Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell Therapy for Osteoradionecrosis of the Mandible: a Systematic Review of Preclinical and Human Studies

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Osteoradionecrosis (ORN) of the mandible is a severe complication of radiotherapy for head and neck cancer and is arduously difficult to manage. Current treatment options carry risks with some patients remaining incurable. Mesenchymal stromal/stem cell (MSC) therapy has shown promising results supporting osteogenesis and regeneration of radiotherapy-damaged tissues. The aim of this study was to systematically review the literature on the safety and efficacy of MSCs in treating ORN.

Methods

A systematic search was performed on MEDLINE, Embase, Cochranes Library online databases, and clinicaltrials.gov to identify preclinical and clinical studies examining the effect of MSCs on osseous healing of ORN. The preclinical studies were assessed according to the SYRCLEs guidelines and risk of bias tool.

Results

Six studies (n = 142) from 5 countries were eligible for analysis. Of these four were preclinical studies and two clinical case studies. Preclinical studies found MSC treatment to be safe, demonstrating bone restorative effects and improved soft tissue regeneration. In the clinical cases, healing of bone and soft tissue was reported with no serious adverse events.

Conclusion

The evidence from the included studies suggests that MSCs may have beneficial regenerative effects on the healing of ORN. None of the studies reported adverse events with the use of MSCs. More carefully controlled studies with well-identified cells are however needed to demonstrate the efficacy of MSCs in a clinical setting.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Chronopoulos, A., Zarra, T., Ehrenfeld, M., & Otto, S. (2018, February 1). Osteoradionecrosis of the jaws: Definition, epidemiology, staging and clinical and radiological findings, A concise review. International Dental Journal. Wiley-Blackwell Publishing Ltd., 68, 22–30. https://doi.org/10.1111/idj.12318.

    Article  Google Scholar 

  2. Støre, G., & Boysen, M. (2000). Mandibular osteoradionecrosis: Clinical behaviour and diagnostic aspects. Clinical Otolaryngology and Allied Sciences, 25(5), 378–384. https://doi.org/10.1046/j.1365-2273.2000.00367.x.

    Article  PubMed  Google Scholar 

  3. Danielsson, D., Gahm, C., Haghdoost, S., Munck-Wikland, E., & Halle, M. (2020). Osteoradionecrosis, an increasing indication for microvascular head and neck reconstruction. International Journal of Oral and Maxillofacial Surgery, 49(1), 1–6. https://doi.org/10.1016/j.ijom.2019.06.009.

    Article  PubMed  CAS  Google Scholar 

  4. Aarup-Kristensen, S., Hansen, C. R., Forner, L., Brink, C., Eriksen, J. G., & Johansen, J. (2019). Osteoradionecrosis of the mandible after radiotherapy for head and neck cancer: Risk factors and dose-volume correlations. Acta Oncologica, 0(0), 1–5. https://doi.org/10.1080/0284186x.2019.1643037, 58.

  5. Shaw, R. J., Butterworth, C. J., Silcocks, P., Tesfaye, B. T., Bickerstaff, M., Jackson, R., Kanatas, A., Nixon, P., McCaul, J., Praveen, P., Lowe, T., Blanco-Guzman, M., Forner, L., Brennan, P., Fardy, M., Parkin, R., Smerdon, G., Stephenson, R., Cope, T., & Glover, M. (2019). HOPON (hyperbaric oxygen for the prevention of Osteoradionecrosis): A randomized controlled trial of hyperbaric oxygen to prevent Osteoradionecrosis of the irradiated mandible after Dentoalveolar surgery. International Journal of Radiation Oncology*Biology*Physics, 104(3), 530–539. https://doi.org/10.1016/j.ijrobp.2019.02.044.

    Article  Google Scholar 

  6. Marx, R. E. (1983). Osteoradionecrosis: A new concept of its pathophysiology. Journal of Oral and Maxillofacial Surgery, 41(5), 283–288. https://doi.org/10.1016/0278-2391(83)90294-X.

    Article  PubMed  CAS  Google Scholar 

  7. Rivero, J. A., Shamji, O., & Kolokythas, A. (2017). Osteoradionecrosis: a review of pathophysiology, prevention and pharmacologic management using pentoxifylline, α-tocopherol, and clodronate. In Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. Elsevier Inc. https://doi.org/10.1016/j.oooo.2017.08.004.

  8. Jacobson, A. S., Buchbinder, D., Hu, K., & Urken, M. L. (2010). Paradigm shifts in the management of osteoradionecrosis of the mandible. Oral Oncology, 46(11), 795–801. https://doi.org/10.1016/j.oraloncology.2010.08.007.

    Article  PubMed  Google Scholar 

  9. Pereira, I. F., Firmino, R. T., Meira, H. C., Egito, V., Do, B. C., Vladimir-Reimar-Augusto-De Souza, N., & Santos, V. R. (2018). Osteoradionecrosis prevalence and associated factors: A ten years retrospective study. Medicina Oral Patologia Oral y Cirugia Bucal, 23(6), e633–e638. https://doi.org/10.4317/medoral.22310.

    Article  Google Scholar 

  10. Moon, D. H., Moon, S. H., Wang, K., Weissler, M. C., Hackman, T. G., Zanation, A. M., Thorp, B. D., Patel, S. N., Zevallos, J. P., Marks, L. B., & Chera, B. S. (2017). Incidence of, and risk factors for, mandibular osteoradionecrosis in patients with oral cavity and oropharynx cancers. Oral Oncology, 72, 98–103. https://doi.org/10.1016/j.oraloncology.2017.07.014.

    Article  PubMed  Google Scholar 

  11. Marx, R. E. (1983). A new concept in the treatment of osteoradionecrosis. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons, 41(6), 351–357. https://doi.org/10.1016/s0278-2391(83)80005-6.

    Article  CAS  Google Scholar 

  12. Bennett, M. H., Feldmeier, J., Hampson, N. B., Smee, R., & Milross, C. (2016, April 28). Hyperbaric oxygen therapy for late radiation tissue injury. In Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. https://doi.org/10.1002/14651858.CD005005.pub4.

  13. Dhanda, J., Pasquier, D., Newman, L., & Shaw, R. (2016). Current concepts in Osteoradionecrosis after head and neck radiotherapy. Clinical Oncology, 28(7), 459–466. https://doi.org/10.1016/j.clon.2016.03.002.

    Article  PubMed  CAS  Google Scholar 

  14. Janus, J. R., Jackson, R. S., Lees, K. A., Voss, S. G., Wilson, Z. C., Remmes, N. B., Keeney, M. G., Garcia, J. J., & San Marina, S. (2017). Human adipose-derived Mesenchymal stem cells for osseous rehabilitation of induced Osteoradionecrosis: A rodent model. Otolaryngology - Head and Neck Surgery (United States), 156(4), 616–621. https://doi.org/10.1177/0194599816688647.

    Article  Google Scholar 

  15. Park, H. S., Lee, J., Kim, J.-W. W., Kim, H. S. Y. S. Y. S., Jung, S. Y., Lee, S. M., et al. (2018). Preventive effects of tonsil-derived mesenchymal stem cells on osteoradionecrosis in a rat model. Head and Neck, 40(3), 526–535. https://doi.org/10.1002/hed.25004.

    Article  PubMed  Google Scholar 

  16. Xu, J., Zheng, Z., Fang, D., Gao, R., Liu, Y., Fan, Z., et al. (2012). Mesenchymal stromal cell-based treatment of jaw osteoradionecrosis in swine. Cell Transplantation, 21(8), 1679–1686. https://doi.org/10.3727/096368911X637434.

    Article  PubMed  Google Scholar 

  17. Jin, I. G., Kim, J. H., Wu, H. G., Kim, S. K., Park, Y., Hwang, S. J., et al. (2015). Effect of bone marrow-derived stem cells and bone morphogenetic protein-2 on treatment of osteoradionecrosis in a rat model. Journal of Cranio-Maxillofacial Surgery, 43(8), 1478–1486. https://doi.org/10.1016/j.jcms.2015.06.035.

    Article  PubMed  Google Scholar 

  18. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. In Transplantation : Official journal of the Transplantation Society. Baltimore, Md.: Lippott Williams and Wilkins.

    Google Scholar 

  19. Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: Mechanisms of inflammation. Annual Review of Pathology: Mechanisms of Disease, 6(1), 457–478. https://doi.org/10.1146/annurev-pathol-011110-130230.

    Article  CAS  Google Scholar 

  20. Caplan, A. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society, 9(5), 641–650. https://doi.org/10.1002/jor.1100090504.

    Article  CAS  Google Scholar 

  21. da Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20(5–6), 419–427. https://doi.org/10.1016/j.cytogfr.2009.10.002.

    Article  CAS  Google Scholar 

  22. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. . C., Krause, D. S. S., … Horwitz, E. M. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905.

  23. Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451. https://doi.org/10.1002/sctm.17-0051.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Squillaro, T., Peluso, G., & Galderisi, U. (2016). Clinical trials with Mesenchymal stem cells: An update. Cell Transplantation, 25(5), 829–848. https://doi.org/10.3727/096368915X689622.

    Article  PubMed  Google Scholar 

  25. Ankrum, J. A., Ong, J. F., & Karp, J. M. (2014, March). Mesenchymal stem cells: Immune evasive, not immune privileged. Nature Biotechnology. NIH Public Access., 32, 252–260. https://doi.org/10.1038/nbt.2816.

    Article  CAS  Google Scholar 

  26. Prockop, D. J. (2017). The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy. NIH Public Access., 19, 1–8. https://doi.org/10.1016/j.jcyt.2016.09.008.

    Article  Google Scholar 

  27. Van de Putte, D., Demarquay, C., Van Daele, E., Moussa, L., Vanhove, C., Benderitter, M., et al. (2017). Adipose-derived Mesenchymal stromal cells improve the healing of colonic anastomoses following high dose of irradiation through anti-inflammatory and Angiogenic processes. Cell Transplantation, 26(12), 1919–1930. https://doi.org/10.1177/0963689717721515.

    Article  PubMed  Google Scholar 

  28. S.S., D., K.K., G., A., D., N.S., N., N.P., G., P.A., F … Buchman, S. R. (2015). Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis. Plastic and Reconstructive Surgery, 135(3), 799–806. https://doi.org/10.1097/PRS.0000000000001024.

    Article  CAS  Google Scholar 

  29. Grønhøj, C., Jensen, D. H., Vester-Glowinski, P., Jensen, S. B., Bardow, A., Oliveri, R. S., Fog, L. M., Specht, L., Thomsen, C., Darkner, S., Jensen, M., Müller, V., Kiss, K., Agander, T., Andersen, E., Fischer-Nielsen, A., & von Buchwald, C. (2018). Safety and efficacy of Mesenchymal stem cells for radiation-induced Xerostomia: A randomized, placebo-controlled phase 1/2 trial (MESRIX). International Journal of Radiation Oncology Biology Physics, 101(3), 581–592. https://doi.org/10.1016/j.ijrobp.2018.02.034.

    Article  Google Scholar 

  30. Soria, B., Martin-Montalvo, A., Aguilera, Y., Mellado-Damas, N., López-Beas, J., Herrera-Herrera, I., López, E., Barcia, J. A., Alvarez-Dolado, M., Hmadcha, A., & Capilla-González, V. (2019). Human Mesenchymal stem cells prevent neurological complications of radiotherapy. Frontiers in Cellular Neuroscience, 13(May), 1–14. https://doi.org/10.3389/fncel.2019.00204.

    Article  CAS  Google Scholar 

  31. Zanoni, Cortesi, Zamagni, & Tesei. (2019). The role of Mesenchymal stem cells in radiation-induced lung fibrosis. International Journal of Molecular Sciences, 20(16), 3876. https://doi.org/10.3390/ijms20163876.

  32. Linard, C., Brachet, M., L’homme, B., Strup-Perrot, C., Busson, E., Bonneau, M., Lataillade, J. J., Bey, E., & Benderitter, M. (2018). Long-term effectiveness of local BM-MSCs for skeletal muscle regeneration: A proof of concept obtained on a pig model of severe radiation burn. Stem Cell Research & Therapy, 9(1), 299. https://doi.org/10.1186/s13287-018-1051-6.

    Article  CAS  Google Scholar 

  33. Heino, T. J., & Hentunen, T. A. (2008). Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Current stem cell research & therapy, 3(2), 131–145 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18473879.

    Article  CAS  Google Scholar 

  34. Birmingham, E., Niebur, G., McHugh, P., Shaw, G., Barry, F., & McNamara, L. (2016). Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European Cells and Materials, 23(353), 13–27. https://doi.org/10.22203/ecm.v023a02.

    Article  Google Scholar 

  35. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Journal of Clinical Epidemiology, 62(10), 1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005.

    Article  PubMed  Google Scholar 

  36. Manimaran, K., Sankaranarayanan, S., Chandramohan, M., Elangovan, S., Perumal, S. M., Ravi, V. R., et al. (2014). Treatment of osteoradionecrosis of mandible with bone marrow concentrate and with dental pulp stem cells. Annals of Maxillofacial Surgery, 4(2), 189–192. https://doi.org/10.4103/2231-0746.147130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mendonça, J. J., Juiz-Lopez, P., Mendonca, J. J., Juiz-Lopez, P., Mendonça, J. J., Juiz-Lopez, P., et al. (2010). Regenerative facial reconstruction of terminal stage osteoradionecrosis and other advanced craniofacial diseases with adult cultured stem and progenitor cells. Plastic and Reconstructive Surgery, 126(5), 1699–1709. https://doi.org/10.1097/PRS.0b013e3181f24164.

    Article  PubMed  CAS  Google Scholar 

  38. Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14(1), 43. https://doi.org/10.1186/1471-2288-14-43.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., Redl, H., Rubin, J. P., Yoshimura, K., & Gimble, J. M. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the international so. Cytotherapy, 15(6), 641–648. https://doi.org/10.1016/j.jcyt.2013.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Galipeau, J., Krampera, M., Barrett, J., Dazzi, F., Deans, R. J., DeBruijn, J., Dominici, M., Fibbe, W. E., Gee, A. P., Gimble, J. M., Hematti, P., Koh, M. B. C., LeBlanc, K., Martin, I., McNiece, I. K., Mendicino, M., Oh, S., Ortiz, L., Phinney, D. G., Planat, V., Shi, Y., Stroncek, D. F., Viswanathan, S., Weiss, D. J., & Sensebe, L. (2015). International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 18(2), 151–159. https://doi.org/10.1016/j.jcyt.2015.11.008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Uder, C., Brückner, S., Winkler, S., Tautenhahn, H.-M., & Christ, B. (2018). Mammalian MSC from selected species: Features and applications. Cytometry Part A, 93(1), 32–49. https://doi.org/10.1002/cyto.a.23239.

    Article  CAS  Google Scholar 

  42. Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O., & Michalek, J. (2012). Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived Mesenchymal stem and stromal cells. Stem Cells and Development, 21(14), 2724–2752. https://doi.org/10.1089/scd.2011.0722.

    Article  PubMed  CAS  Google Scholar 

  43. Alvarez-Viejo, M., Menendez-Menendez, Y., Blanco-Gelaz, M. A., Ferrero-Gutierrez, A., Fernandez-Rodriguez, M. A., Gala, J., & Otero-Hernandez, J. (2013). Quantifying Mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy. Transplantation Proceedings, 45(1), 434–439. https://doi.org/10.1016/j.transproceed.2012.05.091.

    Article  PubMed  CAS  Google Scholar 

  44. Viswanathan, S., Shi, Y., Galipeau, J., Krampera, M., Leblanc, K., Martin, I., Nolta, J., Phinney, D. G., & Sensebe, L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & gene therapy (ISCT®) Mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy, 21(10), 1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to librarian Jette Meelby at the health scientific library at Nordsjællands Hospital Hillerød, for help with preparation and development of the search string.

Author information

Authors and Affiliations

Authors

Contributions

AG, CDL, CG and CvB conceived the study design. AG, CL and LF were responsible for search preparation, literature search, article screening and selection. The initial draft of the manuscript was written by AG and CDL, and all authors critically revised the work. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Christian von Buchwald.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Advanced search strategy

The final search was conducted on the 25th of March 2020. The complete search strings can be found below. The MEDLINE search revealed 89 results, including MeSH terms. The EMBASE search revealed 128 studies including all paper types. These results were imported into Covidence.org 2020 review software for screening. The screening process flowchart can be seen in Fig. 1.

Cochrane Library was searched with fewer central keywords in order to identify reviews of interest. The keywords for condition were:

“osteoradionecrosis” OR “ORN” OR “Osteoradionecrosis of the jaw” OR “ORNJ” OR “ONJ”.

This search revealed five Cochrane reviews. None of these reviews investigated the use of mesenchymal stem/stromal cells as a possible treatment for osteoradionecrosis, and thus the included studies of the reviews were not included in our analysis. ClinicalTrials.gov was searched for all trials including the condition “osteoradionecrosis”. 14 results were found. Only one trial seemed to fit our inclusion criteria, and none of the exclusion criteria. However, in that study no results have been published, and the author did not respond to our inquiry.

Table 3 MEDLINE Search
Table 4 Embase Search

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundestrup, A.K., Lynggaard, C.D., Forner, L. et al. Mesenchymal Stem Cell Therapy for Osteoradionecrosis of the Mandible: a Systematic Review of Preclinical and Human Studies. Stem Cell Rev and Rep 16, 1208–1221 (2020). https://doi.org/10.1007/s12015-020-10034-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10034-5

Keywords

Navigation