Skip to main content
Log in

The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background and Objective

Reactive oxygen species (ROS) play crucial role in hematopoiesis, regulation of differentiation, self-renewal, and the balance between quiescence and proliferation of hematopoietic stem cells (HSCs). The HSCs are a small population of undifferentiated cells that reside in the bone marrow (BM) and can undergo self-renewal by giving rise to mature cells.

Methods

Relevant literature was identified through a PubMed search (2000–2019) of English-language papers using the following terms: reactive oxygen species, hematopoietic stem cell, leukemic stem cell, leukemia and chemotherapy.

Results

HSCs are very sensitive to high levels of ROS and increased production of ROS have been attributed to HSC aging. HSC aging induced by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration. In addition, the elevated ROS levels might even trigger differentiation of Leukemic stem cells (LSCs) and ROS may be involved in the initiation and progression of hematological malignancies, such as leukemia.

Conclusion

Targeting genes involved in ROS in LSCs and HSCs are increasingly being used as a critical target for therapeutic interventions. Appropriate concentration of ROS may be an optimal therapeutic target for treatment of leukemia during chemotherapy, but still more studies are required to better understanding of the of ROS role in blood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yahata, T., Takanashi, T., Muguruma, Y., Ibrahim, A. A., Matsuzawa, H., Uno, T., et al. (2011). Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood., 118(11), 2941–2950.

    CAS  PubMed  Google Scholar 

  2. Mohrin, M., Bourke, E., Alexander, D., Warr, M. R., Barry-Holson, K., Le Beau, M. M., et al. (2010). Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell, 7(2), 174–185.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yuan, S., Lu, Y., Yang, J., Chen, G., Kim, S., Feng, L., et al. (2015). Metabolic activation of mitochondria in glioma stem cells promotes cancer development through a reactive oxygen species-mediated mechanism. Stem Cell Research & Therapy., 6, 198.

    Google Scholar 

  4. Khodadi, E., Asnafi, A. A., Shahrabi, S., Shahjahani, M., & Saki, N. (2016). Bone marrow niche in immune thrombocytopenia: a focus on megakaryopoiesis. Annals of Hematology, 95(11), 1765–1776.

    CAS  PubMed  Google Scholar 

  5. Samimi, A., Ghanavat, M., Shahrabi, S., Azizidoost, S., & Saki, N. (2019). Role of bone marrow adipocytes in leukemia and chemotherapy challenges. Cellular and Molecular Life Sciences., 1–9.

  6. Ludin, A., Gur-Cohen, S., Golan, K., Kaufmann, K. B., Itkin, T., Medaglia, C., et al. (2014). Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxidants & Redox Signaling, 21(11), 1605–1619.

    CAS  Google Scholar 

  7. Suda, T., Takubo, K., & Semenza, G. L. (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9(4), 298–310.

    CAS  PubMed  Google Scholar 

  8. Itkin, T., Gur-Cohen, S., Spencer, J. A., Schajnovitz, A., Ramasamy, S. K., Kusumbe, A. P., et al. (2016). Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature., 532(7599), 323–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Takubo, K., Nagamatsu, G., Kobayashi, C. I., Nakamura-Ishizu, A., Kobayashi, H., Ikeda, E., et al. (2013). Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell, 12(1), 49–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Simsek, T., Kocabas, F., Zheng, J., Deberardinis, R. J., Mahmoud, A. I., Olson, E. N., et al. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7(3), 380–390.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vlaski-Lafarge, M., & Ivanovic, Z. (2015). Reliability of ROS and RNS detection in hematopoietic stem cells--potential issues with probes and target cell population. Journal of Cell Science, 128(21), 3849–3860.

    CAS  PubMed  Google Scholar 

  12. Samimi, A., Kalantari, H., Lorestani, M. Z., Shirzad, R., & Saki, N. (2018). Oxidative stress in normal hematopoietic stem cells and leukemia. Apmis., 126(4), 284–294.

    CAS  PubMed  Google Scholar 

  13. Mantel, C. R., O’Leary, H. A., Chitteti, B. R., Huang, X., Cooper, S., Hangoc, G., et al. (2015). Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell., 161(7), 1553–1565.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Suda, T., Arai, F., & Hirao, A. (2005). Hematopoietic stem cells and their niche. Trends in Immunology, 26(8), 426–433.

    CAS  PubMed  Google Scholar 

  15. Parmar, K., Mauch, P., Vergilio, J. A., Sackstein, R., & Down, J. D. (2007). Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5431–5436.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity., 25(6), 977–988.

    CAS  PubMed  Google Scholar 

  17. Ludin, A., Itkin, T., Gur-Cohen, S., Mildner, A., Shezen, E., Golan, K., et al. (2012). Monocytes-macrophages that express alpha-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature Immunology, 13(11), 1072–1082.

    CAS  PubMed  Google Scholar 

  18. Bai, L., Best, G., Xia, W., Peters, L., Wong, K., Ward, C., et al. (2018). Expression of intracellular reactive oxygen species in hematopoietic stem cells correlates with time to neutrophil and platelet engraftment in patients undergoing autologous bone marrow transplantation. Biology of Blood and Marrow Transplantation : Journal of the American Society for Blood and Marrow Transplantation., 24(10), 1997–2002.

    CAS  Google Scholar 

  19. Ronn, R. E., Guibentif, C., Saxena, S., & Woods, N. B. (2017). Reactive Oxygen Species Impair the Function of CD90(+) Hematopoietic Progenitors Generated from Human Pluripotent Stem Cells. Stem cells (Dayton, Ohio), 35(1), 197–206.

    Google Scholar 

  20. van Galen, P., Kreso, A., Mbong, N., Kent, D. G., Fitzmaurice, T., Chambers, J. E., et al. (2014). The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature, 510(7504), 268–272.

    PubMed  Google Scholar 

  21. Abdel-Wahab, O., & Levine, R. L. (2010). Metabolism and the leukemic stem cell. Journal of Experimental Medicine, 207(4), 677–680.

    CAS  PubMed  Google Scholar 

  22. Zhang, H., Fang, H., & Wang, K. (2014). Reactive oxygen species in eradicating acute myeloid leukemic stem cells. Stem Cell Investigation, 1.

  23. Liu, Y., Chen, F., Wang, S., Guo, X., Shi, P., Wang, W., et al. (2013). Low-dose triptolide in combination with idarubicin induces apoptosis in AML leukemic stem-like KG1a cell line by modulation of the intrinsic and extrinsic factors. Cell Death & Disease, 4(12), e948.

    CAS  Google Scholar 

  24. Liu, J., Chen, G., Pelicano, H., Liao, J., Huang, J., Feng, L., et al. (2016). Targeting p53-deficient chronic lymphocytic leukemia cells in vitro and in vivo by ROS-mediated mechanism. Oncotarget., 7(44), 71378.

    PubMed  PubMed Central  Google Scholar 

  25. Orrenius, S., Gogvadze, V., & Zhivotovsky, B. (2007). Mitochondrial oxidative stress: Implications for cell death. Annual Review of Pharmacology and Toxicology, 47, 143–183.

    CAS  PubMed  Google Scholar 

  26. Bigarella, C. L., Li, J., Rimmele, P., Liang, R., Sobol, R. W., & Ghaffari, S. (2017). FOXO3 transcription factor is essential for protecting hematopoietic stem and progenitor cells from oxidative DNA damage. The Journal of Biological Chemistry, 292(7), 3005–3015.

    CAS  PubMed  Google Scholar 

  27. Kikushige, Y., & Miyamoto, T. (2014). Hematopoietic stem cell aging and chronic lymphocytic leukemia pathogenesis. International Journal of Hematology, 100(4), 335–340.

    CAS  PubMed  Google Scholar 

  28. Moehrle, B. M., & Geiger, H. (2016). Aging of hematopoietic stem cells: DNA damage and mutations? Experimental Hematology, 44(10), 895–901.

    CAS  PubMed  Google Scholar 

  29. Jose, S. S., Tidu, F., Burilova, P., Kepak, T., Bendíčková, K., & Fric, J. (2018). The telomerase complex directly controls hematopoietic stem cell differentiation and senescence in an induced pluripotent stem cell model of telomeropathy. Frontiers in Genetics, 9, 345.

    PubMed  PubMed Central  Google Scholar 

  30. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell., 153(6), 1194–1217.

    PubMed  PubMed Central  Google Scholar 

  31. Nitta, E., Yamashita, M., Hosokawa, K., Xian, M., Takubo, K., Arai, F., et al. (2011). Telomerase reverse transcriptase protects ATM-deficient hematopoietic stem cells from ROS-induced apoptosis through a telomere-independent mechanism. Blood., 117(16), 4169–4180.

    CAS  PubMed  Google Scholar 

  32. Indran, I. R., Hande, M. P., & Pervaiz, S. (2010). Tumor cell redox state and mitochondria at the center of the non-canonical activity of telomerase reverse transcriptase. Molecular Aspects of Medicine, 31(1), 21–28.

    CAS  PubMed  Google Scholar 

  33. Jayasooriya, R., Kang, S.-H., Kang, C.-H., Choi, Y. H., Moon, D.-O., Hyun, J.-W., et al. (2012). Apigenin decreases cell viability and telomerase activity in human leukemia cell lines. Food and Chemical Toxicology, 50(8), 2605–2611.

    CAS  PubMed  Google Scholar 

  34. Kim, T. G., Kim, S., Jung, S., Kim, M., Yang, B., Lee, M. G., et al. (2017). CCCTC-binding factor is essential to the maintenance and quiescence of hematopoietic stem cells in mice. Experimental & Molecular Medicine, 49(8), e371.

    CAS  Google Scholar 

  35. Sardina, J. L., López-Ruano, G., Sánchez-Sánchez, B., Llanillo, M., & Hernández-Hernández, A. (2012). Reactive oxygen species: are they important for haematopoiesis? Critical Reviews in Oncology/Hematology, 81(3), 257–274.

    PubMed  Google Scholar 

  36. Jang, Y. Y., & Sharkis, S. J. (2007). A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood., 110(8), 3056–3063.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng, T., Rodrigues, N., Shen, H., Yang, Y.-G., Dombkowski, D., Sykes, M., et al. (2000). Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science., 287(5459), 1804–1808.

    CAS  PubMed  Google Scholar 

  38. Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E., & Chumakov, P. M. (2005). The antioxidant function of the p53 tumor suppressor. Nature Medicine, 11(12), 1306.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, H., Yuan, Y., Shen, H., & Cheng, T. (2006). Hematopoietic stem cell exhaustion impacted by p18INK4C and p21Cip1/Waf1 in opposite manners. Blood., 107(3), 1200–1206.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fiorini, E., Santoni, A., & Colla, S. (2018). Dysfunctional telomeres and hematological disorders. Differentiation., 100, 1–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Abbas, H. A., Pant, V., & Lozano, G. (2011). The ups and downs of p53 regulation in hematopoietic stem cells. Cell Cycle, 10(19), 3257–3262.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y., Elf, S. E., Miyata, Y., Sashida, G., Liu, Y., Huang, G., et al. (2009). p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell, 4(1), 37–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Jung, H., Kim, M. J., Kim, D. O., Kim, W. S., Yoon, S.-J., Park, Y.-J., et al. (2013). TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metabolism, 18(1), 75–85.

    CAS  PubMed  Google Scholar 

  44. Wheaton, W. W., & Chandel, N. S. (2010). Hypoxia. 2. Hypoxia regulates cellular metabolism. American Journal of Physiology-Cell Physiology, 300(3), C385–CC93.

    PubMed  PubMed Central  Google Scholar 

  45. Westra, J., Brouwer, E., BOS, R., Posthumus, M. D., Doornbos-Van, D. M. B., Kallenberg, C. G., et al. (2007). Regulation of cytokine-induced HIF-1α expression in rheumatoid synovial fibroblasts. Annals of the New York Academy of Sciences, 1108(1), 340–348.

    CAS  PubMed  Google Scholar 

  46. Chavez, J. S., & Pietras, E. M. (2018). Hematopoietic stem cells rock around the clock: circadian fate control via TNF/ROS signals. Cell Stem Cell, 23(4), 459–460.

    CAS  PubMed  Google Scholar 

  47. Golan, K., Kumari, A., Kollet, O., Khatib-Massalha, E., Subramaniam, M. D., Ferreira, Z. S., et al. (2018). Daily onset of light and darkness differentially controls hematopoietic stem cell differentiation and maintenance. Cell Stem Cell, 23(4), 572–85.e7.

    CAS  PubMed  Google Scholar 

  48. Tai-Nagara, I., Matsuoka, S., Ariga, H., & Suda, T. (2014). Mortalin and DJ-1 coordinately regulate hematopoietic stem cell function through the control of oxidative stress. Blood., 123(1), 41–50.

    CAS  PubMed  Google Scholar 

  49. Zou, P., Yoshihara, H., Hosokawa, K., Tai, I., Shinmyozu, K., Tsukahara, F., et al. (2011). p57Kip2 and p27Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell, 9(3), 247–261.

    CAS  PubMed  Google Scholar 

  50. Miharada, K., Karlsson, G., Rehn, M., Rörby, E., Siva, K., Cammenga, J., et al. (2011). Cripto regulates hematopoietic stem cells as a hypoxic-niche-related factor through cell surface receptor GRP78. Cell Stem Cell, 9(4), 330–344.

    CAS  PubMed  Google Scholar 

  51. Kaul, S. C., Deocaris, C. C., & Wadhwa, R. (2007). Three faces of mortalin: A housekeeper, guardian and killer. Experimental gerontology., 42(4), 263–274.

    CAS  PubMed  Google Scholar 

  52. Kimura, K., Tanaka, N., Nakamura, N., Takano, S., & Ohkuma, S. (2007). Knockdown of mitochondrial heat shock protein 70 promotes progeria-like phenotypes in Caenorhabditis elegans. Journal of Biological Chemistry, 282(8), 5910–5918.

    CAS  PubMed  Google Scholar 

  53. Wilson, M. A. (2011). The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxidants & Redox Signaling, 15(1), 111–122.

    CAS  Google Scholar 

  54. Yalcin, S., Zhang, X., Luciano, J. P., Mungamuri, S. K., Marinkovic, D., Vercherat, C., et al. (2008). Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. Journal of Biological Chemistry, 283(37), 25692–25705.

    CAS  PubMed  Google Scholar 

  55. Tothova, Z., Kollipara, R., Huntly, B. J., Lee, B. H., Castrillon, D. H., Cullen, D. E., et al. (2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell., 128(2), 325–339.

    CAS  PubMed  Google Scholar 

  56. Miyamoto, K., Araki, K. Y., Naka, K., Arai, F., Takubo, K., Yamazaki, S., et al. (2007). Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell, 1(1), 101–112.

    CAS  PubMed  Google Scholar 

  57. Klotz, L.-O., Sánchez-Ramos, C., Prieto-Arroyo, I., Urbánek, P., Steinbrenner, H., & Monsalve, M. (2015). Redox regulation of FoxO transcription factors. Redox Biology, 6, 51–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Juntilla, M. M., Patil, V. D., Calamito, M., Joshi, R. P., Birnbaum, M. J., & Koretzky, G. A. (2010). AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood., 115(20), 4030–4038.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ditch, S., & Paull, T. T. (2012). The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends in Biochemical Sciences, 37(1), 15–22.

    CAS  PubMed  Google Scholar 

  60. Chen, C., Liu, Y., Liu, R., Ikenoue, T., Guan, K.-L., Liu, Y., et al. (2008). TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. Journal of Experimental Medicine, 205(10), 2397–2408.

    CAS  PubMed  Google Scholar 

  61. Chen, C., Liu, Y., Liu, Y., & Zheng, P. (2009). The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. Cell Cycle, 8(8), 1158–1160.

    CAS  PubMed  Google Scholar 

  62. Shao, L., Li, H., Pazhanisamy, S. K., Meng, A., Wang, Y., & Zhou, D. (2011). Reactive oxygen species and hematopoietic stem cell senescence. International Journal of Hematology, 94(1), 24–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tesio, M., Golan, K., Corso, S., Giordano, S., Schajnovitz, A., Vagima, Y., et al. (2011). Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood., 117(2), 419–428.

    CAS  PubMed  Google Scholar 

  64. Golan, K., Vagima, Y., Ludin, A., Itkin, T., Cohen-Gur, S., Kalinkovich, A., et al. (2012). S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood., 119(11), 2478–2488.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dar, A., Schajnovitz, A., Lapid, K., Kalinkovich, A., Itkin, T., Ludin, A., et al. (2011). Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia., 25(8), 1286–1296.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Itkin, T., & Lapidot, T. (2011). SDF-1 keeps HSC quiescent at home. Blood., 117(2), 373–374.

    CAS  PubMed  Google Scholar 

  67. Mantel, C., Messina-Graham, S., Moh, A., Cooper, S., Hangoc, G., Fu, X.-Y., et al. (2012). Mouse hematopoietic cell–targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging–like phenotype. Blood., 120(13), 2589–2599.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Oh, I.-H., & Eaves, C. J. (2002). Overexpression of a dominant negative form of STAT3 selectively impairs hematopoietic stem cell activity. Oncogene., 21(31), 4778.

    CAS  PubMed  Google Scholar 

  69. Wang, H., Maurano, M. T., Qu, H., Varley, K. E., Gertz, J., Pauli, F., et al. (2012). Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Research, 22(9), 1680–1688.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo, H., Wang, F., Zha, J., Li, H., Yan, B., Du, Q., et al. (2018). CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia. Blood., 132(8), 837–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, C., MacLeod, I., & Su, A. I. (2012). BioGPS and MyGene. info: organizing online, gene-centric information. Nucleic Acids Research, 41(D1), D561–D5D5.

    PubMed  PubMed Central  Google Scholar 

  72. Le, Q., Yao, W., Chen, Y., Yan, B., Liu, C., Yuan, M., et al. (2016). GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death & Disease, 7(11), e2478.

    CAS  Google Scholar 

  73. Chudziak, D., Spohn, G., Karpova, D., Dauber, K., Wiercinska, E., Miettinen, J. A., et al. (2014). Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice. Stem Cells and Development, 24(6), 737–746.

    PubMed  PubMed Central  Google Scholar 

  74. Chambers, S. M., Boles, N. C., Lin, K.-Y. K., Tierney, M. P., Bowman, T. V., Bradfute, S. B., et al. (2007). Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell, 1(5), 578–591.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, M., Zeng, H., Chen, S., Xu, Y., Wang, S., Tang, Y., et al. (2018). SRC-3 is involved in maintaining hematopoietic stem cell quiescence by regulation of mitochondrial metabolism in mice. Blood., 132(9), 911–923.

    CAS  PubMed  Google Scholar 

  76. Maryanovich, M., Zaltsman, Y., Ruggiero, A., Goldman, A., Shachnai, L., Zaidman, S. L., et al. (2015). An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nature Communications, 6, 7901.

    CAS  PubMed  Google Scholar 

  77. Maryanovich, M., Oberkovitz, G., Niv, H., Vorobiyov, L., Zaltsman, Y., Brenner, O., et al. (2012). The ATM–BID pathway regulates quiescence and survival of haematopoietic stem cells. Nature Cell Biology, 14(5), 535.

    CAS  PubMed  Google Scholar 

  78. Wang, T., Nandakumar, V., Jiang, X.-X., Jones, L., Yang, A.-G., Huang, X. F., et al. (2013). The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation. Blood., 122(16), 2812–2822.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Förster, M., Belle, J. I., Petrov, J. C., Ryder, E. J., Clare, S., & Nijnik, A. (2015). Deubiquitinase MYSM1 is essential for normal fetal liver hematopoiesis and for the maintenance of hematopoietic stem cells in adult bone marrow. Stem Cells and Development, 24(16), 1865–1877.

    PubMed  Google Scholar 

  80. Huo, Y., Li, B.-Y., Lin, Z.-F., Wang, W., Jiang, X.-X., Chen, X., et al. (2018). MYSM1 is essential for maintaining hematopoietic stem cell (HSC) quiescence and survival. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 2541.

    CAS  Google Scholar 

  81. Sugimura, R., He, X. C., Venkatraman, A., Arai, F., Box, A., Semerad, C., et al. (2012). Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell., 150(2), 351–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Povinelli, B. J., & Nemeth, M. J. (2014). Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem Cells (Dayton, Ohio), 32(1), 105–115.

    CAS  Google Scholar 

  83. Suh, H., Leeanansaksiri, W., Ji, M., Klarmann, K., Renn, K., Gooya, J., et al. (2008). Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo. Oncogene., 27(42), 5612.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Singh, S. K., Singh, S., Gadomski, S., Sun, L., Pfannenstein, A., Magidson, V., et al. (2018). Id1 Ablation protects hematopoietic stem Cells from stress-induced exhaustion and aging. Cell Stem Cell, 23(2), 252–65.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Poulos, M. G., Ramalingam, P., Gutkin, M. C., Llanos, P., Gilleran, K., Rabbany, S. Y., et al. (2017). Endothelial transplantation rejuvenates aged hematopoietic stem cell function. The Journal of Clinical Investigation, 127(11), 4163–4178.

    PubMed  PubMed Central  Google Scholar 

  86. Warren, L. A., & Rossi, D. J. (2009). Stem cells and aging in the hematopoietic system. Mechanisms of Ageing and Development, 130(1-2), 46–53.

    CAS  PubMed  Google Scholar 

  87. Ergen, A. V., & Goodell, M. A. (2010). Mechanisms of hematopoietic stem cell aging. Experimental Gerontology, 45(4), 286–290.

    CAS  PubMed  Google Scholar 

  88. Akunuru, S., & Geiger, H. (2016). Aging, clonality, and rejuvenation of hematopoietic stem cells. Trends in Molecular Medicine, 22(8), 701–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Irwin, M. E., Rivera-Del Valle, N., & Chandra, J. (2013). Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 18(11), 1349–1383.

    CAS  Google Scholar 

  90. Dufour, C., Corcione, A., Svahn, J., Haupt, R., Poggi, V., Béka'ssy, A. N., et al. (2003). TNF-α and IFN-γ are overexpressed in the bone marrow of Fanconi anemia patients and TNF-α suppresses erythropoiesis in vitro. Blood., 102(6), 2053–2059.

    CAS  PubMed  Google Scholar 

  91. Ventura, J.-J., Cogswell, P., Flavell, R. A., Baldwin, A. S., & Davis, R. J. (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes & Development, 18(23), 2905–2915.

    CAS  Google Scholar 

  92. Zhang, X., Sejas, D. P., Qiu, Y., Williams, D. A., & Pang, Q. (2007). Inflammatory ROS promote and cooperate with the Fanconi anemia mutation for hematopoietic senescence. Journal of Cell Science, 120(9), 1572–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, T.-C., Schmitt, M. T., & Mumford, J. L. (2003). Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro. Carcinogenesis., 24(11), 1811–1817.

    CAS  PubMed  Google Scholar 

  94. Zhou, J., & Chng, W.-J. (2014). Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia. World Journal of Stem Cells, 6(4), 473.

    PubMed  PubMed Central  Google Scholar 

  95. Ji, Q., Ding, Y.-H., Sun, Y., Zhang, Y., Gao, H.-E., Song, H.-N., et al. (2016). Antineoplastic effects and mechanisms of micheliolide in acute myelogenous leukemia stem cells. Oncotarget, 7(40), 65012.

    PubMed  PubMed Central  Google Scholar 

  96. Testa, U., Labbaye, C., Castelli, G., & Pelosi, E. (2016). Oxidative stress and hypoxia in normal and leukemic stem cells. Experimental Hematology, 44(7), 540–560.

    CAS  PubMed  Google Scholar 

  97. Herault, O., Hope, K. J., Deneault, E., Mayotte, N., Chagraoui, J., Wilhelm, B. T., et al. (2012). A role for GPx3 in activity of normal and leukemia stem cells. Journal of Experimental Medicine, 209(5), 895–901.

    CAS  PubMed  Google Scholar 

  98. Xu, B., Wang, S., Li, R., Chen, K., He, L., Deng, M., et al. (2017). Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death & Disease, 8(5), e2797.

    CAS  Google Scholar 

  99. Tian, X., Doerig, K., Park, R., Can Ran Qin, A., Hwang, C., Neary, A., et al. (2018). Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160443.

    Google Scholar 

  100. Hiyama, E., & Hiyama, K. (2007). Telomere and telomerase in stem cells. British Journal of Cancer., 96(7), 1020.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. di Fagagna, F. A., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., et al. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426(6963), 194.

    Google Scholar 

  102. Chou, W.-C., Chen, H.-Y., Yu, S.-L., Cheng, L., Yang, P.-C., & Dang, C. V. (2005). Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood., 106(1), 304–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Vossio, S., Palescandolo, E., Pediconi, N., Moretti, F., Balsano, C., Levrero, M., et al. (2002). DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest. Oncogene., 21(23), 3796.

    CAS  PubMed  Google Scholar 

  104. Bashash, D., Zareii, M., Safaroghli-Azar, A., Omrani, M. D., & Ghaffari, S. H. (2017). Inhibition of telomerase using BIBR1532 enhances doxorubicin-induced apoptosis in pre-B acute lymphoblastic leukemia cells. Hematology., 22(6), 330–340.

    CAS  PubMed  Google Scholar 

  105. Wang, L., Xiao, H., Zhang, X., Wang, C., & Huang, H. (2014). The role of telomeres and telomerase in hematologic malignancies and hematopoietic stem cell transplantation. Journal of Hematology & Oncology, 7(1), 61.

    Google Scholar 

  106. Ghaffari, S., Shayan-Asl, N., Jamialahmadi, A., Alimoghaddam, K., & Ghavamzadeh, A. (2008). Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Annals of Oncology., 19(11), 1927–1934.

    CAS  PubMed  Google Scholar 

  107. Röth, A., Dürig, J., Himmelreich, H., Bug, S., Siebert, R., Dührsen, U., et al. (2007). Short telomeres and high telomerase activity in T-cell prolymphocytic leukemia. Leukemia., 21(12), 2456.

    PubMed  Google Scholar 

  108. Lin, T. T., Norris, K., Heppel, N. H., Pratt, G., Allan, J. M., Allsup, D. J., et al. (2014). Telomere dysfunction accurately predicts clinical outcome in chronic lymphocytic leukaemia, even in patients with early stage disease. British Journal of Haematology, 167(2), 214–223.

    PubMed  Google Scholar 

  109. Hyatt, S., Jones, R. E., Heppel, N. H., Grimstead, J. W., Fegan, C., Jackson, G. H., et al. (2017). Telomere length is a critical determinant for survival in multiple myeloma. British Journal of Haematology, 178(1), 94–98.

    CAS  PubMed  Google Scholar 

  110. Hoffmeyer, K., Raggioli, A., Rudloff, S., Anton, R., Hierholzer, A., Del Valle, I., et al. (2012). Wnt/β-catenin signaling regulates telomerase in stem cells and cancer cells. Science., 336(6088), 1549–1554.

    CAS  PubMed  Google Scholar 

  111. Aalbers, A. M., Calado, R. T., Young, N. S., Zwaan, C. M., Wu, C., Kajigaya, S., et al. (2013). Telomere length and telomerase complex mutations in pediatric acute myeloid leukemia. Leukemia., 27(8), 1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, H., Li, B., Sun, Z., Zhou, H., & Zhang, S. (2017). Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species. Chemical Science, 8(12), 8025–8029.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Mi, T., Wang, Z., & Bunting, K. D. (2018). The cooperative relationship between STAT5 and reactive oxygen species in leukemia: mechanism and therapeutic potential. Cancers, 10(10).

  114. Zhang, J., Lei, W., Chen, X., Wang, S., & Qian, W. (2018). Oxidative stress response induced by chemotherapy in leukemia treatment. Molecular and Clinical Oncology, 8(3), 391–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Jin, Y., Yang, Q., Liang, L., Ding, L., Liang, Y., Zhang, D., et al. (2018). Compound kushen injection suppresses human acute myeloid leukaemia by regulating the Prdxs/ROS/Trx1 signalling pathway. Journal of Experimental & Clinical Cancer Research : CR., 37(1), 277.

    CAS  Google Scholar 

  116. Yang, H., Villani, R. M., Wang, H., Simpson, M. J., Roberts, M. S., Tang, M., et al. (2018). The role of cellular reactive oxygen species in cancer chemotherapy. Journal of Experimental & Clinical Cancer Research : CR., 37(1), 266.

    CAS  Google Scholar 

  117. Antoszewska-Smith, J., Pawlowska, E., & Blasiak, J. (2017). Reactive oxygen species in BCR-ABL1-expressing cells - relevance to chronic myeloid leukemia. Acta Biochimica Polonica., 64(1), 1–10.

    CAS  PubMed  Google Scholar 

  118. Liao, Y., Xu, L., Ou, S., Edwards, H., Luedtke, D., Ge, Y., et al. (2018). H2O2/Peroxynitrite-activated hydroxamic acid HDAC inhibitor prodrugs show antileukemic activities against AML cells. ACS Medicinal Chemistry Letters., 9(7), 635–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Duarte, D., Hawkins, E. D., Akinduro, O., Ang, H., De Filippo, K., Kong, I. Y., et al. (2018). Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell, 22(1), 64–77.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Passaro, D., Di Tullio, A., Abarrategi, A., Rouault-Pierre, K., Foster, K., Ariza-McNaughton, L., et al. (2017). Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell, 32(3), 324–41.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mesbahi, Y., Zekri, A., Ghaffari, S. H., Tabatabaie, P. S., Ahmadian, S., & Ghavamzadeh, A. (2018). Blockade of JAK2/STAT3 intensifies the anti-tumor activity of arsenic trioxide in acute myeloid leukemia cells: Novel synergistic mechanism via the mediation of reactive oxygen species. European Journal of Pharmacology., 834, 65–76.

    CAS  PubMed  Google Scholar 

  122. Chen, Y. F., Liu, H., Luo, X. J., Zhao, Z., Zou, Z. Y., Li, J., et al. (2017). The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Critical Reviews in Oncology/Hematology, 112, 21–30.

    PubMed  Google Scholar 

  123. Megias-Vericat, J. E., Montesinos, P., Herrero, M. J., Moscardo, F., Boso, V., Rojas, L., et al. (2018). Impact of NADPH oxidase functional polymorphisms in acute myeloid leukemia induction chemotherapy. The Pharmacogenomics Journal., 18(2), 301–307.

    CAS  PubMed  Google Scholar 

  124. Al-Aamri, H. M., Ku, H., Irving, H. R., Tucci, J., Meehan-Andrews, T., & Bradley, C. (2019). Time dependent response of daunorubicin on cytotoxicity, cell cycle and DNA repair in acute lymphoblastic leukaemia. BMC Cancer, 19(1), 179.

    PubMed  PubMed Central  Google Scholar 

  125. Nieborowska-Skorska, M., Flis, S., & Skorski, T. (2014). AKT-induced reactive oxygen species generate imatinib-resistant clones emerging from chronic myeloid leukemia progenitor cells. Leukemia., 28(12), 2416.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank all our colleagues in Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahe Khodadi.

Ethics declarations

Conflict of Interest

Authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Increased production of ROS leads to HSC aging and LSC trigger differentiation which is involved in progression of hematological malignancies.

Targeting ROS genes involved in LSCs and HSCs can be used as a target for therapeutic interventions in leukemia.

\Appropriate concentration of ROS may be a therapeutic target for treatment of leukemia during chemotherapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samimi, A., Khodayar, M.J., Alidadi, H. et al. The Dual Role of ROS in Hematological Malignancies: Stem Cell Protection and Cancer Cell Metastasis. Stem Cell Rev and Rep 16, 262–275 (2020). https://doi.org/10.1007/s12015-019-09949-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09949-5

Keywords

Navigation