Skip to main content
Log in

Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors’ Therapeutic Sensitivity in Acute Myeloid Leukemia

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Both HOX gene expression and CTCF regulation have been well demonstrated to play a critical role in regulating maintenance of leukemic stem cells (LSCs) that are known to be resistant to BET inhibitor (BETi). To investigate the regulatory role of CTCF boundary in aberrant HOX gene expression and the therapeutic sensitivity of BETi in AML, we employed CRISPR-Cas9 genome editing technology to delete 47 base pairs of the CTCF binding motif which is located between HOXA7 and HOXA9 genes (CBS7/9) in different subtypes of AML with either MLL-rearrangement or NPM1 mutation. Our results revealed that HOXA9 is significantly downregulated in response to the CBS7/9 deletion. Moreover, CBS7/9 boundary deletion sensitized the BETi treatment reaction in both MOLM-13 and OCI-AML3 cells. To further examine whether BETi therapeutic sensitivity in AML is depended on the expression level of the HOXA9 gene, we overexpressed the HOXA9 in the CBS7/9 deleted AML cell lines, which can rescue and restore the resistance to BETi treatment of the CBS7/9 KO cells by activating MAPK signaling pathway. Deletion of CBS7/9 specifically decreased the recruitment of BRD4 and RNA pol II to the posterior HOXA genes, in which, a transcription elongation factor ELL3 is the key factor in regulating HOXA gene transcription monitored by CBS7/9 chromatin boundary. Thus, disruption of CBS7/9 boundary perturbs HOXA9 transcription and regulates BETi sensitivity in AML treatment. Moreover, alteration of CTCF boundaries in the oncogene loci may provide a novel strategy to overcome the drug resistance of LSCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets and materials analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Rezsohazy, R., Saurin, A. J., Maurel-Zaffran, C., & Graba, Y. (2015). Cellular and molecular insights into Hox protein action. Development, 142(7), 1212–1227. https://doi.org/10.1242/dev.109785.

    Article  PubMed  CAS  Google Scholar 

  2. Spencer, D. H., Young, M. A., Lamprecht, T. L., Helton, N. M., Fulton, R., O'Laughlin, M., et al. (2015). Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells. Leukemia, 29(6), 1279–1289. https://doi.org/10.1038/leu.2015.6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen, S. L., Qin, Z. Y., Hu, F., Wang, Y., Dai, Y. J., & Liang, Y. (2019). The role of the HOXA gene family in acute myeloid leukemia. Genes (Basel), 10(8). https://doi.org/10.3390/genes10080621.

  4. Li, Z., Zhang, Z., Li, Y., Arnovitz, S., Chen, P., Huang, H., Jiang, X., Hong, G. M., Kunjamma, R. B., Ren, H., He, C., Wang, C. Z., Elkahloun, A. G., Valk, P. J. M., Döhner, K., Neilly, M. B., Bullinger, L., Delwel, R., Löwenberg, B., Liu, P. P., Morgan, R., Rowley, J. D., Yuan, C. S., & Chen, J. (2013). PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood, 121(8), 1422–1431. https://doi.org/10.1182/blood-2012-07-442004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Garcia-Cuellar, M. P., Steger, J., Fuller, E., Hetzner, K., & Slany, R. K. (2015). Pbx3 and Meis1 cooperate through multiple mechanisms to support Hox-induced murine leukemia. Haematologica, 100(7), 905–913. https://doi.org/10.3324/haematol.2015.124032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Zhu, N., Chen, M., Eng, R., DeJong, J., Sinha, A. U., Rahnamay, N. F., Koche, R., al-Shahrour, F., Minehart, J. C., Chen, C. W., Deshpande, A. J., Xu, H., Chu, S. H., Ebert, B. L., Roeder, R. G., & Armstrong, S. A. (2016). MLL-AF9- and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. The Journal of Clinical Investigation, 126(3), 997–1011. https://doi.org/10.1172/JCI82978.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mohr, S., Doebele, C., Comoglio, F., Berg, T., Beck, Bohnenberger, H., et al. (2017). Hoxa9 and Meis1 cooperatively induce addiction to Syk signaling by suppressing miR-146a in acute myeloid leukemia. Cancer Cell, 31(4), 549–562.e11. https://doi.org/10.1016/j.ccell.2017.03.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. de Bock, C. E., Demeyer, S., Degryse, S., Verbeke, D., Sweron, B., Gielen, O., Vandepoel, R., Vicente, C., vanden Bempt, M., Dagklis, A., Geerdens, E., Bornschein, S., Gijsbers, R., Soulier, J., Meijerink, J. P., Heinäniemi, M., Teppo, S., Bouvy-Liivrand, M., Lohi, O., Radaelli, E., & Cools, J. (2018). HOXA9 cooperates with activated JAK/STAT signaling to drive leukemia development. Cancer Discovery, 8(5), 16–631. https://doi.org/10.1158/2159-8290.CD-17-0583.

    Article  CAS  Google Scholar 

  9. Adamaki, M., Lambrou, G. I., Athanasiadou, A., Vlahopoulos, S., Papavassiliou, A. G., & Moschovi, M. (2015). HOXA9 and MEIS1 gene overexpression in the diagnosis of childhood acute leukemias: significant correlation with relapse and overall survival. Leukemia Research, 39(8), 874–882. https://doi.org/10.1016/j.leukres.2015.04.012.

    Article  PubMed  CAS  Google Scholar 

  10. Gollner, S., Oellerich, T., Agrawal-Singh, S., Schenk, T., Klein, H. U., Rohde, C., et al. (2017). Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nature Medicine, 23(1), 69–78. https://doi.org/10.1038/nm.4247.

    Article  PubMed  CAS  Google Scholar 

  11. Song, S. H., & Kim, T. Y. (2017). CTCF, Cohesin, and chromatin in human Cancer. Genomics Inform, 15(4), 114–122. https://doi.org/10.5808/GI.2017.15.4.114.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Narendra, V., Rocha, P. P., An, D., Raviram, R., Skok, J. A., Mazzoni, E. O., & Reinberg, D. (2015). CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science, 347(6225), 1017–1021. https://doi.org/10.1126/science.1262088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hanssen, L. L. P., Kassouf, M. T., Oudelaar, A. M., Biggs, D., Preece, C., Downes, D. J., Gosden, M., Sharpe, J. A., Sloane-Stanley, J. A., Hughes, J. R., Davies, B., & Higgs, D. R. (2017). Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nature Cell Biology, 19(8), 952–961. https://doi.org/10.1038/ncb3573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Luo, H., Wang, F., Zha, J., Li, H., Yan, B., Du, Q., et al. (2018). CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia. Blood, 132(8), 837–848. https://doi.org/10.1182/blood-2017-11-814319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Basheer, F., & Huntly, B. J. (2015). BET bromodomain inhibitors in leukemia. Experimental Hematology, 43(8), 718–731. https://doi.org/10.1016/j.exphem.2015.06.004.

    Article  PubMed  CAS  Google Scholar 

  16. Gerlach, D., Tontsch-Grunt, U., Baum, A., Popow, J., Scharn, D., Hofmann, M. H., Engelhardt, H., Kaya, O., Beck, J., Schweifer, N., Gerstberger, T., Zuber, J., Savarese, F., & Kraut, N. (2018). The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML. Oncogene, 37(20), 2687–2701. https://doi.org/10.1038/s41388-018-0150-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bardini, M., Trentin, L., Rizzo, F., Vieri, M., Savino, A. M., Garrido Castro, P., Fazio, G., van Roon, E. H. J., Kerstjens, M., Smithers, N., Prinjha, R. K., te Kronnie, G., Basso, G., Stam, R. W., Pieters, R., Biondi, A., & Cazzaniga, G. (2018). Antileukemic efficacy of BET inhibitor in a preclinical mouse model of MLL-AF4(+) infant ALL. Molecular Cancer Therapeutics, 17(8), 1705–1716. https://doi.org/10.1158/1535-7163.MCT-17-1123.

    Article  PubMed  CAS  Google Scholar 

  18. Dhalluin, C., Carlson, J. E., Zeng, L., He, C., Aggarwal, A. K., & Zhou, M. M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature, 399(6735), 491–496. https://doi.org/10.1038/20974.

    Article  PubMed  CAS  Google Scholar 

  19. Chan, H. L., Beckedorff, F., Zhang, Y., Garcia-Huidobro, J., Jiang, H., Colaprico, A., Bilbao, D., Figueroa, M. E., LaCava, J., Shiekhattar, R., & Morey, L. (2018). Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms. Nature Communications, 9(1), 3377. https://doi.org/10.1038/s41467-018-05728-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sun, B., Shah, B., Fiskus, W., Qi, J., Rajapakshe, K., Coarfa, C., Li, L., Devaraj, S. G. T., Sharma, S., Zhang, L., Wang, M. L., Saenz, D. T., Krieger, S., Bradner, J. E., & Bhalla, K. N. (2015). Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood, 126(13), 1565–1574. https://doi.org/10.1182/blood-2015-04-639542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Stathis, A., & Bertoni, F. (2018). BET proteins as targets for anticancer treatment. Cancer Discovery, 8(1), 24–36. https://doi.org/10.1158/2159-8290.CD-17-0605.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, J., Duan, Z., Guo, W., Zeng, L., Wu, Y., Chen, Y., Tai, F., Wang, Y., Lin, Y., Zhang, Q., He, Y., Deng, J., Stewart, R. L., Wang, C., Lin, P. C., Ghaffari, S., Evers, B. M., Liu, S., Zhou, M. M., Zhou, B. P., & Shi, J. (2018). Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nature Communications, 9(1), 5200. https://doi.org/10.1038/s41467-018-07258-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fong, C. Y., Gilan, O., Lam, E. Y. N., Rubin, A. F., Ftouni, S., Tyler, D., Stanley, K., Sinha, D., Yeh, P., Morison, J., Giotopoulos, G., Lugo, D., Jeffrey, P., Lee, S. C. W., Carpenter, C., Gregory, R., Ramsay, R. G., Lane, S. W., Abdel-Wahab, O., Kouzarides, T., Johnstone, R. W., Dawson, S. J., Huntly, B. J. P., Prinjha, R. K., Papenfuss, A. T., & Dawson, M. A. (2015). BET inhibitor resistance emerges from leukaemia stem cells. Nature, 525(7570), 538–542. https://doi.org/10.1038/nature14888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cheung, K., Lu, G., Sharma, R., Vincek, A., Zhang, R., Plotnikov, A. N., Zhang, F., Zhang, Q., Ju, Y., Hu, Y., Zhao, L., Han, X., Meslamani, J., Xu, F., Jaganathan, A., Shen, T., Zhu, H., Rusinova, E., Zeng, L., Zhou, J., Yang, J., Peng, L., Ohlmeyer, M., Walsh, M. J., Zhang, D. Y., Xiong, H., & Zhou, M. M. (2017). BET N-terminal bromodomain inhibition selectively blocks Th17 cell differentiation and ameliorates colitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 114(11), 2952–2957. https://doi.org/10.1073/pnas.1615601114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang, G., Liu, R., Zhong, Y., Plotnikov, A. N., Zhang, W., Zeng, L., Rusinova, E., Gerona-Nevarro, G., Moshkina, N., Joshua, J., Chuang, P. Y., Ohlmeyer, M., He, J. C., & Zhou, M. M. (2012). Down-regulation of NF-kappaB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. The Journal of Biological Chemistry, 287(34), 28840–28851. https://doi.org/10.1074/jbc.M112.359505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W. B., Fedorov, O., Morse, E. M., Keates, T., Hickman, T. T., Felletar, I., Philpott, M., Munro, S., McKeown, M. R., Wang, Y., Christie, A. L., West, N., Cameron, M. J., Schwartz, B., Heightman, T. D., la Thangue, N., French, C. A., Wiest, O., Kung, A. L., Knapp, S., & Bradner, J. E. (2010). Selective inhibition of BET bromodomains. Nature, 468(7327), 1067–1073. https://doi.org/10.1038/nature09504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Guo, N. H., Zheng, J. F., Zi, F. M., & Cheng, J. (2019). I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma. Bioscience Reports, 39(5). https://doi.org/10.1042/BSR20181245.

  28. Ott, C. J., Kopp, N., Bird, L., Paranal, R. M., Qi, J., Bowman, T., Rodig, S. J., Kung, A. L., Bradner, J. E., & Weinstock, D. M. (2012). BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood, 120(14), 2843–2852. https://doi.org/10.1182/blood-2012-02-413021.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Derenzini, E., Mondello, P., Erazo, T., Portelinha, A., Liu, Y., Scallion, M., Asgari, Z., Philip, J., Hilden, P., Valli, D., Rossi, A., Djaballah, H., Ouerfelli, O., de Stanchina, E., Seshan, V. E., Hendrickson, R. C., & Younes, A. (2018). BET inhibition-induced GSK3beta feedback enhances lymphoma vulnerability to PI3K inhibitors. Cell Reports, 24(8), 2155–2166. https://doi.org/10.1016/j.celrep.2018.07.055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zhou, Y., Zhou, J., Lu, X., Tan, T. Z., & Chng, W. J. (2018). BET Bromodomain inhibition promotes de-repression of TXNIP and activation of ASK1-MAPK pathway in acute myeloid leukemia. BMC Cancer, 18(1), 731. https://doi.org/10.1186/s12885-018-4661-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Stewart, H. J. S., Chaudry, S., Crichlow, A., Luiling, F., & Chevassut, T. J. T. (2018). BET inhibition suppresses S100A8 and S100A9 expression in acute myeloid leukemia cells and synergises with daunorubicin in causing cell death. Bone Marrow Research, 2018, 5742954–5742959. https://doi.org/10.1155/2018/5742954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Berthon, C., Raffoux, E., Thomas, X., Vey, N., Gomez-Roca, C., Yee, K., Taussig, D. C., Rezai, K., Roumier, C., Herait, P., Kahatt, C., Quesnel, B., Michallet, M., Recher, C., Lokiec, F., Preudhomme, C., & Dombret, H. (2016). Bromodomain inhibitor OTX015 in patients with acute leukaemia: A dose-escalation, phase 1 study. The Lancet Haematology, 3(4), e186–e195. https://doi.org/10.1016/S2352-3026(15)00247-1.

    Article  PubMed  Google Scholar 

  33. Shu, S., Lin, C. Y., He, H. H., Witwicki, R. M., Tabassum, D. P., Roberts, J. M., Janiszewska, M., Jin Huh, S., Liang, Y., Ryan, J., Doherty, E., Mohammed, H., Guo, H., Stover, D. G., Ekram, M. B., Peluffo, G., Brown, J., D’Santos, C., Krop, I. E., Dillon, D., McKeown, M., Ott, C., Qi, J., Ni, M., Rao, P. K., Duarte, M., Wu, S. Y., Chiang, C. M., Anders, L., Young, R. A., Winer, E. P., Letai, A., Barry, W. T., Carroll, J. S., Long, H. W., Brown, M., Shirley Liu, X., Meyer, C. A., Bradner, J. E., & Polyak, K. (2016). Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature, 529(7586), 413–417. https://doi.org/10.1038/nature16508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Oh, J. H., Kim, C. Y., Lee, J. Y., & Kim, M. H. (2018). Retinoic acid and CTCF play key roles in inducing the collinear expression of the Hoxa cluster. Acta Biochimica et Biophysica Sinica, 50(6), 555–559. https://doi.org/10.1093/abbs/gmy039.

    Article  PubMed  CAS  Google Scholar 

  35. Narendra, V., Bulajić, M., Dekker, J., Mazzoni, E. O., & Reinberg, D. (2016). CTCF-mediated topological boundaries during development foster appropriate gene regulation. Genes & Development, 30(24), 2657–2662. https://doi.org/10.1101/gad.288324.116.

    Article  CAS  Google Scholar 

  36. Luo, H., Zhu, G., Xu, J., Lai, Q., Yan, B., Guo, Y., et al. (2019). HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell, 36(6), 645–659.e8. https://doi.org/10.1016/j.ccell.2019.10.011.

    Article  PubMed  CAS  Google Scholar 

  37. Ghasemi, R., Struthers, H., Wilson, E. R., & Spencer, D. H. (2020). Contribution of CTCF binding to transcriptional activity at the HOXA locus in NPM1-mutant AML cells. Leukemia, (2020 May 12). https://doi.org/10.1038/s41375-020-0856-3.

  38. Lin, C., Garruss, A. S., Luo, Z., Guo, F., & Shilatifard, A. (2013). The RNA Pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation. Cell, 152(1–2), 144–156. https://doi.org/10.1016/j.cell.2012.12.015.

    Article  PubMed  CAS  Google Scholar 

  39. Lee, J. Y., Park, Y. J., Oh, N., Kwack, K. B., & Park, K. S. (2017). A transcriptional complex composed of ER(alpha), GATA3, FOXA1 and ELL3 regulates IL-20 expression in breast cancer cells. Oncotarget, 8(26), 42752–42760. https://doi.org/10.18632/oncotarget.17459.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim, I., Kim, K. S., Kwon, O. S., Cha, H. J., & Park, K. S. (2017). Ell3 stimulates 5-FU resistance in a breast cancer cell line. Oncology Letters, 13(6), 4173–4179. https://doi.org/10.3892/ol.2017.5996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Alexander, L. M. M., Watters, J., Reusch, J. A., Maurin, M., Nepon-Sixt, B. S., Vrzalikova, K., et al. (2017). Data supporting the functional role of eleven-nineteen lysine-rich leukemia 3 (ELL3) in B cell lymphoma cell line cells. Data in Brief, 15, 222–227. https://doi.org/10.1016/j.dib.2017.09.042.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by National Nature Science Foundation of China, PR China (No. 81800163).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Jie Zha and Bing Xu. Development of methodology: Jie Zha, Qian Lai, Manman Deng, Pengcheng Shi. Material preparation, data collection and analysis: Jie Zha, Qian Lai, Manman Deng,Pengcheng Shi, Haijun Zhao, Qinwei Chen.Writing, and revision of the manuscript:Jie Zha, Qian Lai and Bing Xu.Writing, and revision of the manuscript: Jie Zha,Hua Wu, Bing Xu. Supplemental experiments: Jie zha. Response to reviewers: Jiezha,Hua Wu and Bing Xu.

Corresponding author

Correspondence to Bing Xu.

Ethics declarations

Conflict of Interest Disclosures

The authors made no disclosures.

Ethics Approval

All animal experiment procedures were approved by the Animal Care and Use Committee of the First Affiliated Hospital of Xiamen University.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 562 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zha, J., Lai, Q., Deng, M. et al. Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors’ Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Rev and Rep 16, 1280–1291 (2020). https://doi.org/10.1007/s12015-020-10057-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10057-y

Keywords

Navigation