DNA Methylation of Intragenic CpG Islands are Required for Differentiation from iPSC to NPC

Abstract

The effects of gene body DNA methylation on gene regulation still remains highly controversial. In this study, we generated whole genome bisulfite sequencing (WGBS) data with high sequencing depth in induced pluripotent stem cell (iPSC) and neuronal progentior cell (NPC), and investigated the relationship between DNA methylation changes in CpG islands (CGIs) and corresponding gene expression during NPC differentiation. Interestingly, differentially methylated CGIs were more abundant in intragenic regions compared to promoters and these methylated intragenic CGIs (iCGIs) were associated with neuronal development-related genes. When we compared gene expression level of methylated and unmethylated CGIs in intragenic regions, DNA methylation of iCGI was positively correlated with gene expression in contrast with promoter CGIs (pCGIs). To gain insight into regulatory mechanism mediated by iCGI DNA methylation, we executed motif searching in hypermethylated iCGIs and found NEUROD1 as a hypermethylated iCGI binding transcription factor. This study highlights give rise to possibility of activating role of hypermethylation in iCGIs and involvement of neuronal development related TFs.

The relationship between iCGI DNA methylation and expression of associated genes in neuronal developmental process. During iPSC to NPCdifferentiation, iCGI containing neural developmental genes show iCGI's DNA hypermethylation which is accompanied by gene activation and NEUROD1which is one of the core neuronal TFs interacts with hypermethylated iCGI regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Ehrlich, M., & Lacey, M. (2013). DNA methylation and differentiation: Silencing, upregulation and modulation of gene expression. Epigenomics, 5(5), 553–568.

    CAS  PubMed  Google Scholar 

  2. 2.

    Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., Ye, Z., Kim, A., Rajagopal, N., Xie, W., Diao, Y., Liang, J., Zhao, H., Lobanenkov, V. V., Ecker, J. R., Thomson, J. A., & Ren, B. (2015). Chromatin architecture reorganization during stem cell differentiation. Nature, 518(7539), 331–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nazor, K. L., Altun, G., Lynch, C., Tran, H., Harness, J. V., Slavin, I., Garitaonandia, I., Müller, F. J., Wang, Y. C., Boscolo, F. S., Fakunle, E., Dumevska, B., Lee, S., Park, H. S., Olee, T., D'Lima, D. D., Semechkin, R., Parast, M. M., Galat, V., Laslett, A. L., Schmidt, U., Keirstead, H. S., Loring, J. F., & Laurent, L. C. (2012). Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell, 10(5), 620–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., Nery, J. R., Lee, L., Ye, Z., Ngo, Q. M., Edsall, L., Antosiewicz-Bourget, J., Stewart, R., Ruotti, V., Millar, A. H., Thomson, J. A., Ren, B., & Ecker, J. R. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Barlow, D. P. (1995). Gametic imprinting in mammals. Science, 270(5242), 1610–1613.

    CAS  PubMed  Google Scholar 

  6. 6.

    Yen, P. H., Patel, P., Chinault, A. C., Mohandas, T., & Shapiro, L. J. (1984). Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 81(6), 1759–1763.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Deaton, A. M., & Bird, A. (2011). CpG islands and the regulation of transcription. Genes & Development, 25(10), 1010–1022.

    CAS  Google Scholar 

  8. 8.

    Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & Development, 16(1), 6–21.

    CAS  Google Scholar 

  9. 9.

    Strichman-Almashanu, L. Z., Lee, R. S., Onyango, P. O., Perlman, E., Flam, F., Frieman, M. B., & Feinberg, A. P. (2002). A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Research, 12(4), 543–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1412–1417.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23–38.

    CAS  PubMed  Google Scholar 

  12. 12.

    Saksouk, N., Simboeck, E., & Dejardin, J. (2015). Constitutive heterochromatin formation and transcription in mammals. Epigenetics & Chromatin, 8, 3.

    CAS  Google Scholar 

  13. 13.

    Medvedeva, Y. A., Fridman, M. V., Oparina, N. J., Malko, D. B., Ermakova, E. O., Kulakovskiy, I. V., Heinzel, A., & Makeev, V. J. (2010). Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics, 11, 48–48.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Li, E., & Zhang, Y. (2014). DNA methylation in mammals. Cold Spring Harbor Perspectives in Biology, 6(5), a019133.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Medvedeva, Y. A., Khamis, A. M., Kulakovskiy, I. V., Ba-Alawi, W., Bhuyan, M. S. I., Kawaji, H., Lassmann, T., Harbers, M., Forrest, A. R. R., Bajic, V. B., & The FANTOM consortium. (2014). Effects of cytosine methylation on transcription factor binding sites. BMC Genomics, 15, 119.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Plachot, C., & Lelievre, S. A. (2004). DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium. Experimental Cell Research, 298(1), 122–132.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hackett, J. A., Reddington, J. P., Nestor, C. E., Dunican, D. S., Branco, M. R., Reichmann, J., Reik, W., Surani, M. A., Adams, I. R., & Meehan, R. R. (2012). Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development, 139(19), 3623–3632.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Gates, L. A., Foulds, C. E., & O'Malley, B. W. (2017). Histone Marks in the 'Driver's Seat': Functional roles in steering the transcription cycle. Trends in Biochemical Sciences, 42(12), 977–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Lee, S. M., Lee, J., Noh, K. M., Choi, W. Y., Jeon, S., Oh, G. T., Kim-Ha, J., Jin, Y., Cho, S. W., & Kim, Y. J. (2017). Intragenic CpG islands play important roles in bivalent chromatin assembly of developmental genes. Proceedings of the National Academy of Sciences of the United States of America, 114(10), E1885–E1894.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    CAS  PubMed  Google Scholar 

  22. 22.

    Marchetto, M. C., Brennand, K. J., Boyer, L. F., & Gage, F. H. (2011). Induced pluripotent stem cells (iPSCs) and neurological disease modeling: Progress and promises. Human Molecular Genetics, 20(R2), R109–R115.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Liu, C., et al., (2018) Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development, 145(5).

  24. 24.

    McCauley, H. A., & Wells, J. M. (2017). Pluripotent stem cell-derived organoids: Using principles of developmental biology to grow human tissues in a dish. Development, 144(6), 958–962.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Vaskova, E. A., Stekleneva, A. E., Medvedev, S. P., & Zakian, S. M. (2013). "epigenetic memory" phenomenon in induced pluripotent stem cells. Acta Naturae, 5(4), 15–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ang, Y. S., Gaspar-Maia, A., Lemischka, I. R., & Bernstein, E. (2011). Stem cells and reprogramming: Breaking the epigenetic barrier? Trends in Pharmacological Sciences, 32(7), 394–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    de Boni, L., et al., (2018) DNA methylation alterations in iPSC- and hESC-derived neurons: Potential implications for neurological disease modeling. Clinical Epigenetics. 10.

  28. 28.

    Roost, M. S., Slieker, R. C., Bialecka, M., van Iperen, L., Gomes Fernandes, M. M., He, N., Suchiman, H. E. D., Szuhai, K., Carlotti, F., de Koning, E. J. P., Mummery, C. L., Heijmans, B. T., & Chuva de Sousa Lopes, S. M. (2017). DNA methylation and transcriptional trajectories during human development and reprogramming of isogenic pluripotent stem cells. Nature Communications, 8, 908.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kim, H. W., Yang, K., Jeong, W. J., Choi, S. J., Lee, J. S., Cho, A. N., Chang, G. E., Cheong, E., Cho, S. W., & Lim, Y. B. (2016). Photoactivation of noncovalently assembled peptide ligands on carbon nanotubes enables the dynamic regulation of stem cell differentiation. ACS Applied Materials & Interfaces, 8(40), 26470–26481.

    CAS  Google Scholar 

  30. 30.

    Seo, H. I., Cho, A. N., Jang, J., Kim, D. W., Cho, S. W., & Chung, B. G. (2015). Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomedicine, 11(7), 1861–1869.

    CAS  PubMed  Google Scholar 

  31. 31.

    Shin, J., Choi, E. J., Cho, J. H., Cho, A. N., Jin, Y., Yang, K., Song, C., & Cho, S. W. (2017). Three-dimensional Electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and Polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules, 18(10), 3060–3072.

    CAS  PubMed  Google Scholar 

  32. 32.

    Li, L., Roh, J. H., Chang, E. H., Lee, Y., Lee, S., Kim, M., Koh, W., Chang, J. W., Kim, H. J., Nakanishi, M., Barker, R. A., Na, D. L., & Song, J. (2018). iPSC modeling of Presenilin1 mutation in Alzheimer's disease with cerebellar ataxia. Experimental Neurobiology, 27(5), 350–364.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lee, S. M., Lee, Y. G., Bae, J. B., Choi, J. K., Tayama, C., Hata, K., Yun, Y., Seong, J. K., & Kim, Y. J. (2014). HBx induces hypomethylation of distal intragenic CpG islands required for active expression of developmental regulators. Proceedings of the National Academy of Sciences of the United States of America, 111(26), 9555–9560.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185–193.

    CAS  PubMed  Google Scholar 

  35. 35.

    Grant, C. E., Bailey, T. L., & Noble, W. S. (2011). FIMO: Scanning for occurrences of a given motif. Bioinformatics, 27(7), 1017–1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Juhling, F., et al. (2016). Metilene: Fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Research, 26(2), 256–262.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Greenberg, M. V. C., & Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews. Molecular Cell Biology, 20(10), 590–607.

    CAS  PubMed  Google Scholar 

  38. 38.

    Chen, K.F., et al., (2015) Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nature Genetics. 47(10): p. 1149−+.

  39. 39.

    Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E., & Ren, B. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genetics, 39(3), 311–318.

    CAS  PubMed  Google Scholar 

  40. 40.

    Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., & Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4), 823–837.

    CAS  PubMed  Google Scholar 

  41. 41.

    Voigt, P., Tee, W. W., & Reinberg, D. (2013). A double take on bivalent promoters. Genes & Development, 27(12), 1318–1338.

    CAS  Google Scholar 

  42. 42.

    Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jørgensen, H. F., John, R. M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., & Fisher, A. G. (2006). Chromatin signatures of pluripotent cell lines. Nature Cell Biology, 8(5), 532–U189.

    CAS  PubMed  Google Scholar 

  43. 43.

    Hou, P. S., Chuang, C. Y., Kao, C. F., Chou, S. J., Stone, L., Ho, H. N., Chien, C. L., & Kuo, H. C. (2013). LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Research, 41(16), 7753–7770.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bel-Vialar, S., Medevielle, F., & Pituello, F. (2007). The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord. Developmental Biology, 305(2), 659–673.

    CAS  PubMed  Google Scholar 

  45. 45.

    Muranishi, Y., Terada, K., & Furukawa, T. (2012). An essential role for Rax in retina and neuroendocrine system development. Development, Growth & Differentiation, 54(3), 341–348.

    CAS  Google Scholar 

  46. 46.

    Mattes, B., Weber, S., Peres, J., Chen, Q., Davidson, G., Houart, C., & Scholpp, S. (2012). Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain. Neural Development, 7, 12.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Iwafuchi-Doi, M., & Zaret, K. S. (2014). Pioneer transcription factors in cell reprogramming. Genes & Development, 28(24), 2679–2692.

    Google Scholar 

  48. 48.

    Rhee, I., Bachman, K. E., Park, B. H., Jair, K. W., Yen, R. W. C., Schuebel, K. E., Cui, H., Feinberg, A. P., Lengauer, C., Kinzler, K. W., Baylin, S. B., & Vogelstein, B. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416(6880), 552–556.

    CAS  PubMed  Google Scholar 

  49. 49.

    Messerschmidt, D. M., Knowles, B. B., & Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes & Development, 28(8), 812–828.

    CAS  Google Scholar 

  50. 50.

    Smith, Z. D., & Meissner, A. (2013). DNA methylation: Roles in mammalian development. Nature Reviews. Genetics, 14(3), 204–220.

    CAS  PubMed  Google Scholar 

  51. 51.

    Jeziorska, D. M., Murray, R. J. S., de Gobbi, M., Gaentzsch, R., Garrick, D., Ayyub, H., Chen, T., Li, E., Telenius, J., Lynch, M., Graham, B., Smith, A. J. H., Lund, J. N., Hughes, J. R., Higgs, D. R., & Tufarelli, C. (2017). DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease. Proceedings of the National Academy of Sciences of the United States of America, 114(36), E7526–E7535.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Xu, W., Li, J., Rong, B., Zhao, B., Wang, M., Dai, R., Chen, Q., Liu, H., Gu, Z., Liu, S., Guo, R., Shen, H., Wu, F., & Lan, F. (2020). DNMT3A reads and connects histone H3K36me2 to DNA methylation. Protein & Cell, 11(2), 150–154.

    Google Scholar 

  53. 53.

    Frati, G., Luciani, M., Meneghini, V., de Cicco, S., Ståhlman, M., Blomqvist, M., Grossi, S., Filocamo, M., Morena, F., Menegon, A., Martino, S., & Gritti, A. (2018). Human iPSC-based models highlight defective glial and neuronal differentiation from neural progenitor cells in metachromatic leukodystrophy. Cell Death & Disease, 9, 698.

    Google Scholar 

  54. 54.

    D'Aiuto, L., et al. (2015). Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation (vol 10, pg 365, 2014). Organogenesis, 11(2), 93–93.

    Google Scholar 

  55. 55.

    Simao, D., et al. (2018). Recapitulation of human neural microenvironment signatures in iPSC-derived NPC 3D differentiation. Stem Cell Reports, 11(2), 552–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Skeath, J. B., & Carroll, S. B. (1994). The Achaete-Scute complex - generation of cellular-pattern and fate within the Drosophila nervous-system. FASEB Journal, 8(10), 714–721.

    CAS  PubMed  Google Scholar 

  57. 57.

    Wapinski, O. L., Vierbuchen, T., Qu, K., Lee, Q. Y., Chanda, S., Fuentes, D. R., Giresi, P. G., Ng, Y. H., Marro, S., Neff, N. F., Drechsel, D., Martynoga, B., Castro, D. S., Webb, A. E., Südhof, T. C., Brunet, A., Guillemot, F., Chang, H. Y., & Wernig, M. (2013). Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell, 155(3), 621–635.

    CAS  PubMed  Google Scholar 

  58. 58.

    Hahn, M.A., et al., (2019) Reprogramming of DNA methylation at NEUROD2-bound sequences during cortical neuron differentiation. Science Advances. 5(10).

  59. 59.

    Kulis, M., Queirós, A. C., Beekman, R., & Martín-Subero, J. I. (2013). Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochimica et Biophysica Acta, 1829(11), 1161–1174.

    CAS  PubMed  Google Scholar 

  60. 60.

    Zhu, H., Wang, G. H., & Qian, J. (2016). Transcription factors as readers and effectors of DNA methylation. Nature Reviews Genetics, 17(9), 551–565.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Samsung Science and Technology Foundation Project SSTF-BA1601-13.

Accession Codes

All Whole Genome Bisulfite sequencing (WGBS), mRNA-seq and ChIP-seq data for iPSC and NPC have been submitted to the Gene Expression Omnibus (GEO) under accession GSE156723.

Author information

Affiliations

Authors

Contributions

W.-Y.C. and Y.-J.K. conceived and designed the study. W.-Y.C., A.J.L and J.L. produced and processed next generation sequencing data and W.-Y.C. analyzed the data. A.-N.C. performed cellular work for iPSC maintaining and differentiation. I.-K.J. and S.-W.C. contributed advice in experiment and data analysis. W.-Y.C, J.-H.H. and L.K.K wrote the manuscript. L.K.K and Y.-J.K. supervised the project.

Corresponding authors

Correspondence to Lark Kyun Kim or Young-Joon Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Fig. 1.

Characterization of function of genes according to localization of CGIs. (A-D) Gene Ontology analysis of genes containing hypermethylated promoter CGIs (pCGIs), hypomethylated pCGIs, hypermethylated intragenic CGIs (iCGIs) and hypomethylated iCGIs. The p-values were calculated using the Benjamini–Hochberg method in DAVID. Supplementary Table 1. The list of unmethylated iCGIs which were activated by neural differentiation (PDF 85 kb) (PDF 85 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, WY., Hwang, JH., Cho, AN. et al. DNA Methylation of Intragenic CpG Islands are Required for Differentiation from iPSC to NPC. Stem Cell Rev and Rep 16, 1316–1327 (2020). https://doi.org/10.1007/s12015-020-10041-6

Download citation

Keywords

  • DNA methylation
  • Intragenic CpG island
  • Induced pluripotent stem cell
  • Neuronal progenitor cell
  • NEUROD1