and Engineering Ethics, 22(5), 1277–1284. https://doi.org/10.1007/s11948-015-9693-6.

    Article  PubMed  Google Scholar 

  47. 47.

    Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell, 27(4), 523–531. https://doi.org/10.1016/j.stem.2020.09.014.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Guo, R., Gao, L., & Xu, B. (2018). Current evidence of adult stem cells to enhance anterior cruciate ligament treatment: A systematic review of animal trials. Arthroscopy, 34(1), 331–340 e332. https://doi.org/10.1016/j.arthro.2017.07.010.

    Article  PubMed  Google Scholar 

  49. 49.

    Burk, J., Ribitsch, I., Gittel, C., Juelke, H., Kasper, C., Staszyk, C., & Brehm, W. (2013). Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources. Veterinary Journal, 195(1), 98–106. https://doi.org/10.1016/j.tvjl.2012.06.004.

    CAS  Article  Google Scholar 

  50. 50.

    Liu, C., Luo, J. W., Zhang, K. K., Lin, L. X., Liang, T., Luo, Z. P., Zhuang, Y. Q., & Sun, Y. L. (2018). Tendon-derived stem cell differentiation in the degenerative tendon microenvironment. Stem Cells International, 2018, 2613821–2613812. https://doi.org/10.1155/2018/2613821.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kwan, C. K., Fu, S. C., & Yung, P. S. H. (2020). A high glucose level stimulate inflammation and weaken pro-resolving response in tendon cells - a possible factor contributing to tendinopathy in diabetic patients. Asia Pac J Sports Med Arthrosc Rehabil Technol, 19, 1–6. https://doi.org/10.1016/j.asmart.2019.10.002.

    Article  PubMed  Google Scholar 

  52. 52.

    Yang, J., Zhao, Q., Wang, K., Liu, H., Ma, C., Huang, H., & Liu, Y. (2016). Isolation and biological characterization of tendon-derived stem cells from fetal bovine. Vitro Cell Dev Biol Anim, 52(8), 846–856. https://doi.org/10.1007/s11626-016-0043-z.

    CAS  Article  Google Scholar 

  53. 53.

    Williamson, K. A., Lee, K. J., Humphreys, W. J. E., Comerford, E. J. V., Clegg, P. D., & Canty-Laird, E. G. (2015). Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT). Journal of Orthopaedic Research, 33(6), 849–858. https://doi.org/10.1002/jor.22891.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Mienaltowski, M. J., Adams, S. M., & Birk, D. E. (2014). Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties. Stem Cell Research & Therapy, 5(4), 86. https://doi.org/10.1186/scrt475.

    Article  Google Scholar 

  55. 55.

    Lee, K. J., Clegg, P. D., Comerford, E. J., & Canty-Laird, E. G. (2018). A comparison of the stem cell characteristics of murine tenocytes and tendon-derived stem cells. BMC Musculoskeletal Disorders, 19(1), 116. https://doi.org/10.1186/s12891-018-2038-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Chen, J., Zhang, W., Liu, Z., Zhu, T., Shen, W., Ran, J., Tang, Q., Gong, X., Backman, L. J., Chen, X., Chen, X., Wen, F., & Ouyang, H. (2016). Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Scientific Reports, 6, 22946. https://doi.org/10.1038/srep22946.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Lee, W. Y., et al. (2012). Hypoxia-mediated efficient expansion of human tendon-derived stem cells in vitro. Tissue Engineering. Part A, 18(5–6), 484–498. https://doi.org/10.1089/ten.TEA.2011.0130.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Zhang, J., & Wang, J. H. (2013). Human tendon stem cells better maintain their stemness in hypoxic culture conditions. PLoS One, 8(4), e61424. https://doi.org/10.1371/journal.pone.0061424.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Yu, Y., et al. (2017). Effect of hypoxia on self-renewal capacity and differentiation in human tendon-derived stem cells. Medical Science Monitor, 23, 1334–1339. https://doi.org/10.12659/msm.903892.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Li, P., Xu, Y., Gan, Y., Song, L., Zhang, C., Wang, L., & Zhou, Q. (2016). Role of the ERK1/2 signaling pathway in Osteogenesis of rat tendon-derived stem cells in normoxic and hypoxic cultures. International Journal of Medical Sciences, 13(8), 629–637. https://doi.org/10.7150/ijms.16045.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Zhang, J., et al. (2016). Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats. Oncotarget, 7(8), 8498–8512. https://doi.org/10.18632/oncotarget.7381.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Qiu, S., Jia, Y., Tang, J., Liu, X., Hu, H., Wu, T., & Chai, Y. (2018). Von Hippel-Lindau (VHL) protein antagonist, VH298, promotes functional activities of tendon-derived stem cells and accelerates healing of entheses in rats by inhibiting ubiquitination of hydroxy-HIF-1alpha. Biochemical and Biophysical Research Communications, 505(4), 1063–1069. https://doi.org/10.1016/j.bbrc.2018.09.172.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Chen, S., et al. (2018). Interleukin-6 promotes proliferation but inhibits Tenogenic differentiation via the Janus kinase/signal transducers and activators of transcription 3 (JAK/STAT3) pathway in tendon-derived stem cells. Medical Science Monitor, 24, 1567–1573. https://doi.org/10.12659/msm.908802.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Wu, T., Liu, S., Wen, G., Xu, J., Yu, Y., & Chai, Y. (2017). Celastrol improves self-renewal and differentiation of human tendon-derived stem cells by suppressing Smad7 through hypoxia. Stem Cell Research & Therapy, 8(1), 274. https://doi.org/10.1186/s13287-017-0724-x.

    CAS  Article  Google Scholar 

  65. 65.

    Lee, Y. W., Fu, S. C., Yeung, M. Y., Lau, C. M. L., Chan, K. M., & Hung, L. K. (2017). Effects of redox modulation on cell proliferation, viability, and migration in cultured rat and human tendon progenitor cells. Oxidative Medicine and Cellular Longevity, 2017, 8785042–8785048. https://doi.org/10.1155/2017/8785042.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Han, W., Chen, L., Liu, J., & Guo, A. (2017). Enhanced tenogenic differentiation and tendon-like tissue formation by CHIP overexpression in tendon-derived stem cells. Acta Biochim Biophys Sin (Shanghai), 49(4), 311–317. https://doi.org/10.1093/abbs/gmx005.

    CAS  Article  Google Scholar 

  67. 67.

    Han, P., Cui, Q., Yang, S., Wang, H., Gao, P., & Li, Z. (2017). Tumor necrosis factor-alpha and transforming growth factor-beta1 facilitate differentiation and proliferation of tendon-derived stem cells in vitro. Biotechnology Letters, 39(5), 711–719. https://doi.org/10.1007/s10529-017-2296-3.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Tarafder, S., Chen, E., Jun, Y., Kao, K., Sim, K. H., Back, J., Lee, F. Y., & Lee, C. H. (2017). Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. The FASEB Journal, 31(9), 3991–3998. https://doi.org/10.1096/fj.201700071R.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Lui, P. P. (2015). Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development. Stem Cell Research & Therapy, 6(1), 106. https://doi.org/10.1186/s13287-015-0097-y.

    CAS  Article  Google Scholar 

  70. 70.

    Zhang, X., Lin, Y. C., Rui, Y. F., Xu, H. L., Chen, H., Wang, C., & Teng, G. J. (2016). Therapeutic roles of tendon stem/progenitor cells in Tendinopathy. Stem Cells International, 2016, 4076578–4076514. https://doi.org/10.1155/2016/4076578.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Liu, C., Luo, J. W., Liang, T., Lin, L. X., Luo, Z. P., Zhuang, Y. Q., & Sun, Y. L. (2018). Matrix stiffness regulates the differentiation of tendon-derived stem cells through FAK-ERK1/2 activation. Experimental Cell Research, 373(1–2), 62–70. https://doi.org/10.1016/j.yexcr.2018.08.023.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Liu, Y., Xu, J., Xu, L., Wu, T., Sun, Y., Lee, Y. W., Wang, B., Chan, H. C., Jiang, X., Zhang, J., & Li, G. (2017). Cystic fibrosis transmembrane conductance regulator mediates tenogenic differentiation of tendon-derived stem cells and tendon repair: Accelerating tendon injury healing by intervening in its downstream signaling. The FASEB Journal, 31(9), 3800–3815. https://doi.org/10.1096/fj.201601181R.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Lejard, V., Blais, F., Guerquin, M. J., Bonnet, A., Bonnin, M. A., Havis, E., Malbouyres, M., Bidaud, C. B., Maro, G., Gilardi-Hebenstreit, P., Rossert, J., Ruggiero, F., & Duprez, D. (2011). EGR1 and EGR2 involvement in vertebrate tendon differentiation. The Journal of Biological Chemistry, 286(7), 5855–5867. https://doi.org/10.1074/jbc.M110.153106.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Jiang, H., Chen, Y., Chen, G., Tian, X., Tang, J., Luo, L., Huang, M., Yan, B., Ao, X., Zhou, W., Wang, L., Bai, X., Zhang, Z., Wang, L., & Xian, C. J. (2018). Leptin accelerates the pathogenesis of heterotopic ossification in rat tendon tissues via mTORC1 signaling. Journal of Cellular Physiology, 233(2), 1017–1028. https://doi.org/10.1002/jcp.25955.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Qin, S., Wang, W., Liu, Z., Hua, X., Fu, S. C., Dong, F., Li, A., Liu, Z., Wang, P., Dai, L., Liang, P., Zhang, J., Cao, W., Xiong, X., Chen, H., & Xu, J. (2020). Fibrochondrogenic differentiation potential of tendon-derived stem/progenitor cells from human patellar tendon. J Orthop Translat, 22, 101–108. https://doi.org/10.1016/j.jot.2019.08.006.

    Article  PubMed  Google Scholar 

  76. 76.

    Cheng, X., Xu, J., Hu, Z., Jiang, J., Wang, Z., & Lu, M. (2020). Dual-modal magnetic resonance and photoacoustic tracking and outcome of transplanted tendon stem cells in the rat rotator cuff injury model. Scientific Reports, 10(1), 13954. https://doi.org/10.1038/s41598-020-69214-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Lu, M., Cheng, X., Jiang, J., Li, T. T., Zhang, Z., Tsauo, C., Liu, Y., & Wang, Z. (2018). Dual-modal photoacoustic and magnetic resonance tracking of tendon stem cells with PLGA/iron oxide microparticles in vitro. PLoS One, 13(4), e0193362. https://doi.org/10.1371/journal.pone.0193362.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Rajpar, I., & Barrett, J. G. (2020). Multi-differentiation potential is necessary for optimal tenogenesis of tendon stem cells. Stem Cell Research & Therapy, 11(1), 152. https://doi.org/10.1186/s13287-020-01640-8.

    CAS  Article  Google Scholar 

  79. 79.

    Brown, J. P., Galassi, T. V., Stoppato, M., Schiele, N. R., & Kuo, C. K. (2015). Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Research & Therapy, 6, 89. https://doi.org/10.1186/s13287-015-0043-z.

    CAS  Article  Google Scholar 

  80. 80.

    Liu, J., Tao, X., Chen, L., Han, W., Zhou, Y., & Tang, K. (2015). CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cellular Physiology and Biochemistry, 35(5), 1831–1845. https://doi.org/10.1159/000373994.

    CAS  Article  PubMed  Google Scholar 

  81. 81.

    Xu, K., Sun, Y., Kh al-ani, M., Wang, C., Sha, Y., Sung, K. L. P., Dong, N., Qiu, X., & Yang, L. (2018). Synergistic promoting effects of bone morphogenetic protein 12/connective tissue growth factor on functional differentiation of tendon derived stem cells and patellar tendon window defect regeneration. Journal of Biomechanics, 66, 95–102. https://doi.org/10.1016/j.jbiomech.2017.11.004.

    Article  PubMed  Google Scholar 

  82. 82.

    Seabaugh, K. A., Thoresen, M., & Giguère, S. (2017). Extracorporeal shockwave therapy increases growth factor release from equine platelet-rich plasma in vitro. Front Vet Sci, 4, 205. https://doi.org/10.3389/fvets.2017.00205.

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Xu, K., al-ani, M. K., Sun, Y., Xu, W., Pan, L., Song, Y., Xu, Z. L., Pan, X., & Yang, L. (2017). Platelet-rich plasma activates tendon-derived stem cells to promote regeneration of Achilles tendon rupture in rats. Journal of Tissue Engineering and Regenerative Medicine, 11(4), 1173–1184. https://doi.org/10.1002/term.2020.

    CAS  Article  PubMed  Google Scholar 

  84. 84.

    Zhang, L., Chen, S., Chang, P., Bao, N., Yang, C., Ti, Y., Zhou, L., & Zhao, J. (2016). Harmful effects of leukocyte-rich platelet-rich plasma on rabbit tendon stem cells in vitro. The American Journal of Sports Medicine, 44(8), 1941–1951. https://doi.org/10.1177/0363546516644718.

    Article  PubMed  Google Scholar 

  85. 85.

    Zhou, Y., Zhang, J., Wu, H., Hogan, M. C. V., & Wang, J. H. C. (2015). The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Research & Therapy, 6(1), 173. https://doi.org/10.1186/s13287-015-0172-4.

    CAS  Article  Google Scholar 

  86. 86.

    Li, X., Pongkitwitoon, S., Lu, H., Lee, C., Gelberman, R., & Thomopoulos, S. (2019). CTGF induces tenogenic differentiation and proliferation of adipose-derived stromal cells. Journal of Orthopaedic Research, 37(3), 574–582. https://doi.org/10.1002/jor.24248.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Lee, C. H., Lee, F. Y., Tarafder, S., Kao, K., Jun, Y., Yang, G., & Mao, J. J. (2015). Harnessing endogenous stem/progenitor cells for tendon regeneration. The Journal of Clinical Investigation, 125(7), 2690–2701. https://doi.org/10.1172/JCI81589.

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Vigano, M., et al. (2017). Different culture conditions affect the growth of human tendon stem/progenitor cells (TSPCs) within a mixed tendon cells (TCs) population. J Exp Orthop, 4(1), 8. https://doi.org/10.1186/s40634-017-0082-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Deng, G., Li, K., Chen, S., Chen, P., Zheng, H., Yu, B., & Zhang, K. (2018). Interleukin10 promotes proliferation and migration, and inhibits tendon differentiation via the JAK/Stat3 pathway in tendonderived stem cells in vitro. Molecular Medicine Reports, 18(6), 5044–5052. https://doi.org/10.3892/mmr.2018.9547.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Zhang, K., Asai, S., Yu, B., & Enomoto-Iwamoto, M. (2015). IL-1beta irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochemical and Biophysical Research Communications, 463(4), 667–672. https://doi.org/10.1016/j.bbrc.2015.05.122.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Zhang, Y. J., Qing, Q., Zhang, Y. J., Ning, L. J., Cui, J., Yao, X., Luo, J. C., Ding, W., & Qin, T. W. (2019). Enhancement of tenogenic differentiation of rat tendon-derived stem cells by biglycan. Journal of Cellular Physiology, 234, 15898–15910. https://doi.org/10.1002/jcp.28247.

    CAS  Article  Google Scholar 

  92. 92.

    Yu, Y., Chen, Y., Zheng, Y. J., Weng, Q. H., Zhu, S. P., & Zhou, D. S. (2020). LncRNA TUG1 promoted osteogenic differentiation through promoting bFGF ubiquitination. Vitro Cell Dev Biol Anim, 56(1), 42–48. https://doi.org/10.1007/s11626-019-00410-y.

    Article  Google Scholar 

  93. 93.

    Geng, Y., Zhao, X., Xu, J., Zhang, X., Hu, G., Fu, S. C., Dai, K., Chen, X., Patrick, Y. H., & Zhang, X. (2020). Overexpression of mechanical sensitive miR-337-3p alleviates ectopic ossification in rat tendinopathy model via targeting IRS1 and Nox4 of tendon-derived stem cells. Journal of Molecular Cell Biology, 12(4), 305–317. https://doi.org/10.1093/jmcb/mjz030.

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Lu, Y. F., Liu, Y., Fu, W. M., Xu, J., Wang, B., Sun, Y. X., Wu, T. Y., Xu, L. L., Chan, K. M., Zhang, J. F., & Li, G. (2017). Long noncoding RNA H19 accelerates tenogenic differentiation and promotes tendon healing through targeting miR-29b-3p and activating TGF-beta1 signaling. The FASEB Journal, 31(3), 954–964. https://doi.org/10.1096/fj.201600722R.

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Yu, Y., Chen, Y., Zhang, X., Lu, X., Hong, J., Guo, X., & Zhou, D. (2018). Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARgamma and RUNX2. Cell Cycle, 17(19–20), 2374–2385. https://doi.org/10.1080/15384101.2018.1534510.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Chen, Y., et al. (2020). Targeted pathological collagen delivery of sustained-release rapamycin to prevent heterotopic ossification. Science Advances, 6(18), eaay9526. https://doi.org/10.1126/sciadv.aay9526.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Bergante, S., Creo, P., Piccoli, M., Ghiroldi, A., Menon, A., Cirillo, F., Rota, P., Monasky, M. M., Ciconte, G., Pappone, C., Randelli, P., & Anastasia, L. (2018). GM1 Ganglioside promotes Osteogenic differentiation of human tendon stem cells. Stem Cells International, 2018, 4706943–4706948. https://doi.org/10.1155/2018/4706943.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Tao, X., Liu, J., Chen, L., Zhou, Y., & Tang, K. (2015). EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cellular Physiology and Biochemistry, 35(2), 699–709. https://doi.org/10.1159/000369730.

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Wang, B., Guo, J., Feng, L., Suen, C. W., Fu, W. M., Zhang, J. F., & Li, G. (2016). MiR124 suppresses collagen formation of human tendon derived stem cells through targeting egr1. Experimental Cell Research, 347(2), 360–366. https://doi.org/10.1016/j.yexcr.2016.08.018.

    CAS  Article  PubMed  Google Scholar 

  100. 100.

    Liu, J., Han, W., Chen, L., & Tang, K. (2016). Mechanism of osteogenic and adipogenic differentiation of tendon stem cells induced by sirtuin 1. Molecular Medicine Reports, 14(2), 1643–1648. https://doi.org/10.3892/mmr.2016.5417.

    CAS  Article  PubMed  Google Scholar 

  101. 101.

    Xu, L., Xu, K., Wu, Z., Chen, Z., He, Y., Ma, C., Moqbel, S. A. A., Ran, J., Zhang, C., Wu, L., & Xiong, Y. (2020). Pioglitazone attenuates advanced glycation end products-induced apoptosis and calcification by modulating autophagy in tendon-derived stem cells. Journal of Cellular and Molecular Medicine, 24(3), 2240–2251. https://doi.org/10.1111/jcmm.14901.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Li, K., Deng, G., Deng, Y., Chen, S., Wu, H., Cheng, C., Zhang, X., Yu, B., & Zhang, K. (2019). High cholesterol inhibits tendon-related gene expressions in tendon-derived stem cells through reactive oxygen species-activated nuclear factor-kappaB signaling. Journal of Cellular Physiology, 234(10), 18017–18028. https://doi.org/10.1002/jcp.28433.

    CAS  Article  PubMed  Google Scholar 

  103. 103.

    Lin, Y. C., et al. (2017). The effects of high glucose on tendon-derived stem cells: Implications of the pathogenesis of diabetic tendon disorders. Oncotarget, 8(11), 17518–17528. https://doi.org/10.18632/oncotarget.15418.

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Ning, L. J., Zhang, Y. J., Zhang, Y., Qing, Q., Jiang, Y. L., Yang, J. L., Luo, J. C., & Qin, T. W. (2015). The utilization of decellularized tendon slices to provide an inductive microenvironment for the proliferation and tenogenic differentiation of stem cells. Biomaterials, 52, 539–550. https://doi.org/10.1016/j.biomaterials.2015.02.061.

    CAS  Article  PubMed  Google Scholar 

  105. 105.

    Zhang, J., Li, B., & Wang, J. H. C. (2011). The role of engineered tendon matrix in the stemness of tendon stem cells in vitro and the promotion of tendon-like tissue formation in vivo. Biomaterials, 32(29), 6972–6981. https://doi.org/10.1016/j.biomaterials.2011.05.088.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Yin, Z., Chen, X., Zhu, T., Hu, J. J., Song, H. X., Shen, W. L., Jiang, L. Y., Heng, B. C., Ji, J. F., & Ouyang, H. W. (2013). The effect of decellularized matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta Biomaterialia, 9(12), 9317–9329. https://doi.org/10.1016/j.actbio.2013.07.022.

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Jiang, D., et al. (2018). Effects of young extracellular matrix on the biological characteristics of aged tendon stem cells. Advances in Clinical and Experimental Medicine, 27(12), 1625–1630. https://doi.org/10.17219/acem/75503.

    Article  PubMed  Google Scholar 

  108. 108.

    Popov, C., Burggraf, M., Kreja, L., Ignatius, A., Schieker, M., & Docheva, D. (2015). Mechanical stimulation of human tendon stem/progenitor cells results in upregulation of matrix proteins, integrins and MMPs, and activation of p38 and ERK1/2 kinases. BMC Molecular Biology, 16, 6. https://doi.org/10.1186/s12867-015-0036-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Wang, T., Thien, C., Wang, C., Ni, M., Gao, J., Wang, A., Jiang, Q., Tuan, R. S., Zheng, Q., & Zheng, M. H. (2018). 3D uniaxial mechanical stimulation induces tenogenic differentiation of tendon-derived stem cells through a PI3K/AKT signaling pathway. The FASEB Journal, 32(9), 4804–4814. https://doi.org/10.1096/fj.201701384R.

    CAS  Article  PubMed  Google Scholar 

  110. 110.

    Chen, Z., Chen, P., Ruan, R., Chen, L., Yuan, J., Wood, D., Wang, T., & Zheng, M. H. (2020). Applying a three-dimensional uniaxial mechanical stimulation bioreactor system to induce Tenogenic differentiation of tendon-derived stem cells. Journal of Visualized Experiments, 162. https://doi.org/10.3791/61278.

  111. 111.

    Xu, Y., Wang, Q., Li, Y., Gan, Y., Li, P., Li, S., Zhou, Y., & Zhou, Q. (2015). Cyclic tensile strain induces Tenogenic differentiation of tendon-derived stem cells in bioreactor culture. BioMed Research International, 2015, 790804–790813. https://doi.org/10.1155/2015/790804.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Chen, H., Ge, H. A., Wu, G. B., Cheng, B., Lu, Y., & Jiang, C. (2016). Autophagy prevents oxidative stress-induced loss of self-renewal capacity and Stemness in human tendon stem cells by reducing ROS accumulation. Cellular Physiology and Biochemistry, 39(6), 2227–2238. https://doi.org/10.1159/000447916.

    CAS  Article  PubMed  Google Scholar 

  113. 113.

    Hu, J. J., Yin, Z., Shen, W. L., Xie, Y. B., Zhu, T., Lu, P., Cai, Y. Z., Kong, M. J., Heng, B. C., Zhou, Y. T., Chen, W. S., Chen, X., & Ouyang, H. W. (2016). Pharmacological regulation of in situ tissue stem cells differentiation for soft tissue calcification treatment. Stem Cells, 34(4), 1083–1096. https://doi.org/10.1002/stem.2306.

    CAS  Article  PubMed  Google Scholar 

  114. 114.

    Schmalzl, J., Plumhoff, P., Gilbert, F., Gohlke, F., Konrads, C., Brunner, U., Jakob, F., Ebert, R., & Steinert, A. F. (2019). Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res, 8(9), 414–424. https://doi.org/10.1302/2046-3758.89.BJR-2018-0214.R2.

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Chen, W., Tang, H., Zhou, M., Hu, C., Zhang, J., & Tang, K. (2015). Dexamethasone inhibits the differentiation of rat tendon stem cells into tenocytes by targeting the scleraxis gene. The Journal of Steroid Biochemistry and Molecular Biology, 152, 16–24. https://doi.org/10.1016/j.jsbmb.2015.04.010.

    CAS  Article  PubMed  Google Scholar 

  116. 116.

    Zhang, J., Keenan, C., & Wang, J. H. C. (2013). The effects of dexamethasone on human patellar tendon stem cells: Implications for dexamethasone treatment of tendon injury. Journal of Orthopaedic Research, 31(1), 105–110. https://doi.org/10.1002/jor.22193.

    CAS  Article  PubMed  Google Scholar 

  117. 117.

    Wang, Y., He, G., Tang, H., Shi, Y., Kang, X., Lyu, J., Zhu, M., Zhou, M., Yang, M., Mu, M., Chen, W., Zhou, B., Zhang, J., & Tang, K. (2019). Aspirin inhibits inflammation and scar formation in the injury tendon healing through regulating JNK/STAT-3 signalling pathway. Cell Proliferation, 52(4), e12650. https://doi.org/10.1111/cpr.12650.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Wang, Y., He, G., Wang, F., Zhang, C., Ge, Z., Zheng, X., Deng, H., Yuan, C., Zhou, B., Tao, X., Zhang, J., & Tang, K. (2019). Aspirin inhibits adipogenesis of tendon stem cells and lipids accumulation in rat injury tendon through regulating PTEN/PI3K/AKT signalling. Journal of Cellular and Molecular Medicine, 23(11), 7535–7544. https://doi.org/10.1111/jcmm.14622.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Shi, Z., Wang, Q., & Jiang, D. (2019). Ascorbic acid mitigates the deleterious effects of nicotine on tendon stem cells. Connective Tissue Research, 62, 1–11. https://doi.org/10.1080/03008207.2019.1663349.

    CAS  Article  Google Scholar 

  120. 120.

    Zhou, W., Lin, X., Chu, J., Jiang, T., Zhao, H., Yan, B., & Zhang, Z. (2019). Magnolol prevents ossified tendinopathy by inhibiting PGE2-induced osteogenic differentiation of TDSCs. International Immunopharmacology, 70, 117–124. https://doi.org/10.1016/j.intimp.2019.02.010.

    CAS  Article  PubMed  Google Scholar 

  121. 121.

    Tian, X., Jiang, H., Chen, Y., Ao, X., Chen, C., Zhang, W., He, F., Liao, X., Jiang, X., Li, T., Zhang, Z., & Zhang, X. (2018). Baicalein accelerates tendon-bone healing via activation of Wnt/beta-catenin signaling pathway in rats. BioMed Research International, 2018, 3849760–3849769. https://doi.org/10.1155/2018/3849760.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. 122.

    Wang, Y., He, G., Guo, Y., Tang, H., Shi, Y., Bian, X., Zhu, M., Kang, X., Zhou, M., Lyu, J., Yang, M., Mu, M., Lai, F., Lu, K., Chen, W., Zhou, B., Zhang, J., & Tang, K. (2019). Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. Journal of Cellular and Molecular Medicine, 23(8), 5475–5485. https://doi.org/10.1111/jcmm.14430.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Yang, Z., et al. (2017). Effect of tendon stem cells in chitosan/beta-Glycerophosphate/collagen hydrogel on Achilles tendon healing in a rat model. Medical Science Monitor, 23, 4633–4643. https://doi.org/10.12659/msm.906747.

    CAS  Article  PubMed  Google Scholar 

  124. 124.

    Yin, H., Yan, Z., Bauer, R. J., Peng, J., Schieker, M., Nerlich, M., & Docheva, D. (2018). Functionalized thermosensitive hydrogel combined with tendon stem/progenitor cells as injectable cell delivery carrier for tendon tissue engineering. Biomedical Materials, 13(3), 034107. https://doi.org/10.1088/1748-605X/aaadd1.

    Article  PubMed  Google Scholar 

  125. 125.

    Chang, D., Shimizu, T., Haraguchi, Y., Gao, S., Sakaguchi, K., Umezu, M., Yamato, M., Liu, Z., & Okano, T. (2015). Time course of cell sheet adhesion to porcine heart tissue after transplantation. PLoS One, 10(10), e0137494. https://doi.org/10.1371/journal.pone.0137494.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Zhang, H., Zhou, Y., Zhang, W., Wang, K., Xu, L., Ma, H., & Deng, Y. (2018). Construction of vascularized tissue-engineered bone with a double-cell sheet complex. Acta Biomaterialia, 77, 212–227. https://doi.org/10.1016/j.actbio.2018.07.024.

    CAS  Article  PubMed  Google Scholar 

  127. 127.

    Kawanishi, K., Yamato, M., Sakiyama, R., Okano, T., & Nitta, K. (2016). Peritoneal cell sheets composed of mesothelial cells and fibroblasts prevent intra-abdominal adhesion formation in a rat model. Journal of Tissue Engineering and Regenerative Medicine, 10(10), 855–866. https://doi.org/10.1002/term.1860.

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Bardag-Gorce, F., Oliva, J., Wood, A., Hoft, R., Pan, D., Thropay, J., Makalinao, A., French, S. W., & Niihara, Y. (2015). Carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) for corneal epithelium reconstruction: A histological study. The Ocular Surface, 13(2), 150–163. https://doi.org/10.1016/j.jtos.2014.12.003.

    Article  PubMed  Google Scholar 

  129. 129.

    Zhang, C., Zhang, E., Yang, L., Tu, W., Lin, J., Yuan, C., Bunpetch, V., Chen, X., & Ouyang, H. (2018). Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair. Biomaterials, 172, 66–82. https://doi.org/10.1016/j.biomaterials.2018.03.043.

    CAS  Article  PubMed  Google Scholar 

  130. 130.

    Liu, Y., Suen, C. W., Zhang, J. F., & Li, G. (2017). Current concepts on tenogenic differentiation and clinical applications. J Orthop Translat, 9, 28–42. https://doi.org/10.1016/j.jot.2017.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Song, H., Yin, Z., Wu, T., Li, Y., Luo, X., Xu, M., Duan, L., & Li, J. (2018). Enhanced effect of tendon stem/progenitor cells combined with tendon-derived Decellularized extracellular matrix on tendon regeneration. Cell Transplantation, 27(11), 1634–1643. https://doi.org/10.1177/0963689718805383.

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Han, F., Zhang, P., Wen, X., Lin, C., & Zhao, P. (2019). Bioactive LbL-assembled multilayer nanofilms upregulate tenogenesis and angiogenesis enabling robust healing of degenerative rotator cuff tendons in vivo. Biomaterials Science, 7(10), 4388–4398. https://doi.org/10.1039/c9bm00413k.

    CAS  Article  PubMed  Google Scholar 

  133. 133.

    Zhang, C., Wang, X., Zhang, E., Yang, L., Yuan, H., Tu, W., Zhang, H., Yin, Z., Shen, W., Chen, X., Zhang, Y., & Ouyang, H. (2018). An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomaterialia, 66, 141–156. https://doi.org/10.1016/j.actbio.2017.09.036.

    CAS  Article  PubMed  Google Scholar 

  134. 134.

    Nourissat, G., Berenbaum, F., & Duprez, D. (2015). Tendon injury: From biology to tendon repair. Nature Reviews Rheumatology, 11(4), 223–233. https://doi.org/10.1038/nrrheum.2015.26.

    Article  PubMed  Google Scholar 

  135. 135.

    Heinemeier, K. M., Mackey, A. L., Doessing, S., Hansen, M., Bayer, M. L., Nielsen, R. H., Herchenhan, A., Malmgaard-Clausen, N. M., & Kjaer, M. (2012). GH/IGF-I axis and matrix adaptation of the musculotendinous tissue to exercise in humans. Scandinavian Journal of Medicine & Science in Sports, 22(4), e1–e7. https://doi.org/10.1111/j.1600-0838.2012.01459.x.

    CAS  Article  Google Scholar 

  136. 136.

    Liu, X., Chen, W., Zhou, Y., Tang, K., & Zhang, J. (2015). Mechanical tension promotes the Osteogenic differentiation of rat tendon-derived stem cells through the Wnt5a/Wnt5b/JNK signaling pathway. Cellular Physiology and Biochemistry, 36(2), 517–530. https://doi.org/10.1159/000430117.

    CAS  Article  PubMed  Google Scholar 

  137. 137.

    Wang, Y., Tang, H., He, G., Shi, Y., Kang, X., Lyu, J., Zhou, M., Zhu, M., Zhang, J., & Tang, K. (2018). High concentration of aspirin induces apoptosis in rat tendon stem cells via inhibition of the Wnt/beta-catenin pathway. Cellular Physiology and Biochemistry, 50(6), 2046–2059. https://doi.org/10.1159/000495050.

    CAS  Article  PubMed  Google Scholar 

  138. 138.

    Chen, W., Tang, H., Liu, X., Zhou, M., Zhang, J., & Tang, K. (2015). Dickkopf1 up-regulation induced by a high concentration of dexamethasone promotes rat tendon stem cells to differentiate into adipocytes. Cellular Physiology and Biochemistry, 37(5), 1738–1749. https://doi.org/10.1159/000438538.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mingliang Ji, Yucheng Lin from Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University.

Code Availability

Not applicable.

Funding

This work was supported by The National Natural Science Foundation of China (Grant numbers 81672159 and 82072427).

Author information

Affiliations

Authors

Contributions

Bing Wei performed the literature search, data analysis, and prepared table, figures and drafted manuscript; Jun Lu had the idea for the article and critically revised the work.

Corresponding author

Correspondence to Jun Lu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflicts of interest.

Compliance with Ethics Standards

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Lu, J. Characterization of Tendon-Derived Stem Cells and Rescue Tendon Injury. Stem Cell Rev and Rep (2021). https://doi.org/10.1007/s12015-021-10143-9

Download citation

Keywords

  • Tendon-derived stem cells
  • Differentiation
  • Proliferation
  • Markers
  • Tendon injury