Skip to main content

Advertisement

Log in

The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Autophagy is responsible for degradation of non-essential or damaged cellular constituents and damaged organelles. The autophagy pathway maintains efficient cellular metabolism and reduces cellular stress by removing additional and pathogenic components. Dysfunctional autophagy underlies several diseases. Thus, several research groups have worked toward elucidating key steps in this pathway. Autophagy can be studied by animal modeling, chemical modulators, and in vitro disease modeling with induced pluripotent stem cells (iPSC) as a loss-of-function platform. The introduction of iPSC technology, which has the capability to maintain the genetic background, has facilitated in vitro modeling of some diseases. Furthermore, iPSC technology can be used as a platform to study defective cellular and molecular pathways during development and unravel novel steps in signaling pathways of health and disease. Different studies have used iPSC technology to explore the role of autophagy in disease pathogenesis which could not have been addressed by animal modeling or chemical inducers/inhibitors. In this review, we discuss iPSC models of autophagy-associated disorders where the disease is caused due to mutations in autophagy-related genes. We classified this group as “primary autophagy induced defects (PAID)”. There are iPSC models of diseases in which the primary cause is not dysfunctional autophagy, but autophagy is impaired secondary to disease phenotypes. We call this group “secondary autophagy induced defects (SAID)” and discuss them.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

5AdC:

5-aza-20-deoxycytidine

3-MA:

3-methyladenine

AD:

Alzheimer’s disease

ADPKD:

Autosomal dominant polycystic kidney disease

ALP:

Autophagy-lysosome pathway

ALS:

Amyotrophic lateral sclerosis

ANP:

Atrial natriuretic peptide

APP:

Amyloid-β precursor protein

ASM:

Acid sphingomyelinase

ATAD3A:

AAA-domain containing protein 3A

AVs:

Autophagic vacuoles

Aβ:

Amyloid beta

BCD:

Bietti’s crystalline dystrophy

BNP:

Brain natriuretic peptide

BVVL:

Brown-Vialetto-Van Laere syndrome

C9ORF72:

Chromosome 9 open reading frame 72

CCCP:

Carbonyl cyanide m-chlorophenyl hydrazone

CHMP2B:

Charged multivesicular body protein 2B

CM:

Cardiomyocyte

CMA:

Chaperone-mediated autophagy

CMT:

Charcot-Marie-Tooth

CYP4V2:

Cytochrome P450 family 4 subfamily V member 2

DA:

Dopaminergic neurons

DBA:

Diamond-Blackfan anemia

DCM:

Dilated cardiomyopathy

DHCR7:

7-dehydrocholesterol reductase

DRP1:

Dynamin-related protein 1

ER:

Endoplasmic reticulum

FAD:

Familial AD

FTD:

Frontotemporal dementia

GAA:

Acid alpha-glucosidase

GAGs:

Glycosaminoglycans

GBA:

beta-Glucocerebrosidase

GCase:

Glucocerebrosidase

GSDs:

Glycogen storage diseases

HPBCD:

2-hydroxypropyl-β-CD

HPGCD:

2-hydroxypropyl-γ-CD

Hsc70:

Heat shock cognate 71 kDa protein

HSCs:

Hematopoietic stem cells

HSP:

Hereditary spastic paraplegia

hESC:

Human embryonic stem cell

IDUA:

α-L-iduronidase

IP3:

Inositol three phosphate

JNCL:

Juvenile neuronal ceroid lipofuscinosis

LAMP-2:

Lysosomal-associated membrane protein type 2

LC3-II:

Light chain 3-II

LIMP-II:

Lysosomal integral membrane protein-2

LMNA:

Lamin A/C

LRRK2:

Leucine-rich repeat kinase 2

LSDs:

Lysosomal storage diseases

MAPT:

Microtubule-associated protein tau

MELAS:

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

MIRO1:

Mitochondrial Rho GTPase 1

MN:

Motor neuron

MPS I:

Mucopolysaccharidoses type I

MSA:

Multiple system atrophy

mTOR:

Mammalian target of rapamycin

MFN2:

Mitofusin 2

MT-TL1:

Mitochondrial tRNALeu(UUR) gene

NPC:

Niemann-Pick disease type C

NPCs:

Neuronal precursor cells

NSCs:

Neural stem cells

NTG:

Normal tension glaucoma

OPTN:

Optineurin

PAID:

Primary autophagy induced defects

PARK7:

Protein deglycase DJ-1

PD:

Pompe disease

PINK1:

PTEN induced putative kinase 1

PKD:

Polycystin

POAG:

Primary open angle glaucoma

polyQ-AR:

Polyglutamine-expansion in androgen receptor

PRKN:

Parkin RBR E3 ubiquitin protein ligase

PSEN1:

Presenilin 1

RAN:

Repeat-associated non-ATG

rhGAA:

Recombinant human GAA

ROS:

Reactive oxygen species

RP:

Retinitis pigmentosa

RPE:

Retinal pigment epithelium

RyR2:

Ryanodine receptor type 2

SAID:

Secondary autophagy induced defect

SBMA:

Spinal and bulbar muscular atrophy

SCA3:

Spinocerebellar ataxia-3

SQSTM1:

Sequestosome 1

SLOS:

Smith-Lemli-Opitz syndrome

SMC:

Smooth muscle cell

SNCA:

Synuclein alpha

SOD1:

Superoxide dismutase

SPG11:

Spastic paraplegia 11

SQSTM1:

Sequestosome1

TBK1:

TANK binding kinase 1

TDP-43:

TAR DNA binding protein-43

TFEB:

Transcription factor EB

TPP1:

Tripeptidyl peptidase I

TREM2:

Triggering receptor expressed on myeloid cells 2

TRNT1:

tRNA nucleotidyl transferase, CCA-adding, 1

TSC2:

Tuberous sclerosis complex 2

UBQLN:

Ubiquilin

VCP:

Valosin-containing protein

VEGF:

Vascular endothelial growth factor

VSD:

Ventricular septal defect

References

  1. Bravo-San Pedro, J. M., Kroemer, G., & Galluzzi, L. (2017). Autophagy and mitophagy in cardiovascular disease. Circulation Research, 120(11), 1812–1824.

    CAS  PubMed  Google Scholar 

  2. Orogo, A. M., & Gustafsson, Å. G. (2015). Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circulation Research, 116, 489–503.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Alessandri, C., Barbati, C., Vacirca, D., Piscopo, P., Confaloni, A., Sanchez, M., Maselli, A., Colasanti, T., Conti, F., & Truglia, S. (2012). T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. The FASEB Journal, 26(11), 4722–4732.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Weykopf, B., Haupt, S., Jungverdorben, J., Flitsch, L. J., Hebisch, M., Liu, G. H., Suzuki, K., Belmonte, J. C. I., Peitz, M., & Blaess, S. (2019). Induced pluripotent stem cell-based modeling of mutant LRRK 2‐associated Parkinson’s disease. European Journal of Neuroscience, 49(4), 561–589.

    Google Scholar 

  5. Zhang, J. (2013). Autophagy and mitophagy in cellular damage control. Redox Biology, 1(1), 19–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Shojaei, S., Suresh, M., Klionsky, D. J., Labouta, H. I., & Ghavami, S. (2020). Autophagy and SARS-CoV-2 infection: Apossible smart targeting of the autophagy pathway. Virulence, 11(1), 805–810. https://doi.org/10.1080/21505594.2020.1780088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brun, P., Tarricone, E., Di Stefano, A., Mattiuzzo, E., Mehrbod, P., Ghavami, S., & Leonardi, A. (2020). The regulatory activity of autophagy in conjunctival fibroblasts and its possible role in vernal keratoconjunctivitis. The Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2020.03.013

    Article  PubMed  Google Scholar 

  8. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., & Aguirre-Ghiso, J. A. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mehrbod, P., Ande, S. R., Alizadeh, J., Rahimizadeh, S., Shariati, A., Malek, H., Hashemi, M., Glover, K. K. M., Sher, A. A., Coombs, K. M., & Ghavami, S. (2019). The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence, 10(1), 376–413. https://doi.org/10.1080/21505594.2019.1605803.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shojaei, S., Koleini, N., Samiei, E., Aghaei, M., Cole, L. K., Alizadeh, J., Islam, M. I., Vosoughi, A. R., Albokashy, M., Butterfield, Y., Marzban, H., Xu, F., Thliveris, J., Kardami, E., Hatch, G. M., Eftekharpour, E., Akbari, M., Hombach-Klonisch, S., Klonisch, T., & Ghavami, S. (2020). Simvastatin increases temozolomide-induced cell death by targeting the fusion of autophagosomes and lysosomes. The FEBS Journal, 287(5), 1005–1034. https://doi.org/10.1111/febs.15069

    Article  CAS  PubMed  Google Scholar 

  11. Mei, Y., Thompson, M. D., Cohen, R. A., & Tong, X. (2015) Autophagy and oxidative stress in cardiovascular diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(2), 243–251.

  12. Hamacher-Brady, A., Brady, N. R., & Gottlieb, R. A. (2006). Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. Journal of Biological Chemistry, 281(40), 29776–29787.

    CAS  Google Scholar 

  13. Pattison, J. S., Osinska, H., & Robbins, J. (2011). Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes. Circulation Research, 109(2), 151–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. An, M., Ryu, D.-R., Won Park, J., Ha Choi, J., Park, E.-M., Eun Lee, K., Woo, M., & Kim, M. (2017). ULK1 prevents cardiac dysfunction in obesity through autophagy-meditated regulation of lipid metabolism. Cardiovascular Research, 113(10), 1137–1147.

    CAS  PubMed  Google Scholar 

  15. Billia, F., Hauck, L., Konecny, F., Rao, V., Shen, J., & Mak, T. W. (2011). PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proceedings of the National Academy of Sciences, 108(23), 9572–9577.

    CAS  Google Scholar 

  16. Ghosh, R., & Pattison, J. S. (2018). Macroautophagy and chaperone-mediated autophagy in heart failure: The known and the unknown. Oxidative Medicine and Cellular Longevity, 2018, 8602041.

    PubMed  PubMed Central  Google Scholar 

  17. Sarkar, S. (2013). Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. London: Portland Press Ltd.

    Google Scholar 

  18. Mishra, P., Ammanathan, V., & Manjithaya, R. (2018). Chemical biology strategies to study autophagy. Frontiers in Cell and Developmental Biology, 6, 160.

    PubMed  PubMed Central  Google Scholar 

  19. McMullen, J. R., Sherwood, M. C., Tarnavski, O., Zhang, L., Dorfman, A. L., Shioi, T., & Izumo, S. (2004). Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation, 109(24), 3050–3055.

    CAS  PubMed  Google Scholar 

  20. Das, A., Salloum, F. N., Durrant, D., Ockaili, R., & Kukreja, R. C. (2012). Rapamycin protects against myocardial ischemia–reperfusion injury through JAK2–STAT3 signaling pathway. Journal of Molecular and Cellular Cardiology, 53(6), 858–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Das, A., Durrant, D., Koka, S., Salloum, F. N., Xi, L., & Kukreja, R. C. (2014). Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice potential role of attenuated oxidative stress and altered contractile protein expression. Journal of Biological Chemistry, 289(7), 4145–4160.

    CAS  Google Scholar 

  22. Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., Levine, B., & Sadoshima, J. (2007). Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circulation research, 100(6), 914–922.

    CAS  PubMed  Google Scholar 

  23. Lu, L., Wu, W., Yan, J., Li, X., Yu, H., & Yu, X. (2009). Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure. International Journal of Cardiology, 134(1), 82–90.

    PubMed  Google Scholar 

  24. Piyush Mishra, V. A., & Manjithaya*, R. Chemical biology strategies to study autophagy. Frontiers in Cell and Developmental Biology 6, 160. https://doi.org/10.3389/fcell.2018.00160.

  25. Sarkar, S. (2013). Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochemical Society Transactions, 41, 1103–1130.

    CAS  PubMed  Google Scholar 

  26. Kim, C. (2015). iPSC technology-Powerful hand for disease modeling and therapeutic screen. BMB Reports, 48(5), 256.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Prey, J., Sakamaki, J., Baudot, A., New, M., Van Acker, T., Tooze, S., Long, J., & Ryan, K. (2017). Application of CRISPR/Cas9 to autophagy research. In: Methods in Enzymology, (Vol. 588, pp. 79–108). Amsterdam: Elsevier.

  28. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., & Czaja, M. J. (2009). Autophagy regulates lipid metabolism. Nature, 458(7242), 1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathew, R., & White, E. (2011). Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Current Opinion in Genetics & Development, 21(1), 113–119.

    CAS  Google Scholar 

  30. Ryter, S. W., Lee, S.-J., Smith, A., & Choi, A. M. (2010). Autophagy in vascular disease. Proceedings of the American Thoracic Society, 7(1), 40–47.

    PubMed  PubMed Central  Google Scholar 

  31. Nixon, R. A. (2013). The role of autophagy in neurodegenerative disease. Nature Medicine, 19(8), 983.

    CAS  PubMed  Google Scholar 

  32. Bonaldo, P., & Sandri, M. (2013). Cellular and molecular mechanisms of muscle atrophy. Disease Models & Mechanisms, 6(1), 25–39.

    CAS  Google Scholar 

  33. Schneider, J. L., & Cuervo, A. M. (2014). Liver autophagy: much more than just taking out the trash. Nature Reviews Gastroenterology & Hepatology, 11(3), 187.

    Google Scholar 

  34. Murrow, L., & Debnath, J. (2013). Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annual Review of Pathology: Mechanisms of Disease, 8, 105–137.

    CAS  Google Scholar 

  35. Hata, M., Ikeda, H. O., Iwai, S., Iida, Y., Gotoh, N., Asaka, I., Ikeda, K., Isobe, Y., Hori, A., & Nakagawa, S. (2018). Reduction of lipid accumulation rescues Bietti’s crystalline dystrophy phenotypes. Proceedings of the National Academy of Sciences, 115(15), 3936–3941.

    CAS  Google Scholar 

  36. Siu, C.-W. Lee, Y.-K., Ho, J.C.-Y., Lai, W.-H., Chan, Y.-C., Ng, K.-M., Wong, L.-Y., Au, K.-W., Lau, Y.-M.,Zhang, J., Lay, K. W., Colman, A., & Tse, H.-F. (2012) Modeling of lamin A/C mutation premature cardiac aging using patient‐specific induced pluripotent stem cells. Aging 4(11), 803–822. https://doi.org/10.18632/aging.100503.

  37. Singletary, K., & Milner, J. (2008). Diet, autophagy, and cancer: a review. Cancer Epidemiology and Prevention Biomarkers, 17(7), 1596–1610.

    CAS  Google Scholar 

  38. Rowland, T. J., Sweet, M. E., Mestroni, L., & Taylor, M. R. (2016). Danon disease–dysregulation of autophagy in a multisystem disorder with cardiomyopathy. Journal of Cell Science, 129(11), 2135–2143.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ng, K.-M., Mok, P. Y., Butler, A. W., Ho, J. C., Choi, S.-W., Lee, Y.-K., Lai, W.-H., Au, K.-W., Lau, Y.-M., & Wong, L.-Y. (2016). Amelioration of X-linked related autophagy failure in Danon disease with DNA methylation inhibitor. Circulation, 134(18), 1373–1389.

    CAS  PubMed  Google Scholar 

  40. Yoshida, S., Nakanishi, C., Okada, H., Mori, M., Yokawa, J., Yoshimuta, T., Ohta, K., Konno, T., Fujino, N., & Kawashiri, M. A. (2018). Characteristics of induced pluripotent stem cells from clinically divergent female monozygotic twins with Danon disease. Journal of Molecular and Cellular Cardiology, 114, 234–242.

    CAS  PubMed  Google Scholar 

  41. Chong, C.-M., Ke, M., Tan, Y., Huang, Z., Zhang, K., Ai, N., Ge, W., Qin, D., Lu, J.-H., & Su, H. (2018). Presenilin 1 deficiency suppresses autophagy in human neural stem cells through reducing γ-secretase-independent ERK/CREB signaling. Cell Death & Disease, 9(9), 879.

    Google Scholar 

  42. Martín-Maestro, P., Gargini, R., Sproul, A., García, A., Antón, E., Noggle, L. C., Arancio, O., Avila, J., & García-Escudero, V. (2017). Mitophagy failure in fibroblasts and iPSC-derived neurons of Alzheimer’s disease-associated presenilin 1 mutation. Frontiers in Molecular Neuroscience, 10, 291.

    PubMed  PubMed Central  Google Scholar 

  43. Lee, J. K., Jin, H. K., Park, M. H., Kim, B., Lee, P. H., Nakauchi, H., Carter, J. E., He, X., Schuchman, E. H., & Bae, J. (2014). Acid sphingomyelinase modulates the autophagic process by controlling lysosomal biogenesis in Alzheimer’s disease. Journal of Experimental Medicine, 211(8), 1551–1570.

    CAS  Google Scholar 

  44. Li, L., Roh, J. H., Chang, E. H., Lee, Y., Lee, S., Kim, M., Koh, W., Chang, J. W., Kim, H. J., & Nakanishi, M. (2018). iPSC modeling of presenilin1 mutation in alzheimer’s disease with cerebellar ataxia. Experimental Neurobiology, 27(5), 350–364.

    PubMed  PubMed Central  Google Scholar 

  45. Reddy, K., Cusack, C. L., Nnah, I. C., Khayati, K., Saqcena, C., Huynh, T. B., Noggle, S. A., Ballabio, A., & Dobrowolski, R. (2016). Dysregulation of nutrient sensing and CLEARance in presenilin deficiency. Cell Reports, 14(9), 2166–2179.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Verheyen, A., Diels, A., Dijkmans, J., Oyelami, T., Meneghello, G., Mertens, L., Versweyveld, S., Borgers, M., Buist, A., & Peeters, P. (2015). Using human iPSC-derived neurons to model TAU aggregation. PLoS One, 10(12), e0146127.

    PubMed  PubMed Central  Google Scholar 

  47. Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., & Dobrowolski, R. (2016). The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. The FASEB Journal, 31(2), 598–609.

    PubMed  Google Scholar 

  48. Kim, H., Calatayud, C., Guha, S., Fernández-Carasa, I., Berkowitz, L., Carballo-Carbajal, I., Ezquerra, M., Fernández-Santiago, R., Kapahi, P., & Raya, Á. (2018). The small GTPase RAC1/CED-10 is essential in maintaining dopaminergic neuron function and survival against α-synuclein-induced toxicity. Molecular Neurobiology, 55(9), 7533–7552.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sánchez-Danés, A., Richaud‐Patin, Y., Carballo‐Carbajal, I., Jiménez‐Delgado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., & Giralt, A. (2012). Disease‐specific phenotypes in dopamine neurons from human iPS‐based models of genetic and sporadic Parkinson’s disease. EMBO Molecular Medicine, 4(5), 380–395.

    PubMed  PubMed Central  Google Scholar 

  50. Ohta, E., Nihira, T., Uchino, A., Imaizumi, Y., Okada, Y., Akamatsu, W., Takahashi, K., Hayakawa, H., Nagai, M., & Ohyama, M. (2015). I2020T mutant LRRK2 iPSC-derived neurons in the Sagamihara family exhibit increased Tau phosphorylation through the AKT/GSK-3β signaling pathway. Human Molecular Genetics, 24(17), 4879–4900.

    CAS  PubMed  Google Scholar 

  51. Borgs, L., Peyre, E., Alix, P., Hanon, K., Grobarczyk, B., Godin, J. D., Purnelle, A., Krusy, N., Maquet, P., & Lefebvre, P. (2016). Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Scientific Reports, 6, 33377.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Heman-Ackah, S. M., Manzano, R., Hoozemans, J. J., Scheper, W., Flynn, R., Haerty, W., Cowley, S. A., Bassett, A. R., & Wood, M. J. (2017). Alpha-synuclein induces the unfolded protein response in Parkinson’s disease SNCA triplication iPSC-derived neurons. Human Molecular Genetics, 26(22), 4441–4450.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandes, H. J., Hartfield, E. M., Christian, H. C., Emmanoulidou, E., Zheng, Y., Booth, H., Bogetofte, H., Lang, C., Ryan, B. J., & Sardi, S. P. (2016). ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBA-N370S Parkinson’s iPSC-derived dopamine neurons. Stem Cell Reports, 6(3), 342–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schöndorf, D. C., Aureli, M., McAllister, F. E., Hindley, C. J., Mayer, F., Schmid, B., Sardi, S. P., Valsecchi, M., Hoffmann, S., & Schwarz, L. K. (2014). iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 5, 4028.

    PubMed  Google Scholar 

  55. Osaki, T., Uzel, S. G., & Kamm, R. D. (2018). Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Science Advances, 4(10), eaat5847.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Imamura, K., Izumi, Y., Watanabe, A., Tsukita, K., Woltjen, K., Yamamoto, T., Hotta, A., Kondo, T., Kitaoka, S., & Ohta, A. (2017). The Src/c-Abl pathway is a potential therapeutic target in amyotrophic lateral sclerosis. Science Translational Medicine, 9(391), eaaf3962.

    PubMed  Google Scholar 

  57. Madill, M., McDonagh, K., Ma, J., Vajda, A., McLoughlin, P., O’Brien, T., Hardiman, O., & Shen, S. (2017). Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. Molecular Brain, 10(1), 22.

    PubMed  PubMed Central  Google Scholar 

  58. Lara Marrone, I. P., Casci, I., Japtok, J., Reinhardt, P., Janosch, A., Andree, C., Hyun, O. L., C. M., Koerner, E., Reinhardt, L., Cicardi, M. E., Hackmann, K., Klink, B., A. P., Alberti, S., Bickle, M., Hermann, A., Pandey, U. B., Hyman, A. A., & aJLS*. (2018). Isogenic FUS-eGFP iPSC reporter lines enable quantification of FUS stress granule pathology that is rescued by drugs inducing autophagy. Stem Cell Reports, 10, 1–15.

  59. Rusmini, P., Cortese, K., Crippa, V., Cristofani, R., Cicardi, M. E., Ferrari, V., Vezzoli, G., Tedesco, B., Meroni, M., & Messi, E. (2019). Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy, 15(4), 631–651.

    CAS  PubMed  Google Scholar 

  60. Chandrachud, U., Walker, M. W., Simas, A. M., Heetveld, S., Petcherski, A., Klein, M., Oh, H., Wolf, P., Zhao, W.-N., & Norton, S. (2015). Unbiased cell-based screening in a neuronal cell model of Batten disease highlights an interaction between Ca2 + homeostasis, autophagy, and CLN3 protein function. Journal of Biological Chemistry, 290(23), 14361–14380.

    CAS  Google Scholar 

  61. Lojewski, X., Staropoli, J. F., Biswas-Legrand, S., Simas, A. M., Haliw, L., Selig, M. K., Coppel, S. H., Goss, K. A., Petcherski, A., & Chandrachud, U. (2013). Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Human Molecular Genetics, 23(8), 2005–2022.

    PubMed  PubMed Central  Google Scholar 

  62. Boutry, M., Branchu, J., Lustremant, C., Pujol, C., Pernelle, J., Matusiak, R., Seyer, A., Poirel, M., Chu-Van, E., & Pierga, A. (2018). Inhibition of lysosome membrane recycling causes accumulation of gangliosides that contribute to neurodegeneration. Cell Reports, 23(13), 3813–3826.

    CAS  PubMed  Google Scholar 

  63. Minegishi, Y., Iejima, D., Kobayashi, H., Chi, Z.-L., Kawase, K., Yamamoto, T., Seki, T., Yuasa, S., Fukuda, K., & Iwata, T. (2013). Enhanced optineurin E50K–TBK1 interaction evokes protein insolubility and initiates familial primary open-angle glaucoma. Human Molecular Genetics, 22(17), 3559–3567.

    CAS  PubMed  Google Scholar 

  64. Tucker, B. A., Solivan-Timpe, F., Roos, B. R., Anfinson, K. R., Robin, A. L., Wiley, L. A., Mullins, R. F., & Fingert, J. H. (2014). Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. Journal of Stem Cell Research & Therapy, 3(5), 161.

    Google Scholar 

  65. Hashem, S. I., Perry, C. N., Bauer, M., Han, S., Clegg, S. D., Ouyang, K., Deacon, D. C., Spinharney, M., Panopoulos, A. D., & Izpisua Belmonte, J. C. (2015). Brief report: oxidative stress mediates cardiomyocyte apoptosis in a human model of D anon disease and heart failure. Stem Cells, 33(7), 2343–2350.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hashem, S. I., Murphy, A. N., Divakaruni, A. S., Klos, M. L., Nelson, B. C., Gault, E. C., Rowland, T. J., Perry, C. N., Gu, Y., & Dalton, N. D. (2017). Impaired mitophagy facilitates mitochondrial damage in Danon disease. Journal of Molecular and Cellular Cardiology, 108, 86–94.

    CAS  PubMed  Google Scholar 

  67. Scheetz, T. E., Roos, B. R., Solivan-Timpe, F., Miller, K., DeLuca, A. P., Stone, E. M., Kwon, Y. H., Alward, W. L., Wang, K., & Fingert, J. H. (2016). SQSTM1 mutations and glaucoma. PLoS One, 11(6), e0156001.

    PubMed  PubMed Central  Google Scholar 

  68. Stone, E. M., Fingert, J. H., Alward, W. L., Nguyen, T. D., Polansky, J. R., Sunden, S. L., Nishimura, D., Clark, A. F., Nystuen, A., & Nichols, B. E. (1997). Identification of a gene that causes primary open angle glaucoma. Science, 275(5300), 668–670.

    CAS  PubMed  Google Scholar 

  69. Rezaie, T., Child, A., Hitchings, R., Brice, G., Miller, L., Coca-Prados, M., Héon, E., Krupin, T., Ritch, R., & Kreutzer, D. (2002). Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science, 295(5557), 1077–1079.

    CAS  PubMed  Google Scholar 

  70. Fingert, J. H., Robin, A. L., Stone, J. L., Roos, B. R., Davis, L. K., Scheetz, T. E., Bennett, S. R., Wassink, T. H., Kwon, Y. H., & Alward, W. L. (2011). Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Human Molecular Genetics, 20(12), 2482–2494.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Minegishi, Y., Nakayama, M., Iejima, D., Kawase, K., & Iwata, T. (2016). Significance of optineurin mutations in glaucoma and other diseases. Progress in Retinal and Eye Research, 55, 149–181.

    CAS  PubMed  Google Scholar 

  72. Richter, B., Sliter, D. A., Herhaus, L., Stolz, A., Wang, C., Beli, P., Zaffagnini, G., Wild, P., Martens, S., & Wagner, S. A. (2016). Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proceedings of the National Academy of Sciences, 113(15), 4039–4044.

    CAS  Google Scholar 

  73. Coen, K., Flannagan, R. S., Baron, S., Carraro-Lacroix, L. R., Wang, D., Vermeire, W., Michiels, C., Munck, S., Baert, V., & Sugita, S. (2012). Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. Journal of Cell Biology, 198(1), 23–35.

    CAS  Google Scholar 

  74. Settembre, C., & Medina, D. L. (2015). TFEB and the CLEAR network (pp. 45–62). Amsterdam: Elsevier.

  75. Greenamyre, J. T., & Hastings, T. G. (2004). Parkinson’s–divergent causes, convergent mechanisms. Science, 304(5674), 1120–1122.

    CAS  PubMed  Google Scholar 

  76. Vos, T., Barber, R. M., Bell, B., Bertozzi-Villa, A., Biryukov, S., Bolliger, I., Charlson, F., Davis, A., Degenhardt, L., & Dicker, D. (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 386(9995), 743–800.

    Google Scholar 

  77. Jungverdorben, J., Till, A., & Brüstle, O. (2017). Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy. Journal of Molecular Medicine, 95(7), 705–718.

    CAS  PubMed  Google Scholar 

  78. Beevers, J. E., Caffrey, T. M., & Wade-Martins, R. (2013). Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson’s disease. London: Portland Press Limited.

    Google Scholar 

  79. Manzoni, C., Mamais, A., Roosen, D. A., Dihanich, S., Soutar, M. P., Plun-Favreau, H., Bandopadhyay, R., Hardy, J., Tooze, S. A., & Cookson, M. R. (2016). mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 6, 35106.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ho, D. H., Kim, H., Nam, D., Sim, H., Kim, J., Kim, H. G., Son, I., & Seol, W. (2018). LRRK2 impairs autophagy by mediating phosphorylation of leucyl-tRNA synthetase. Cell Biochemistry and Function, 36(8), 431–442.

    CAS  PubMed  Google Scholar 

  81. Kaushik, S., & Cuervo, A. M. (2009). Methods to monitor chaperone-mediated autophagy. Methods in Enzymology, 452, 297–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, X., Yan, M. H., Fujioka, H., Liu, J., Wilson-Delfosse, A., Chen, S. G., Perry, G., Casadesus, G., & Zhu, X. (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Human Molecular Genetics, 21(9), 1931–1944.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Stafa, K., Tsika, E., Moser, R., Musso, A., Glauser, L., Jones, A., Biskup, S., Xiong, Y., Bandopadhyay, R., & Dawson, V. L. (2013). Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily. Human Molecular Genetics, 23(8), 2055–2077.

    PubMed  PubMed Central  Google Scholar 

  84. Hsieh, C.-H., Shaltouki, A., Gonzalez, A. E., da Cruz, A. B., Burbulla, L. F., Lawrence, E. S., Schüle, B., Krainc, D., Palmer, T. D., & Wang, X. (2016). Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell, 19(6), 709–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Glater, E. E., Megeath, L. J., Stowers, R. S., & Schwarz, T. L. (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. The Journal of Cell Biology, 173(4), 545–557.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hardiman, O., Van Den Berg, L. H., & Kiernan, M. C. (2011). Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature Reviews Neurology, 7(11), 639.

    CAS  PubMed  Google Scholar 

  87. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., & Goland, R. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893), 1218–1221.

    CAS  PubMed  Google Scholar 

  88. Bunton-Stasyshyn, R. K., Saccon, R. A., Fratta, P., & Fisher, E. M. (2015). SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. The Neuroscientist, 21(5), 519–529.

    CAS  PubMed  Google Scholar 

  89. Farg, M. A., Sundaramoorthy, V., Sultana, J. M., Yang, S., Atkinson, R. A., Levina, V., Halloran, M. A., Gleeson, P. A., Blair, I. P., & Soo, K. Y. (2014). C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Human Molecular Genetics, 23(13), 3579–3595.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang, M., Liang, C., Swaminathan, K., Herrlinger, S., Lai, F., Shiekhattar, R., & Chen, J.-F. (2016). A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Science Advances, 2(9), e1601167.

    PubMed  PubMed Central  Google Scholar 

  91. Blokhuis, A. M., Groen, E. J., Koppers, M., van den Berg, L. H., & Pasterkamp, R. J. (2013). Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 125(6), 777–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Boxer, A. L., & Miller, B. L. (2005). Clinical features of frontotemporal dementia. Alzheimer Disease & Associated Disorders, 19, S3–S6.

    Google Scholar 

  93. Guerreiro, R., Brás, J., & Hardy, J. (2015). SnapShot: Genetics of ALS and FTD. Cell, 160(4), 798–798. e791.

    CAS  PubMed  Google Scholar 

  94. Almeida, S., Gascon, E., Tran, H., Chou, H. J., Gendron, T. F., DeGroot, S., Tapper, A. R., Sellier, C., Charlet-Berguerand, N., & Karydas, A. (2013). Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathologica, 126(3), 385–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ju, J.-S., Fuentealba, R. A., Miller, S. E., Jackson, E., Piwnica-Worms, D., Baloh, R. H., & Weihl, C. C. (2009). Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. The Journal of Cell Biology, 187(6), 875–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, J.-A., Beigneux, A., Ahmad, S. T., Young, S. G., & Gao, F.-B. (2007). ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Current Biology, 17(18), 1561–1567.

    CAS  PubMed  Google Scholar 

  97. Cortes, C. J., Miranda, H. C., Frankowski, H., Batlevi, Y., Young, J. E., Le, A., Ivanov, N., Sopher, B. L., Carromeu, C., & Muotri, A. R. (2014). Polyglutamine-expanded androgen receptor interferes with TFEB to elicit autophagy defects in SBMA. Nature Neuroscience, 17(9), 1180.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ranganathan, S., Harmison, G. G., Meyertholen, K., Pennuto, M., Burnett, B. G., & Fischbeck, K. H. (2008). Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Human Molecular Genetics, 18(1), 27–42.

    PubMed  PubMed Central  Google Scholar 

  99. Sardiello, M., Palmieri, M., di Ronza, A., Medina, D. L., Valenza, M., Gennarino, V. A., Di Malta, C., Donaudy, F., Embrione, V., & Polishchuk, R. S. (2009). A gene network regulating lysosomal biogenesis and function. Science, 325(5939), 473–477.

    CAS  PubMed  Google Scholar 

  100. Cartoni, R., & Martinou, J.-C. (2009). Role of mitofusin 2 mutations in the physiopathology of Charcot–Marie–Tooth disease type 2A. Experimental Neurology, 218(2), 268–273.

    CAS  PubMed  Google Scholar 

  101. Rizzo, F., Ronchi, D., Salani, S., Nizzardo, M., Fortunato, F., Bordoni, A., Stuppia, G., Del Bo, R., Piga, D., & Fato, R. (2016). Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Human Molecular Genetics, 25(19), 4266–4281.

    CAS  PubMed  Google Scholar 

  102. Rizzo, F., Ramirez, A., Compagnucci, C., Salani, S., Melzi, V., Bordoni, A., Fortunato, F., Niceforo, A., Bresolin, N., & Comi, G. P. (2017). Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown–Vialetto disease that is partially rescued by riboflavin. Scientific Reports, 7, 46271.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Compagnoni, G. M., Kleiner, G., Samarani, M., Aureli, M., Faustini, G., Bellucci, A., Ronchi, D., Bordoni, A., Garbellini, M., & Salani, S. (2018). Mitochondrial dysregulation and impaired autophagy in iPSC-derived dopaminergic neurons of multiple system atrophy. Stem Cell Reports, 11(5), 1185–1198.

    Google Scholar 

  104. Ou, Z., Luo, M., Niu, X., Chen, Y., Xie, Y., He, W., Song, B., Xian, Y., Fan, D., & OuYang, S. (2016). Autophagy promoted the degradation of mutant ATXN3 in neurally differentiated spinocerebellar Ataxia-3 human induced pluripotent stem cells. BioMed Research International, 2016, 6701793.

    PubMed  PubMed Central  Google Scholar 

  105. Lin, D.-S., Huang, Y.-W., Ho, C.-S., Hung, P.-L., Hsu, M.-H., Wang, T.-J., Wu, T.-Y., Lee, T.-H., Huang, Z.-D., & Chang, P.-C. (2019). Oxidative insults and mitochondrial DNA mutation promote enhanced autophagy and mitophagy compromising cell viability in pluripotent cell model of mitochondrial disease. Cells, 8(1), 65.

    CAS  PubMed Central  Google Scholar 

  106. Hämäläinen, R. H., Manninen, T., Koivumäki, H., Kislin, M., Otonkoski, T., & Suomalainen, A. (2013). Tissue-and cell-type–specific manifestations of heteroplasmic mtDNA 3243A > G mutation in human induced pluripotent stem cell-derived disease model. Proceedings of the National Academy of Sciences, 110(38), E3622–E3630.

    Google Scholar 

  107. Cooper, H. M., Yang, Y., Ylikallio, E., Khairullin, R., Woldegebriel, R., Lin, K.-L., Euro, L., Palin, E., Wolf, A., & Trokovic, R. (2017). ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia. Human Molecular Genetics, 26(8), 1432–1443.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sato, Y., Kobayashi, H., Higuchi, T., Shimada, Y., Ida, H., & Ohashi, T. (2016). TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle. Molecular Therapy-Methods & Clinical Development, 3, 16054.

    Google Scholar 

  109. Raval, K. K., Tao, R., White, B. E., De Lange, W. J., Koonce, C. H., Yu, J., Kishnani, P. S., Thomson, J. A., Mosher, D. F., & Ralphe, J. C. (2015). Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. Journal of Biological Chemistry, 290(5), 3121–3136.

    CAS  Google Scholar 

  110. Higuchi, T., Kawagoe, S., Otsu, M., Shimada, Y., Kobayashi, H., Hirayama, R., Eto, K., Ida, H., Ohashi, T., & Nakauchi, H. (2014). The generation of induced pluripotent stem cells (iPSCs) from patients with infantile and late-onset types of Pompe disease and the effects of treatment with acid-α-glucosidase in Pompe’s iPSCs. Molecular Genetics and Metabolism, 112(1), 44–48.

    CAS  PubMed  Google Scholar 

  111. Swaroop, M., Brooks, M. J., Gieser, L., Swaroop, A., & Zheng, W. (2018). Patient iPSC-derived neural stem cells exhibit phenotypes in concordance with the clinical severity of mucopolysaccharidosis I. Human Molecular Genetics, 27(20), 3612–3626.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wong, K., Sidransky, E., Verma, A., Mixon, T., Sandberg, G. D., Wakefield, L. K., Morrison, A., Lwin, A., Colegial, C., & Allman, J. M. (2004). Neuropathology provides clues to the pathophysiology of Gaucher disease. Molecular Genetics and Metabolism, 82(3), 192–207.

    CAS  PubMed  Google Scholar 

  113. Maetzel, D., Sarkar, S., Wang, H., Abi-Mosleh, L., Xu, P., Cheng, A. W., Gao, Q., Mitalipova, M., & Jaenisch, R. (2014). Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports, 2(6), 866–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lee, H., Lee, J. K., Park, M. H., Hong, Y. R., Marti, H. H., Kim, H., Okada, Y., Otsu, M., Seo, E.-J., & Park, J.-H. (2014). Pathological roles of the VEGF/SphK pathway in Niemann–Pick type C neurons. Nature Communications, 5, 5514.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Soga, M., Ishitsuka, Y., Hamasaki, M., Yoneda, K., Furuya, H., Matsuo, M., Ihn, H., Fusaki, N., Nakamura, K., & Nakagata, N. (2015). HPGCD outperforms HPBCD as a potential treatment for Niemann-Pick disease type C during disease modeling with iPS cells. Stem Cells, 33(4), 1075–1088.

    CAS  PubMed  Google Scholar 

  116. Sarkar, S., Carroll, B., Buganim, Y., Maetzel, D., Ng, A. H., Cassady, J. P., Cohen, M. A., Chakraborty, S., Wang, H., & Spooner, E. (2013). Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Reports, 5(5), 1302–1315.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yoshida, T., Ozawa, Y., Suzuki, K., Yuki, K., Ohyama, M., Akamatsu, W., Matsuzaki, Y., Shimmura, S., Mitani, K., & Tsubota, K. (2014). The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Molecular Brain, 7(1), 45.

    PubMed  PubMed Central  Google Scholar 

  118. Sharma, T. P., Wiley, L. A., Whitmore, S. S., Anfinson, K. R., Cranston, C. M., Oppedal, D. J., Daggett, H. T., Mullins, R. F., Tucker, B. A., & Stone, E. M. (2017). Patient-specific induced pluripotent stem cells to evaluate the pathophysiology of TRNT1-associated Retinitis pigmentosa. Stem Cell Research, 21, 58–70.

    CAS  PubMed  Google Scholar 

  119. Ramachandra Rao, S., Pfeffer, B. A., Más Gómez, N., Skelton, L. A., Keiko, U., Sparrow, J. R., Rowsam, A. M., Mitchell, C. H., & Fliesler, S. J. (2018). Compromised phagosome maturation underlies RPE pathology in cell culture and whole animal models of Smith-Lemli-Opitz Syndrome. Autophagy, 14(10), 1796–1817.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yinyin Cao, J. X. J. W., Xiaojing Ma, F., Liu, Y., Li, W., Chen, L., Sun, Y., Wu, Y., Li, S., Li, J., & Huang, G. (2018). Generation of a urine-derived ips cell line from a patient with a ventricular septal defect and heart failure and the robust differentiation of these cells to cardiomyocytes via small molecules. Cellular Physiology and Biochemistry, 50, 538–551. https://doi.org/10.1159/000494167

    Article  CAS  PubMed  Google Scholar 

  121. Julian, L. M., Delaney, S. P., Wang, Y., Goldberg, A. A., Doré, C., Yockell-Lelièvre, J., Tam, R. Y., Giannikou, K., McMurray, F., & Shoichet, M. S. (2017). Human pluripotent stem cell–derived TSC2-haploinsufficient smooth muscle cells recapitulate features of lymphangioleiomyomatosis. Cancer Research, 77(20), 5491–5502.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Doulatov, S., Vo, L. T., Macari, E. R., Wahlster, L., Kinney, M. A., Taylor, A. M., Barragan, J., Gupta, M., McGrath, K., & Lee, H.-Y. (2017). Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 9(376), eaah5645.

    PubMed  PubMed Central  Google Scholar 

  123. Llewellyn, K. J., Nalbandian, A., Weiss, L. N., Chang, I., Yu, H., Khatib, B., Tan, B., Scarfone, V., & Kimonis, V. E. (2017). Myogenic differentiation of VCP disease-induced pluripotent stem cells: A novel platform for drug discovery. PLoS One, 12(6), e0176919.

    PubMed  PubMed Central  Google Scholar 

  124. Lu, J., Boheler, K. R., Jiang, L., Chan, C. W., Tse, W. W., Keung, W., Poon, E. N., Li, R. A., & Yao, X. (2018). Polycystin-2 plays an essential role in glucose starvation‐induced autophagy in human embryonic stem cell‐derived cardiomyocytes. Stem Cells, 36(4), 501–513.

    CAS  PubMed  Google Scholar 

  125. Goto, Y., Nonaka, I., & Horai, S. (1990). A mutation in the tRNALeu (UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature, 348(6302), 651.

    CAS  PubMed  Google Scholar 

  126. Tesson, C., Koht, J., & Stevanin, G. (2015). Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Human Genetics, 134(6), 511–538.

    PubMed  PubMed Central  Google Scholar 

  127. Malicdan, M. C. V., & Nishino, I. (2012). Autophagy in lysosomal myopathies. Brain Pathology, 22(1), 82–88.

    PubMed  Google Scholar 

  128. Footitt, E., Karimova, A., Burch, M., Yayeh, T., Dupre, T., Vuillaumier-Barrot, S., Chantret, I., Moore, S., Seta, N., & Grunewald, S (2009). Cardiomyopathy in the congenital disorders of glycosylation (CDG): a case of late presentation and literature review. Journal of Inherited Metabolic Disease: Official Journal of the Society for the Study of Inborn Errors of Metabolism, 32, 313–319.

    Google Scholar 

  129. Raben, N., Schreiner, C., Baum, R., Takikita, S., Xu, S., Xie, T., Myerowitz, R., Komatsu, M., Van Der Meulen, J. H., & Nagaraju, K. (2010). Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder—murine Pompe disease. Autophagy, 6(8), 1078–1089.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lim, J.-A., Li, L., Kakhlon, O., Myerowitz, R., & Raben, N. (2015). Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy, 11(2), 385–402.

    PubMed  PubMed Central  Google Scholar 

  131. Nascimbeni, A. C., Fanin, M., Masiero, E., Angelini, C., & Sandri, M. (2012). The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII). Cell Death and Differentiation, 19(10), 1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Raben, N., Ralston, E., Chien, Y.-H., Baum, R., Schreiner, C., Hwu, W.-L., Zaal, K. J., & Plotz, P. H. (2010). Differences in the predominance of lysosomal and autophagic pathologies between infants and adults with Pompe disease: implications for therapy. Molecular Genetics and Metabolism, 101(4), 324–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Huang, H.-P., Chen, P.-H., Hwu, W.-L., Chuang, C.-Y., Chien, Y.-H., Stone, L., Chien, C.-L., Li, L.-T., Chiang, S.-C., & Chen, H.-F. (2011). Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Human Molecular Genetics, 20(24), 4851–4864.

    CAS  PubMed  Google Scholar 

  134. Fukuda, T., Ewan, L., Bauer, M., Mattaliano, R. J., Zaal, K., Ralston, E., Plotz, P. H., & Raben, N. (2006). Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 59(4), 700–708.

    CAS  Google Scholar 

  135. Wraith, J., & Jones, S. (2014). Mucopolysaccharidosis type I. Pediatric endocrinology reviews. PER, 12, 102–106.

    PubMed  Google Scholar 

  136. Bendikov-Bar, I., & Horowitz, M. (2012). Gaucher disease paradigm: from ERAD to comorbidity. Human Mutation, 33(10), 1398–1407.

    CAS  PubMed  Google Scholar 

  137. Awad, O., Sarkar, C., Panicker, L. M., Miller, D., Zeng, X., Sgambato, J. A., Lipinski, M. M., & Feldman, R. A. (2015). Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Human Molecular Genetics, 24(20), 5775–5788.

    CAS  PubMed  Google Scholar 

  138. Bellettato, C. M., & Scarpa, M. (2010). Pathophysiology of neuropathic lysosomal storage disorders. Journal of Inherited Metabolic Disease, 33(4), 347–362.

    CAS  PubMed  Google Scholar 

  139. Daiger, S., Sullivan, L., & Bowne, S. (2013). Genes and mutations causing retinitis pigmentosa. Clinical Genetics, 84(2), 132–141.

    CAS  PubMed  Google Scholar 

  140. Mendes, H. F., van der Spuy, J., Chapple, J. P., & Cheetham, M. E. (2005). Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends in Molecular Medicine, 11(4), 177–185.

    CAS  PubMed  Google Scholar 

  141. Hartong, D. T., Berson, E. L., & Dryja, T. P. (2006). Retinitis pigmentosa. The Lancet, 368(9549), 1795–1809.

    CAS  Google Scholar 

  142. Bietti, G. (1937). Ueber familiares Vorkommen von” Retinitis punkutata albescens“(verbunden mit” Dystrophia marginalis cristallinea corneae”), Glitzern des Glaskorpers und anderen degenerativen Augenveranderungen. Klin Monatsbl Augenheilkd, 99, 737–756.

    Google Scholar 

  143. Li, A., Jiao, X., Munier, F. L., Schorderet, D. F., Yao, W., Iwata, F., Hayakawa, M., Kanai, A., Chen, M. S., & Lewis, R. A. (2004). Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. The American Journal of Human Genetics, 74(5), 817–826.

    CAS  PubMed  Google Scholar 

  144. Lee, J., Jiao, X., Hejtmancik, J. F., Kaiser-Kupfer, M., Gahl, W. A., Markello, T. C., Guo, J., & Chader, G. J. (2001). The metabolism of fatty acids in human Bietti crystalline dystrophy. Investigative Ophthalmology & Visual Science, 42(8), 1707–1714.

    CAS  Google Scholar 

  145. Caldwell, R. B. M. B. Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas. The Journal of Comparative Neurology, 236(4), 523–537. https://doi.org/10.1002/cne.902360408.

  146. Carstea, E. D., Morris, J. A., Coleman, K. G., Loftus, S. K., Zhang, D., Cummings, C., Gu, J., Rosenfeld, M. A., Pavan, W. J., & Krizman, D. B. (1997). Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science, 277(5323), 228–231.

    CAS  PubMed  Google Scholar 

  147. Héron, B., Valayannopoulos, V., Baruteau, J., Chabrol, B., Ogier, H., Latour, P., Dobbelaere, D., Eyer, D., Labarthe, F., & Maurey, H. (2012). Miglustat therapy in the French cohort of paediatric patients with Niemann-Pick disease type C. Orphanet Journal of Rare Diseases, 7(1), 36.

    PubMed  PubMed Central  Google Scholar 

  148. Sanchez-Wandelmer, J., & Reggiori, F. (2013). Amphisomes: out of the autophagosome shadow? The EMBO Journal, 32(24), 3116–3118.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lieberman, A. P., Puertollano, R., Raben, N., Slaugenhaupt, S., Walkley, S. U., & Ballabio, A. (2012). Autophagy in lysosomal storage disorders. Autophagy, 8(5), 719–730.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Criollo, A., Maiuri, M. C., Tasdemir, E., Vitale, I., Fiebig, A., Andrews, D., Molgó, J., Diaz, J., Lavandero, S., & Harper, F. (2007). Regulation of autophagy by the inositol trisphosphate receptor. Cell Death and Differentiation, 14(5), 1029.

    CAS  PubMed  Google Scholar 

  151. Smith, D. W., Lemli, L., & Opitz, J. M. (1964). A newly recognized syndromeof multiple congenital anomalies. The Journal of Pediatrics, 64(2), 210–217.

    CAS  PubMed  Google Scholar 

  152. Tricarico, P., Crovella, S., & Celsi, F. (2015). Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. International Journal of Molecular Sciences, 16(7), 16067–16084.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tu, C., Li, J., Jiang, X., Sheflin, L. G., Pfeffer, B. A., Behringer, M., Fliesler, S. J., & Qu, J. (2013). Ion-current-based proteomic profiling of the retina in a rat model of Smith-Lemli-Opitz syndrome. Molecular & Cellular Proteomics, 12(12), 3583–3598.

    CAS  Google Scholar 

  154. Kellner, U., Kellner, S., & Weinitz, S. (2008). Chloroquine retinopathy: lipofuscin-and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Documenta Ophthalmologica, 116(2), 119–127.

    PubMed  Google Scholar 

  155. Moyzis, A. G., Sadoshima, J., & Gustafsson, ÅB. (2015). Mending a broken heart: the role of mitophagy in cardioprotection. American Journal of Physiology-Heart and Circulatory Physiology, 308(3), H183–H192.

    CAS  PubMed  Google Scholar 

  156. Galluzzi, L., Pietrocola, F., Levine, B., & Kroemer, G. (2014). Metabolic control of autophagy. Cell, 159(6), 1263–1276.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Warr, M. R., Binnewies, M., Flach, J., Reynaud, D., Garg, T., Malhotra, R., Debnath, J., & Passegué, E. (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 494(7437), 323.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Mortensen, M., & Simon, A. K. (2010). Nonredundant role of Atg7 in mitochondrial clearance during erythroid development. Autophagy, 6(3), 423–425.

    PubMed  Google Scholar 

  159. Narla, A., & Ebert, B. L. (2010). Ribosomopathies: human disorders of ribosome dysfunction. Blood, 115(16), 3196–3205.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.-N., Dianzani, I., Ball, S., Tchernia, G., Klar, J., & Matsson, H. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genetics, 21(2), 169.

    CAS  PubMed  Google Scholar 

  161. Dutt, S., Narla, A., Lin, K., Mullally, A., Abayasekara, N., Megerdichian, C., Wilson, F. H., Currie, T., Khanna-Gupta, A., & Berliner, N. (2011). Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood, 117(9), 2567–2576.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Heijnen, H. F., van Wijk, R., Pereboom, T. C., Goos, Y. J., Seinen, C. W., van Oirschot, B. A., van Dooren, R., Gastou, M., Giles, R. H., & van Solinge, W. (2014). Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genetics, 10(5), e1004371.

    PubMed  PubMed Central  Google Scholar 

  163. Kimonis, V. E., Fulchiero, E., Vesa, J., & Watts, G. (2008). VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1782(12), 744–748.

  164. Badadani, M., Nalbandian, A., Watts, G. D., Vesa, J., Kitazawa, M., Su, H., Tanaja, J., Dec, E., Wallace, D. C., & Mukherjee, J. (2010). VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS One, 5(10), e13183.

    PubMed  PubMed Central  Google Scholar 

  165. Nalbandian, A., Llewellyn, K. J., Badadani, M., Yin, H. Z., Nguyen, C., Katheria, V., Watts, G., Mukherjee, J., Vesa, J., & Caiozzo, V. (2013). A progressive translational mouse model of human valosin-containing protein disease: The VCPR155H/+ mouse. Muscle & Nerve, 47(2), 260–270.

    CAS  Google Scholar 

  166. Vesa, J., Su, H., Watts, G. D., Krause, S., Walter, M. C., Martin, B., Smith, C., Wallace, D. C., & Kimonis, V. E. (2009). Valosin containing protein associated inclusion body myopathy: abnormal vacuolization, autophagy and cell fusion in myoblasts. Neuromuscular Disorders, 19(11), 766–772.

    PubMed  Google Scholar 

  167. Rangan, G., Tchan, M., Tong, A., Wong, A., & Nankivell, B. (2016). Recent advances in autosomal-dominant polycystic kidney disease. Internal Medicine Journal, 46(8), 883–892.

    CAS  PubMed  Google Scholar 

  168. Zhu, P., Sieben, C. J., Xu, X., Harris, P. C., & Lin, X. (2017). Autophagy activators suppress cystogenesis in an autosomal dominant polycystic kidney disease model. Human Molecular Genetics, 26(1), 158–172.

    CAS  PubMed  Google Scholar 

  169. Rowe, I., Chiaravalli, M., Mannella, V., Ulisse, V., Quilici, G., Pema, M., Song, X. W., Xu, H., Mari, S., & Qian, F. (2013). Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nature Medicine, 19(4), 488.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Chun, Y. S., Chaudhari, P., & Jang, Y.-Y. (2010). Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease. International Journal of Biological Sciences, 6(7), 796.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mathew, R., Karantza-Wadsworth, V., & White, E. (2007). Role of autophagy in cancer. Nature Reviews Cancer, 7(12), 961.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Baharvand and Dr. Ghavami for their kind help and support. This study was supported by a grant from Royan Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Totonchi or Sara Pahlavan.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolahdouzmohammadi, M., Totonchi, M. & Pahlavan, S. The Role of iPSC Modeling Toward Projection of Autophagy Pathway in Disease Pathogenesis: Leader or Follower. Stem Cell Rev and Rep 17, 539–561 (2021). https://doi.org/10.1007/s12015-020-10077-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10077-8

Keywords

Navigation