Skip to main content
Log in

Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Promotion of Tendon Repair - an Update of Literature

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Tendon injuries are prevalent in physical activities and sports. Tendon heals slowly after injuries. The results of conservative treatments and surgery are not satisfactory with high re-injury rate and scar tissue formation. The application of mesenchymal stem cells (MSCs) to the injured tendons was reported to promote tendon repair. Recent studies have suggested that MSCs supported tendon repair via the secretion of paracrine factors. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures that are produced and secreted by most eukaryotic cells. They carry a plethora of proteins, lipids, microRNA and mRNA which reprogram the recipient cells and are involved in multiple physiological and pathological processes. EVs were shown to promote tissue repair and mediate the healing effects of MSCs. In this review, I aim to review the recent literature on the promotion of tendon repair using EVs-derived from MSCs (MSC-EVs). The mechanisms underlying these actions are also reviewed and future research directions are discussed. Better understanding of the roles of MSC-EVs in tendon repair would offer a new treatment strategy to circumvent this devastating soft tissue disorder.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lim, W. L., Liau, L. L., Ng, M. H., Chowdhury, S. R., & Law, J. X. (2019). Current progress in tendon and ligament tissue engineering. Tissue Engineering and Regenerative Medicine, 16(6), 549–571.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Longo, U. G., Berton, A., Papapietro, N., Maffulli, N., & Denaro, V. (2012). Epidemiology, genetics and biological factors of rotator cuff tears. Medicine and Sport Science, 57, 1–9.

    PubMed  Google Scholar 

  3. Chen, J., Xu, J., Wang, A., & Zheng, M. (2009). Scaffolds for tendon and ligament repair: Review of the efficacy of commercial products. Expert Review of Medical Devices, 6(1), 61–73.

    PubMed  Google Scholar 

  4. Zumstein, M. A., Jost, B., Hempel, J., Jodler, J., & Gerber, C. (2008). The clinical and structural long-term results of open repair of massive tears of the rotator cuff. The Journal of Bone and Joint Surgery American, 90(11), 2423–2431.

    Google Scholar 

  5. Le, B. T. N., Wu, X. L., Lam, P. H., & Murrell, G. A. C. (2014). Factors predicting rotator cuff tears: An analysis of 1000 consecutive rotator cuff repairs. The American Journal of Sports Medicine, 42(5), 1134–1142.

    PubMed  Google Scholar 

  6. Hevesi, M., LaPrade, M., Saris, D. B. F., & Krych, A. J. (2019). Stem cell treatment for ligament repair and reconstruction. Current Reviews in Musculoskeletal Medicine, 12(4), 446–450.

    PubMed  PubMed Central  Google Scholar 

  7. Lui, P. P. (2015). Stem cell technology for tendon regeneration: Current status, challenges, and future research directions. Stem Cells and Cloning: Advances and Applications, 8, 163–174.

    Google Scholar 

  8. Lui, P. P., & Chan, K. M. (2011). Tendon-derived stem cells (TDSCs): From basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Reviews and Reports, 7(4), 883–897.

    CAS  PubMed  Google Scholar 

  9. Lui, P. P., & Wong, O. T. (2012). Tendon stem cells: Experimental and clinical perspectives in tendon and tendon-bone junction repair. Muscles, Ligaments and Tendons Journal, 2(3), 163–168.

    PubMed  PubMed Central  Google Scholar 

  10. Lui, P. P., Wong, O. T., & Lee, Y. W. (2014). Application of tendon-derived stem cell sheet for the promotion of graft healing in anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 42(3), 681–689.

    PubMed  Google Scholar 

  11. Lui, P. P., Wong, O. T., & Lee, Y. W. (2016). Transplantation of tendon-derived stem cells pre-treated with connective tissue growth factor and ascorbic acid in vitro promoted better tendon repair in a patellar tendon window injury rat model. Cytotherapy, 18(1), 99–112.

    CAS  PubMed  Google Scholar 

  12. Vandenberghe, A., Broeckx, S. Y., Beerts, C., Seys, B., Zimmerman, M., Verweire, I., Suls, M., & Spaas, J. H. (2015). Tenogenically induced allogeneic Mesenchymal stem cells for the treatment of proximal suspensory ligament Desmitis in a horse. Frontiers in Veterinary Science, 2, 49.

    PubMed  PubMed Central  Google Scholar 

  13. Van Loon, V. J., Scheffer, C. J., Genn, H. J., Hoogendoorn, A. C., & Greve, J. W. (2014). Clinical follow-up of horses treated with allogeneic equine mesenchymal stem cells derived from umbilical cord blood for different tendon and ligament disorders. Veterinary Quarterly, 34(2), 92–97.

    Google Scholar 

  14. Lange-Consiglio, A., Rossi, D., Tassan, S., Perego, R., Cremonesi, F., & Parolini, O. (2013). Conditioned medium from horse amniotic membrane-derived multipotent progenitor cells: Immunomodulatory activity in vitro and first clinical application in tendon and ligament injuries in vivo. Stem Cells and Development, 22(22), 3015–3024.

    CAS  PubMed  Google Scholar 

  15. Lange-Consiglio, A., Tassan, S., Corradetti, B., Meucci, A., Perego, R., Bizzro, D., & Cremonesi, F. (2013). Investigating the efficacy of amnion-derived compared with bone marrow-derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy, 15(8), 1011–1020.

    CAS  PubMed  Google Scholar 

  16. Lacitignola, L., Crovace, A., Rossi, G., & Francioso, E. (2008). Cell therapy for tendinitis, experimental and clinical report. Veterinary Research Communications, 32(Suppl 1), S33–S38.

    PubMed  Google Scholar 

  17. Connor, D. E., Paulus, J. A., Dabestani, P. J., Thankam, F. K., Dilisi, M. F., Gross, R. M., & Agrawal, D. K. (2019). Therapeutic potential of exosomes in rotator cuff tendon healing. Journal of Bone and Mineral Metabolism, 37(5), 759–767.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Greening, D. W., Gopal, S. K., Xu, R., Simpson, R. J., & Chen, W. (2015). Exosomes and their roles in immune regulation and cancer. Seminars in Cell and Developmental Biology, 40, 72–81.

    CAS  PubMed  Google Scholar 

  19. Gonzalez-Calero, L., Martin-Lorenzo, M., & Alvarez-Llamas, G. (2014). Exosomes: A potential key target in cardio-renal syndrome. Frontiers in Immunology, 5, 465.

    PubMed  PubMed Central  Google Scholar 

  20. Kishore, R., Garikipati, V. N., & Gumpert, A. (2016). Tiny shuttles for information transfer: Exosomes in cardiac health and disease. Journal of Cardiovascular Translational Research, 9(3), 169–175.

    PubMed  PubMed Central  Google Scholar 

  21. Howitt, J., & Hill, A. F. (2016). Exosomes in the pathology of neurodegenerative diseases. Journal of Biological Chemistry, 291(52), 26589–26597.

    CAS  Google Scholar 

  22. Record, M., Poirot, M., & Silvente-Poirot, S. (2014). Emerging concepts on the role of exosomes in lipid metabolic diseases. Biochimie, 96, 67–74.

    CAS  PubMed  Google Scholar 

  23. Salem, K. Z., Moschetta, M., Sacco, A., Imberti, L., Rossi, G., Ghobrial, I. M., Manier, S., & Roccaro, A. M. (2016). Exosomes in tumor angiogenesis. Methods in Molecular Biology (Clifton, N.J.), 1464, 25–34.

    CAS  Google Scholar 

  24. Gissi, C., Radeghieri, A., Passeri, C. A. L., Gallorini, M., Calciano, L., Oliva, F., Veronesi, F., Zendrini, A., Cataldi, A., Bergese, P., Maffulli, N., & Berardi, A. C. (2020). Extracellular vesicles from rat-bone-marrow mesenchymal stromal/stem cells improve tendon repair in rat Achilles tendon injury model in dose-dependent manner: A pilot study. PLoS One, 15(3), e0229914.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Madhi, M. I., Yausep, O. E., Khamdan, K., & Trigkilidas, D. (2020). The use of PRP in treatment of Achilles Tendinopathy: A systematic review of literature. Study design: Systematic review of literature. Annals of Medicine and Surgery, 55, 320–326.

    PubMed  PubMed Central  Google Scholar 

  26. Lin, M. T., Wei, K. C., & Wu, C. H. (2020). Effectiveness of platelet-rich plasma injection in rotator cuff Tendinopathy: A systematic review and meta-analysis of randomized controlled trials. Diagnostics (Basel), 10(4), 189.

    CAS  Google Scholar 

  27. Cruciani, M., Franchini, M., Mengoli, C., Marano, G., Pati, I., Masiello, F., Profili, S., Veropalumbo, E., Pupella, S., Vaglio, S., & Liumbruno, G. M. (2019). Platelet-rich plasma for sports-related muscle, tendon and ligament injuries: An umbrella review. Blood Transfusion, 17(6), 465–478.

    PubMed  PubMed Central  Google Scholar 

  28. Kia, C., Baldino, J., Bell, R., Ramji, A., Uyeki, C., & Mazzocca, A. (2018). Platelet-rich plasma: Review of current literature on its use for tendon and ligament pathology. Current Reviews in Musculoskeletal Medicine, 11(4), 566–572.

    PubMed  PubMed Central  Google Scholar 

  29. Filardo, G., Di Matteo, B., Kon, E., Merli, G., & Marcacci, M. (2018). Platelet-rich plasma in tendon-related disorders: Results and indications. Knee Surgery, Sports Traumatology, Arthroscopy, 26(7), 1984–1999.

    PubMed  Google Scholar 

  30. Shi, Z., Qang, Q., & Jiang, D. (2019). Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. Journal of Translational Medicine, 17(1), 211.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, H., Cheng, J., Shi, W., Ren, B., Zhao, F., Shi, Y., Yang, P., Duan, X., Zhang, J., Fu, X., Hu, X., & Ao, Y. (2020). Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem / progenitor cells. Acta Biomaterialia, 106, 328–341.

    CAS  PubMed  Google Scholar 

  32. Shen, H., Yoneda, S., Abu-Amer, Y., Guilak, F., & Gelberman, R. H. (2020). Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. Journal of Orthopaedic Research, 38(1), 117–127.

    CAS  PubMed  Google Scholar 

  33. Wang, Y., He, G., Gui, Y., Tang, H., Shi, Y., Bian, X., Zhu, M., Kang, X., Zhou, M., Lyu, J., Yang, M., Mu, M., Lai, F., Lu, K., Chen, W., Zhou, B., Zhang, J., & Tang, K. (2019). Exosomes from tendon stem cells promote injury tendon healing through balancing synthesis and degradation of the tendon extracellular matrix. Journal of Cellular and Molecular Medicine, 23(8), 5475–5485.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cui, H., He, Y., Chen, S., Zhang, D., Yu, Y., & Fan, C. (2019). Macrophage-derived miRNA-containing exosomes induce peritendinous fibrosis after tendon injury through the miR-21-5p/Smad7 pathway. Molecular Therapy--Nucleic Acids, 14, 114–130.

    CAS  PubMed  Google Scholar 

  35. Shen, H., Kormpakis, I., Havlioglu, N., Linderman, S. W., Sakiyama-Elbert, S. E., Erickson, I. E., Zarembinski, T., Silva, M. J., Gelberman, R. H., & Thomopoulos, S. (2016). The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing. Stem Cell Research & Therapy, 7(1), 144.

    Google Scholar 

  36. Gelberman, R. H., Linderman, S. W., Jayaram, R., Dikina, A. D., Sakiyama-Elbert, S., Alsberg, E., Thomopoulos, S., & Shen, H. (2017). Combined administration of ASCs and BMP-12 promotes an M2 macrophage phenotype and enhances tendon healing. Clinical Orthopaedics and Related Research, 475(9), 18–2331.

    Google Scholar 

  37. Manning, C. N., Martel, C., Sakiyama-Elbert, S. E., Silva, M. J., Shah, S., Gelberman, R. H., & Thomopoulos, S. (2015). Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro. Stem Cell Research & Therapy, 6(1), 74.

    Google Scholar 

  38. Chamberlain, C., Clements, A. E. B., Kink, J. A., Choi, U., Baer, G. S., Halanski, M. A., Hematti, P., & Vanderby, R. (2019). Extracellular vesicles-educated macrophages promote early Achilles tendon healing. Stem Cells, 37(5), 652–662.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, C., Hu, Q., Sog, W., Yu, W., & He, Y. (2020). Adipose stem cell-derived exosomes decrease fatty infiltration and enhance rotator cuff healing in a rabbit model of chronic tears. The American Journal of Sports Medicine, 48(6), 1456–1464.

    PubMed  Google Scholar 

  40. Kornicka-Garbowska, K., Pedziwiatr, R., Wozniak, P., Kucharczyk, K., & Marycz, K. (2019). Microvesicles isolated from 5-azacytidine-and-resveratrol-treated mesenchymal stem cells for the treatment of suspensory ligament injury in horse - a case report. Stem Cell Research & Therapy, 10(1), 394.

    CAS  Google Scholar 

  41. Shi, Y., Kang, X., Wang, Y., Bian, X., He, G., Zhou, M., & Tang, K. (2020). Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 26, e923328.

    CAS  Google Scholar 

  42. Lange-Consiglio, A., Perrini, C., Tasquier, R., Deregibus, M. C., Camussi, G., Pascucci, L., Marini, M. G., Corradetti, B., Bizzaro, D., De Vita, B., Romele, P., Parolini, O., & Cremonesi, F. (2016). Equine amniotic microvesicles and their anti- inflammatory potential in a tenocyte model in vitro. Stem Cells and Development, 25(8), 610–621.

    CAS  PubMed  Google Scholar 

  43. Lange-Consiglio, A., Lazzari, B., Perrini, C., Pizzi, F., Stella, A., Cremonesi, F., & Capra, E. (2018). MicroRNAs of equine amniotic mesenchymal cell-derived microvesicles and their involvement in anti-inflammatory processes. Cell Transplantation, 27(1), 45–54.

    PubMed  PubMed Central  Google Scholar 

  44. Cebatariuniene, A., Kriauciunaite, K., Prunskaite, J., Tunaitis, V., & Pivoriunas, A. (2019). Extracellular vesicles suppress basal and lipopolysaccharide-induced NFkB activity in human periodontal ligament stem cells. Stem Cells and Development, 28(15), 1037–1049.

    CAS  PubMed  Google Scholar 

  45. Domenis, R., Cifu, A., Quaglia, S., Pistis, C., Moretti, M., Vicario, A., Parodi, P. C., Fabris, M., Niazi, K. R., Soon-Shiong, P., & Curcio, F. (2018). Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Scientific Reports, 8(1), 13325.

    PubMed  PubMed Central  Google Scholar 

  46. Ti, D., Hao, H., Tong, C., Liu, J., Dong, L., Zheng, J., Zhao, Y., Liu, H., Fu, X., & Han, W. (2015). LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. Journal of Translational Medicine, 13, 308.

    PubMed  PubMed Central  Google Scholar 

  47. Harting, M. T., Srivastava, A. K., Zhaorigetu, S., Bair, H., Prabhakara, K. S., Toledano Furman, N. E., Vykoukal, J. V., Ruppert, K. A., Cox Jr., C. S., & Olson, S. D. (2018). Inflammation-stimulated mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation. Stem Cells, 36(1), 79–90.

    CAS  PubMed  Google Scholar 

  48. Chen, W., Huang, Y., Han, J., Yu, L., Li, Y., Lu, Z., Li, H., Liu, Z., Shi, C., Duan, F., & Xiao, Y. (2016). Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunologic Research, 64(4), 831–840.

    CAS  PubMed  Google Scholar 

  49. Thankam, F. G., Chandra, I., Diaz, C., Dilisio, M. F., Fleegel, J., Gross, R. M., & Agrawal, D. K. (2020). Matrix regeneration proteins in the hypoxia-triggered exosomes of shoulder tenocyes and adipose-derived mesenchymal stem cells. Molecular and Cellular Biochemistry, 465(1–2), 75–87.

    CAS  PubMed  Google Scholar 

  50. Hirschi, K. K., Li, S., & Roy, K. (2014). Induced pluripotent stem cells for regenerative medicine. Annual Review of Biomedical Engineering, 16, 277–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sabapathy, V., & Kumar, S. (2016). hiPSC-derived IMSCs: Nextgen MSCs as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 20(8), 1571–1588.

    PubMed  PubMed Central  Google Scholar 

  52. Marycz, K., Kornicka, K., Basinska, K., & Czyrek, A. (2016). Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cell: New insight into EqASCs isolated form EMS horses in the context of their aging. Oxidative Medicine and Cellular Longevity, 2016, 4710326.

    PubMed  Google Scholar 

  53. Xu, J., Wang, Y., Hsu, C. Y., Gao, Y., Meyers, C. A., Chang, L., Zhang, L., Broderick, K., Ding, C., Peault, B., Witwer, K., & James, A. W. (2019). Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife, 8, e48191.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Maredziak, M., Marycz, K., Lewandowski, D., Siudzinska, A., & Smieszek, A. (2015). Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs) - a new approach in veterinary regenerative medicine. In Vitro Cellular & Developmental Biology. Animal, 51(3), 230–240.

    CAS  Google Scholar 

  55. Lo Sicco, C., Reverberi, D., Balbi, C., Ulivi, V., Principi, E., Pascucci, L., Becherini, P., Bosco, M. C., Varesio, L., Franzin, C., Pozzobon, M., Cancedda, R., & Tasso, R. (2017). Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Translational Medicine, 6(3), 1018–1028.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Song, Y., Dou, H., Li, X., Zhao, X., Li, Y., Liu, D., Ji, J., Liu, F., Ding, L., Ni, Y., & Hou, Y. (2017). Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1b-primed mesenchymal stem cells against sepsis. Stem Cells, 35(5), 1208–1221.

    CAS  PubMed  Google Scholar 

  57. Phan, J., Kumar, P., Hao, D., Gao, K., Farmer, D., & Wang, A. (2018). Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. Journal of Extracellular Vesicles, 7(1), 1522236.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Klymiuk, M. C., Balz, N., Elashry, M. I., Heimann, M., Wenisch, S., & Amhold, S. (2019). Exosomes isolation and identification from equine mesenchymal stem cells. BMC Veterinary Research, 15(1), 42.

    PubMed  PubMed Central  Google Scholar 

  59. Thery, C., Witwer, K. W., Aikawa, E., Alcarez, M. J., Anderson, J. D., Andriantsitohaina, R., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7(1), 1535750.

    PubMed  PubMed Central  Google Scholar 

  60. Ragni, E., Orfei, C. P., Silini, A. R., Colombini, A., Vigano, M., Parolini, O., & de Girolamo, L. (2020). miRNA reference genes in extracellular vesicles released from amniotic membrane-derived mesenchymal stromal cells. Pharmaceutics, 12(4), 347.

    CAS  PubMed Central  Google Scholar 

  61. Kusuma, G. D., Barabadi, M., Tan, J. L., Morton, D. A. V., Frith, J. E., & Lim, R. (2018). To protect and to preserve: Novel preservation strategies for extracellular vesicles. Frontiers in Pharmacology, 9, 1199.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Ms. Angelina Yui Ling Chu for preparing the figures in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Po Yee Lui.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Additional information

This article belongs to the Topical Collection: Special Issue on Exosomes and Microvesicles: from Stem Cell Biology to Translation in Human Diseases

Guest Editor: Giovanni Camussi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lui, P.P.Y. Mesenchymal Stem Cell-Derived Extracellular Vesicles for the Promotion of Tendon Repair - an Update of Literature. Stem Cell Rev and Rep 17, 379–389 (2021). https://doi.org/10.1007/s12015-020-10023-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10023-8

Keywords

Navigation