Skip to main content
Log in

Retinoic Acid Benefits Glomerular Organotypic Differentiation from Adult Renal Progenitor Cells In Vitro

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Summary

When in certain culture conditions, organotypic cultures are able to mimic developmental stages of an organ, generating higher-order structures containing functional subunits and progenitor niches. Despite the major advances in the area, researchers have not been able to fully recapitulate the complexity of kidney tissue. Pluripotent stem cells are extensively used in the field, but very few studies make use of adult stem cells. Herein, we describe a simple and feasible method for achieving glomerular epithelial differentiation on an organotypic model comprising human renal progenitor cells from adult kidney (hRPCs). Their glomerular differentiative potential was studied using retinoic acid (RA), a fundamental molecule for intermediate mesoderm induction on early embryogenesis. Immunofluorescence, specific cell surface markers expression and gene expression analysis confirm the glomerular differentiative potential of RA in a short-term culture. We also compared the potential of RA with a potent WNT agonist, CHIR99021, on the differentiative capacity of hRPCs. Gene expression and immunofluorescence analysis confirmed that hRPCs are more sensitive to RA stimulation when compared to CHIR9901. Endothelial cells were also included on the spheroids, resulting in a higher organizational level. The assembly potential of these cells and their selective stimulation will give new insights on adult organotypic cell culture studies and will hopefully guide more works in this important area of research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeidel, M. L., Hoenig, M. P., & Palevsky, P. M. (2014). A new CJASN series: Renal physiology for the clinician. Clinical journal of the American Society of Nephrology : CJASN, 9(7), 1271. https://doi.org/10.2215/CJN.10191012.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D., & Hoy, W. E. (2011). Human nephron number: Implications for health and disease. Pediatric Nephrology, 26(9), 1529–1533. https://doi.org/10.1007/s00467-011-1843-8.

    Article  PubMed  Google Scholar 

  3. Abolbashari, M., Agcaoili, S. M., Lee, M.-K. K., Ko, I. K., Aboushwareb, T., Jackson, J. D., et al. (2016). Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomaterialia, 29, 52–61. https://doi.org/10.1016/j.actbio.2015.11.026.

    Article  CAS  PubMed  Google Scholar 

  4. Song, J. J., Guyette, J. P., Gilpin, S. E., Gonzalez, G., Vacanti, J. P., & Ott, H. C. (2013). Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 19(5), 646–651. https://doi.org/10.1038/nm.3154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sakolish, C. M., & Mahler, G. J. (2017). A novel microfluidic device to model the human proximal tubule and glomerulus. RSC Advances, 7(8), 4216–4225. https://doi.org/10.1039/C6RA25641D.

    Article  CAS  Google Scholar 

  6. Lin, N. Y. C., Homan, K. A., Robinson, S. S., Kolesky, D. B., Duarte, N., Moisan, A., & Lewis, J. A. (2019). Renal reabsorption in 3D vascularized proximal tubule models. Proceedings of the National Academy of Sciences of the United States of America, 116(12), 5399–5404. https://doi.org/10.1073/pnas.1815208116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagao, R. J., Xu, J., Luo, P., Xue, J., Wang, Y., Kotha, S., Zeng, W., Fu, X., Himmelfarb, J., & Zheng, Y. (2016). Decellularized human kidney cortex hydrogels enhance kidney microvascular endothelial cell maturation and quiescence. Tissue engineering. Part A, 22(19–20), 1140–1150. https://doi.org/10.1089/ten.TEA.2016.0213.

    Article  CAS  Google Scholar 

  8. O’Neill, J. D., Freytes, D. O., Anandappa, A. J., Oliver, J. A., & Vunjak-Novakovic, G. V. (2013). The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney. Biomaterials, 34(38), 9830–9841. https://doi.org/10.1016/j.biomaterials.2013.09.022.

    Article  CAS  PubMed  Google Scholar 

  9. Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(6194), 1247125–1247125. https://doi.org/10.1126/science.1247125.

    Article  CAS  PubMed  Google Scholar 

  10. Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., & Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379. https://doi.org/10.1038/nature12517.

    Article  CAS  PubMed  Google Scholar 

  11. Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T., & Sasai, Y. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature, 472(7341), 51–58. https://doi.org/10.1038/nature09941.

    Article  CAS  PubMed  Google Scholar 

  12. McCracken, K. W., Catá, E. M., Crawford, C. M., Sinagoga, K. L., Schumacher, M., Rockich, B. E., Tsai, Y. H., Mayhew, C. N., Spence, J. R., Zavros, Y., & Wells, J. M. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516(7531), 400–404. https://doi.org/10.1038/nature13863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dye, B. R., Hill, D. R., Ferguson, M. A., Tsai, Y. H., Nagy, M. S., Dyal, R., et al. (2015). In vitro generation of human pluripotent stem cell derived lung organoids. eLife, 2015(4), 1–25. https://doi.org/10.7554/eLife.05098.

    Article  Google Scholar 

  14. Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., Zhang, R. R., Ueno, Y., Zheng, Y. W., Koike, N., Aoyama, S., Adachi, Y., & Taniguchi, H. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 499(7459), 481–484. https://doi.org/10.1038/nature12271.

    Article  CAS  PubMed  Google Scholar 

  15. Takasato, M., Er, P. X., Chiu, H. S., & Little, M. H. (2016). Generation of kidney organoids from human pluripotent stem cells. Nature Protocols, 11(9), 1681–1692. https://doi.org/10.1038/nprot.2016.098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sagrinati, C., Ronconi, E., Lazzeri, E., Lasagni, L., & Romagnani, P. (2008). Stem-cell approaches for kidney repair: Choosing the right cells. Trends in Molecular Medicine, 14(7), 277–285. https://doi.org/10.1016/j.molmed.2008.05.005.

    Article  CAS  PubMed  Google Scholar 

  17. Freedman, B. S., Brooks, C. R., Lam, A. Q., Fu, H., Morizane, R., Agrawal, V., Saad, A. F., Li, M. K., Hughes, M. R., Werff, R. V., Peters, D. T., Lu, J., Baccei, A., Siedlecki, A. M., Valerius, M. T., Musunuru, K., McNagny, K. M., Steinman, T. I., Zhou, J., Lerou, P. H., & Bonventre, J. V. (2015). Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications, 6, 8715. https://doi.org/10.1038/ncomms9715.

    Article  CAS  PubMed  Google Scholar 

  18. Morizane, R., Lam, A. Q., Freedman, B. S., Kishi, S., Valerius, M. T., & Bonventre, J. V. (2015). Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nature Biotechnology, 33(11), 1193–1200. https://doi.org/10.1038/nbt.3392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan, Z., Shan, J., Rak-Raszewska, A., & Vainio, S. J. (2018). Embryonic stem cells derived kidney Organoids as faithful models to target programmed Nephrogenesis. Scientific Reports, 8(1), 16618. https://doi.org/10.1038/s41598-018-34995-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, D., & Dressler, G. R. (2005). Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. Journal of the American Society of Nephrology, 16(12), 3527–3534. https://doi.org/10.1681/ASN.2005050544.

    Article  CAS  PubMed  Google Scholar 

  21. Lo, B., & Parham, L. (2009). Ethical issues in stem cell research. Endocrine Reviews, 30(3), 204–213. https://doi.org/10.1210/er.2008-0031.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Freedman, B. S. (2019). Better being single? Omics improves kidney Organoids. Nephron, 141(2), 128–132. https://doi.org/10.1159/000496009.

    Article  CAS  PubMed  Google Scholar 

  23. Takasato, M., & Little, M. H. (2015). The origin of the mammalian kidney: Implications for recreating the kidney in vitro. Development, 142(11), 1937–1947. https://doi.org/10.1242/dev.104802.

    Article  CAS  PubMed  Google Scholar 

  24. Little, M. H., Combes, A. N., & Takasato, M. (2016). Understanding kidney morphogenesis to guide renal tissue regeneration. Nature Reviews Nephrology, 12(19), 624–635. https://doi.org/10.1038/nrneph.2016.126.

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi, A., Valerius, M. T., Mugford, J. W., Carroll, T. J., Self, M., Oliver, G., & McMahon, A. P. (2008). Six2 defines and regulates a multipotent Self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell, 3(2), 169–181. https://doi.org/10.1016/j.stem.2008.05.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Humphreys, B. D., Valerius, M. T., Kobayashi, A., Mugford, J. W., Soeung, S., Duffield, J. S., McMahon, A. P., & Bonventre, J. V. (2008). Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell, 2(3), 284–291. https://doi.org/10.1016/J.STEM.2008.01.014.

    Article  CAS  PubMed  Google Scholar 

  27. Lazzeri, E., Crescioli, C., Ronconi, E., Mazzinghi, B., Sagrinati, C., Netti, G. S., Angelotti, M. L., Parente, E., Ballerini, L., Cosmi, L., Maggi, L., Gesualdo, L., Rotondi, M., Annunziato, F., Maggi, E., Lasagni, L., Serio, M., Romagnani, S., Vannelli, G. B., & Romagnani, P. (2007). Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. Journal of the American Society of Nephrology, 18(12), 3128–3138. https://doi.org/10.1681/ASN.2007020210.

    Article  CAS  PubMed  Google Scholar 

  28. Sagrinati, C., Netti, G. S., Mazzinghi, B., Lazzeri, E., Liotta, F., Frosali, F., Ronconi, E., Meini, C., Gacci, M., Squecco, R., Carini, M., Gesualdo, L., Francini, F., Maggi, E., Annunziato, F., Lasagni, L., Serio, M., Romagnani, S., & Romagnani, P. (2006). Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. Journal of the American Society of Nephrology, 17(9), 2443–2456. https://doi.org/10.1681/ASN.2006010089.

    Article  CAS  PubMed  Google Scholar 

  29. Ronconi, E., Sagrinati, C., Angelotti, M. L., Lazzeri, E., Mazzinghi, B., Ballerini, L., Parente, E., Becherucci, F., Gacci, M., Carini, M., Maggi, E., Serio, M., Vannelli, G. B., Lasagni, L., Romagnani, S., & Romagnani, P. (2009). Regeneration of glomerular podocytes by human renal progenitors. Journal of the American Society of Nephrology, 20(2), 322–332. https://doi.org/10.1681/ASN.2008070709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Angelotti, M. L., Ronconi, E., Ballerini, L., Peired, A., Mazzinghi, B., Sagrinati, C., Parente, E., Gacci, M., Carini, M., Rotondi, M., Fogo, A. B., Lazzeri, E., Lasagni, L., & Romagnani, P. (2012). Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells, 30(8), 1714–1725. https://doi.org/10.1002/stem.1130.

    Article  CAS  PubMed  Google Scholar 

  31. Mazzinghi, B., Ronconi, E., Lazzeri, E., Sagrinati, C., Ballerini, L., Angelotti, M. L., Parente, E., Mancina, R., Netti, G. S., Becherucci, F., Gacci, M., Carini, M., Gesualdo, L., Rotondi, M., Maggi, E., Lasagni, L., Serio, M., Romagnani, S., & Romagnani, P. (2008). Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. Journal of Experimental Medicine, 205(2), 479–490. https://doi.org/10.1084/jem.20071903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bartosh, T. J., Ylöstalo, J. H., Mohammadipoor, A., Bazhanov, N., Coble, K., Claypool, K., et al. (2010). Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13724–13729. https://doi.org/10.1073/pnas.1008117107.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lazzeri, E., Ronconi, E., Angelotti, M. L., Peired, A., Mazzinghi, B., Becherucci, F., Conti, S., Sansavini, G., Sisti, A., Ravaglia, F., Lombardi, D., Provenzano, A., Manonelles, A., Cruzado, J. M., Giglio, S., Roperto, R. M., Materassi, M., Lasagni, L., & Romagnani, P. (2015). Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. Journal of the American Society of Nephrology, 26(8), 1961–1974. https://doi.org/10.1681/ASN.2014010057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sobreiro-Almeida, R., Elena Melica, M., Lasagni, L., Romagnani, P., & Neves, N. M. (2020). Co-cultures of renal progenitors and endothelial cells on kidney decellularized matrices replicate the renal tubular environment in vitro. Acta Physiologica, 230(1), e13491. https://doi.org/10.1111/apha.13491.

    Article  CAS  PubMed  Google Scholar 

  35. Lam, A. Q., Freedman, B. S., Morizane, R., Lerou, P. H., Valerius, M. T., & Bonventre, J. V. (2014). Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. Journal of the American Society of Nephrology, 25(6), 1211–1225. https://doi.org/10.1681/ASN.2013080831.

    Article  CAS  PubMed  Google Scholar 

  36. Shankland, S. J., Pippin, J. W., & Duffield, J. S. (2014). Progenitor cells and Podocyte regeneration. Seminars in Nephrology, 34(4), 418–428. https://doi.org/10.1016/J.SEMNEPHROL.2014.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peired, A., Angelotti, M. L., Ronconi, E., La Marca, G., Mazzinghi, B., Sisti, A., et al. (2013). Proteinuria impairs podocyte regeneration by sequestering retinoic acid. Journal of the American Society of Nephrology, 24(11), 1756–1768. https://doi.org/10.1681/ASN.2012090950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chambers, J. M., McKee, R. A., Drummond, B. E., & Wingert, R. A. (2016). Evolving technology: Creating kidney organoids from stem cells. AIMS Bioengineering, 3(3), 305–318. https://doi.org/10.3934/bioeng.2016.3.305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Czerniecki, S. M., Cruz, N. M., Harder, J. L., Menon, R., Annis, J., Otto, E. A., et al. (2018). High-throughput screening enhances kidney Organoid differentiation from human pluripotent stem cells and enables automated multidimensional Phenotyping. Cell Stem Cell, 22(6), 929–940.e4. https://doi.org/10.1016/j.stem.2018.04.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hale, L. J., Howden, S. E., Phipson, B., Lonsdale, A., Er, P. X., Ghobrial, I., Hosawi, S., Wilson, S., Lawlor, K. T., Khan, S., Oshlack, A., Quinlan, C., Lennon, R., & Little, M. H. (2018). 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nature Communications, 9(1), 5167. https://doi.org/10.1038/s41467-018-07594-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takasato, M., Er, P. X., Chiu, H. S., Maier, B., Baillie, G. J., Ferguson, C., Parton, R. G., Wolvetang, E. J., Roost, M. S., Chuva de Sousa Lopes, S. M., & Little, M. H. (2015). Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature, 526, 564–568. https://doi.org/10.1038/nature15695.

    Article  CAS  PubMed  Google Scholar 

  42. Angelotti, M, L., Becherucci, F., Mazzinghi, B., Peired, A., & Romagnani, P. (2017). Principles of kidney regeneration. In Kidney Transplantation, Bioengineering, and Regeneration: Kidney Transplantation in the Regenerative Medicine Era (1st ed., p. 1252). Academic Press. https://doi.org/10.1016/B978-0-12-801734-0.00069-2.

  43. Schutgens, F., Rookmaaker, M. B., Margaritis, T., Rios, A., Ammerlaan, C., Jansen, J., Gijzen, L., Vormann, M., Vonk, A., Viveen, M., Yengej, F. Y., Derakhshan, S., de Winter-de Groot, K. M., Artegiani, B., van Boxtel, R., Cuppen, E., Hendrickx, A. P. A., van den Heuvel-Eibrink, M. M., Heitzer, E., Lanz, H., Beekman, J., Murk, J. L., Masereeuw, R., Holstege, F., Drost, J., Verhaar, M. C., & Clevers, H. (2019). Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nature Biotechnology, 37(3), 303–313. https://doi.org/10.1038/s41587-019-0048-8.

    Article  CAS  PubMed  Google Scholar 

  44. Lasagni, L., Angelotti, M. L., Ronconi, E., Lombardi, D., Nardi, S., Peired, A., Becherucci, F., Mazzinghi, B., Sisti, A., Romoli, S., Burger, A., Schaefer, B., Buccoliero, A., Lazzeri, E., & Romagnani, P. (2015). Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. Stem Cell Reports, 5(2), 248–263. https://doi.org/10.1016/j.stemcr.2015.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colvin, J. S., Feldman, B., Nadeau, J. H., Goldfarb, M., & Ornitz, D. M. (1999). Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Developmental Dynamics, 216(1), 72–88. https://doi.org/10.1002/(SICI)1097-0177(199909)216:1<72::AID-DVDY9>3.0.CO;2-9.

    Article  CAS  PubMed  Google Scholar 

  46. Barak, H., Huh, S. H., Chen, S., Jeanpierre, C., Martinovic, J., Parisot, M., Bole-Feysot, C., Nitschké, P., Salomon, R., Antignac, C., Ornitz, D. M., & Kopan, R. (2012). FGF9 and FGF20 maintain the Stemness of nephron progenitors in mice and man. Developmental Cell, 22(6), 1191–1207. https://doi.org/10.1016/j.devcel.2012.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taguchi, A., & Nishinakamura, R. (2017). Higher-Order Kidney Organogenesis from Pluripotent Stem Cells. Cell Stem Cell, 21(6), 730–746. https://doi.org/10.1016/j.stem.2017.10.011.

    Article  CAS  PubMed  Google Scholar 

  48. Rasti, A., Mehrazma, M., Madjd, Z., Abolhasani, M., Saeednejad Zanjani, L., & Asgari, M. (2018). Co-expression of Cancer stem cell markers OCT4 and NANOG predicts poor prognosis in renal cell carcinomas. Scientific Reports, 8, 11739. https://doi.org/10.1038/s41598-018-30168-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharma, R., Sanchez-Ferras, O., & Bouchard, M. (2015). Pax genes in renal development, disease and regeneration. Seminars in Cell and Developmental Biology, 44, 97–106. https://doi.org/10.1016/j.semcdb.2015.09.016.

    Article  CAS  PubMed  Google Scholar 

  50. Mundel, P., Heid, H. W., Mundel, T. M., Krüger, M., Reiser, J., & Kriz, W. (1997). Synaptopodin: An actin-associated protein in Telencephalic dendrites and renal Podocytes. Journal of Cell Biology, 139(1), 193–204. https://doi.org/10.1083/jcb.139.1.193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Availability of Data and Material

Derived data supporting the findings of this study are available from the corresponding author (N.N.) on request.

Funding

This work was supported by the Portuguese Foundation of Technology (FCT) with the PhD Grant on the Doctoral Program on Advanced Therapies for Health (PATH) (PD/BD/128102/2016) and the the project Cells4_IDs (PTDC/BTM-SAL/28882/2017), under the Compete2020 Funding Program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Rita Sobreiro-Almeida, Maria Elena Melica and Laura Lasagni; Methodology, Rita Sobreiro-Almeida and Maria Elena Melica; Investigation, Rita Sobreiro-Almeida and Maria Elena Melica; Writing – Original Draft, Rita Sobreiro-Almeida; Writing – Review & Editing, Nuno M. Neves and Laura Lasagni; Funding Acquisition, Nuno M. Neves and Paola Romagnani; Resources, Nuno M. Neves and Paola Romagnani; Supervision, Nuno M. Neves, Laura Lasagni and Paola Romagnani.

Corresponding author

Correspondence to Nuno M. Neves.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Renal progenitor cells were obtained from the digestion of human kidney fragments. These were obtained in agreement with the Ethical Committee on human experimentation of the Azienda Ospedaliero-Universitaria Careggi, Florence, Italy. All subjects gave their informed consent for inclusion before they participated in the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee on Human Experimentation of the Azienda Ospedaliero-Universitaria Careggi, Florence, Italy (project identification code 2015/0009082 from 25/03/2015).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Patients signed informed consent regarding publishing their data.

Code Availability

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 73086 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobreiro-Almeida, R., Melica, M.E., Lasagni, L. et al. Retinoic Acid Benefits Glomerular Organotypic Differentiation from Adult Renal Progenitor Cells In Vitro. Stem Cell Rev and Rep 17, 1406–1419 (2021). https://doi.org/10.1007/s12015-021-10128-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10128-8

Keywords

Navigation