Molecular-Physiological Aspects of Regulatory Effect of Peptide Retinoprotectors

Abstract

Retinal diseases were always difficult problem for clinical ophthalmology. Modern methods of their treatment only decrease risk of complications, however in Russia was created better technology for this purpose: peptide bioregulators, which were made by sequential adding of amino acids one to another, binding with the promoter region of genes, and promoting retinoprotective effect by regulation of their expression, improving the state of the retina.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Zhu, Q., Liu, Z., Wang, C., et al. (2015). Lentiviral-mediated growth-associated protein-43 modification of bone marrow mesenchymal stem cells improves traumatic optic neuropathy in rats. Molecular Medicine Reports, 12(4), 5691–5700. https://doi.org/10.3892/mmr.2015.4132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Falavarjani, K. G., & Nguyen, Q. D. (2013). Adverse events and complications associated with intravitreal injection of anti-vegf agents: A review of literature. Eye (London, England), 27, 787–789. https://doi.org/10.1038/eye.2013.107.

    Article  Google Scholar 

  3. 3.

    Shikari, H., Silva, P. S., & Sun, J. K. (2014). Complications of intravitreal injections in patients with diabetes. Seminars in Ophthalmology, 29(5–6), 276–289. https://doi.org/10.3109/08820538.2014.962167.

    Article  PubMed  Google Scholar 

  4. 4.

    Day, S., Acquah, K., & Mruthyunjaya, P. (2011). Ocular complications after anti-vascular endothelial growth factor therapy in medicare patients with age-related macular degeneration. American Journal of Ophthalmology, 152(2), 266–272. https://doi.org/10.1016/j.ajo.2011.01.053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gupta, A., Sun, J. K., & Silva, P. S. (2018). Complications of intravitreous injections in patients with diabetes. Seminars in Ophthalmology, 33(1), 42–50. https://doi.org/10.1080/08820538.2017.1353811.

    Article  PubMed  Google Scholar 

  6. 6.

    Afarid, M., Sarvestani, A. S., Rahat, F., & Azimi, A. (2018). Intravitreal injection of bevacizumab: Review of our previous experience. Iranian Journal of Pharmaceutical Research: IJPR, 17(3), 1093–1098.

    CAS  PubMed  Google Scholar 

  7. 7.

    Cislo-Pakuluk, A., & Marycz, K. (2017). A promising tool in retina regeneration: Current perspectives and challenges when using mesenchymal progenitor stem cells in veterinary and human ophthalmological applications. Stem Cell Reviews and Reports, 13(5), 598–602. https://doi.org/10.1007/s12015-017-9750-4.

    Article  Google Scholar 

  8. 8.

    Bennis, A., Jacobs, J. G., Catsburg, L. A. E., ten Brink, J. B., Koster, C., Schlingemann, R. O., van Meurs, J., Gorgels, T. G. M. F., Moerland, P. D., Heine, V. M., & Bergen, A. A. (2017). Stem cell derived retinal pigment epithelium: The role of pigmentation as maturation marker and gene expression profile comparison with human endogenous retinal pigment epithelium. Stem Cell Reviews and Reports, 13(5), 659–669. https://doi.org/10.1007/s12015-017-9754-0.

    Article  CAS  Google Scholar 

  9. 9.

    Siqueira, R. C., Messias, A., Messias, K., Arcieri, R. S., Ruiz, M. A., Souza, N. F., Martins, L. C., & Jorge, R. (2015). Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (reticell -clinical trial). Stem Cell Research & Therapy, 6(1), 29–34. https://doi.org/10.1186/s13287-015-0020-6.

    Article  Google Scholar 

  10. 10.

    Swoboda, J. G., Elliott, J., Deshmukh, V., de Lichtervelde, L., Shen, W., Tremblay, M. S., Peters, E. C., Cho, C. Y., Lu, B., Girman, S., Wang, S., & Schultz, P. G. (2013). Small molecule mediated proliferation of primary retinal pigment epithelial cells. ACS Chemical Biology, 8(7), 1407–1411. https://doi.org/10.1021/cb4001712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Webb, S., Gabrelow, C., Pierce, J., Gibb, E., & Elliott, J. (2016). Retinoic acid receptor signaling preserves tendon stem cell characteristics and prevents spontaneous differentiation in vitro. Stem Cell Research & Therapy, 7, 7–45. https://doi.org/10.1186/s13287-016-0306-3.

    Article  CAS  Google Scholar 

  12. 12.

    Khavinson, V. K., Linkova, N. S., Trofimov, A. V., et al. (2011). Morphofunctional fundamentals for peptide regulation of aging. Biology Bulletin Reviews, 1(4), 390–394.

    Article  Google Scholar 

  13. 13.

    Khavinson, V. K., Pronyaeva, V. E., Linkova, N. S., & Trofimova, S. V. (2013). Peptidergic regulation of differentiation of embrionic cells. Cell Technologies in Biology and Medicine, 1, 172–175.

    Google Scholar 

  14. 14.

    Khavinson, V. K. (2002). Peptides and aging. Neuroendocrinology Letters, 23(Suppl. 3, Special Issue).

  15. 15.

    Khavinson V. Kh. (2001). Tetrapeptide, stimulating functional activity of the retina, pharmacological substance on its basis, and the method of its application. Patent of the Russian Federation No. 2161982.

  16. 16.

    Khavinson, V. K., Malinin, V. V., Trofimova, S. V., & Zemchikhina, V. N. (2002). Inductive activity of retinal peptides. Bulletin of Experimental Biology and Medicine, 11(134), 560–563. https://doi.org/10.1023/A:1022654717358.

    Article  Google Scholar 

  17. 17.

    Khavinson, V. K., Razumovsky, M. I., Trofimova, S. V., & Razumovskaya, A. M. (2003). Retinoprotective effect of epithalon in Campbell rats of various ages. Bulletin of Experimental Biology and Medicine, 135(5), 581–583. https://doi.org/10.1023/A:1024931812822.

    Article  Google Scholar 

  18. 18.

    Khavinson, V. K., Zemchikhina, V. N., Trofimova, S. V., & Malinin, V. V. (2003). Effect of peptides on proliferative activity of retinal and pigmented epithelial cells. Bulletin of Experimental Biology and Medicine, 135(6), 597–599. https://doi.org/10.1023/A:1025497806636.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Khavinson, V. K., Razumovsky, M., Trofimova, S., et al. (2002). Pineal-regulating tetrapeptide epitalon improves eye retina condition in retinitis pigmentosa. Neuroendocrinology Letters, 23(4), 365–368.

    CAS  PubMed  Google Scholar 

  20. 20.

    Caputi S., Trubiani O., Bruna S., Trofimova S. (2018). Short peptides regulate proliferation and neuronal differentation of stem cells. In: Book of abstracts international symposium of experts «effective current approaches in anti-aging medicine and gerontology», Sweden, 13–14 April, 2018, pp. 24–26.

  21. 21.

    Casini, G., Catalani, E., Dal Monte, M., & Bagnoli, P. (2005). Functional aspects of the somatostatinergic system in the retina and the potential therapeutic role of somatostatin in retinal disease. Histology and Histopathology, 20(2), 615–632. https://doi.org/10.14670/HH-20.615.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Lagreze, W. A., Pielen, A., Steingart, R., et al. (2005). The peptides ADNF-9 and NAP increase survival and neurite outgrowth of rat retinal ganglion cells in vitro. Investigative Ophthalmology & Visual Science, 46(3), 933–938. https://doi.org/10.1167/iovs.04-0766.

    Article  Google Scholar 

  23. 23.

    Khavinson, V. K., Pronyaeva, V. E., Linkova, N. S., Trofimova, S. V., & Umnov, R. S. (2014). Molecular-physiological aspects of peptide regulation of the function of the retina in retinitis pigmentosa. Human Physiology, 40(1), 129–134. https://doi.org/10.1134/S036211971401006X.

    Article  Google Scholar 

  24. 24.

    Khavinson, V. K., Soloveva, Y., Tarnovskaya, S. I., & Linkova, N. S. (2013). Mechanism of biological activity of short peptides: Cell penetration and epigenetic regulation of gene expression. Biology Bulletin Reviews, 3, 451–455.

    Article  Google Scholar 

  25. 25.

    Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. K., & Vanyushin, B. F. (2011). Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry, 76(11), 1210–1219. https://doi.org/10.1134/S000629791111022.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Khavinson, V. K., Fedoreeva, L. I., & Vanyushin, B. F. (2011). Short peptides modulate the effect of endonucleases of wheat seedling. Doklady Biochemistry and Biophysics, 437, 64–67. https://doi.org/10.1134/S1607672911020025.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Khavinson, V. K., Fedoreeva, L. I., & Vanyushin, B. F. (2011). Site-specific binding of short peptides with dna modulated eukaryotic endonuclease activity. Bulletin of Experimental Biology and Medicine, 151(1), 66–70.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Khavinson, V. K., Linkova, N. S., Pronyaeva, V. E., Chalisova, N. I., Koncevaya, E. A., Polyakova, V. O., Kvetnaya, T. V., Kvetnoy, I. M., & Yakovlev, G. M. (2012). A method of creating a cell monolayer based on organotypic culture for screening of physiologically active substances. Bulletin of Experimental Biology and Medicine, 2, 759–763. https://doi.org/10.1007/s10517-012-1829-y.

    CAS  Article  Google Scholar 

  29. 29.

    Khavinson, V. K., Tarnovskaya, S. I., Linkova, N. S., Pronyaeva, V. E., Shataeva, L. K., & Yakutseni, P. P. (2012). Short cell-penetrating peptides: A model of interactions with gene promoter sites. Bulletin of Experimental Biology and Medicine, 154(9), 391–396. https://doi.org/10.1007/s10517-013-1961-3.

    CAS  Article  Google Scholar 

  30. 30.

    Datseris Y., Diamanti R., Trofimova S. (2016). Results of many years of application of peptide bioregulators in patients with retinitis pigmentosa. In: Book of Abstracts. Proceedings of V European Congress of Preventive, Regenerative and Anti-Aging Medicine, Saint Petersburg. September 8–10, 2016. Saint Petersburg: FlyPrint., pp.31–32.

  31. 31.

    Datseris Y., Diamanti R., Trofimova S. (2018). Retinoprotective effect of peptide bioregulators in treatment of retinitis pigmentosa. In: Book of Abstracts International Symposium of Experts «Effective Current Approaches in Anti-Aging Medicine and Gerontology», Sweden, 13–14 April, 2018, pp.30–33.

  32. 32.

    Khavinson V. Kh., Malinin V. V. (2005). Gerontological aspects of genom peptide regulation. Basel (Switzerland): Karger AG. https://doi.org/10.1007/s10541-005-0245-6.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Solomin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict ofinterest.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Statement of Human Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Statement on the Welfare of Animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khavinson, V., Trofimova, S., Trofimov, A. et al. Molecular-Physiological Aspects of Regulatory Effect of Peptide Retinoprotectors. Stem Cell Rev and Rep 15, 439–442 (2019). https://doi.org/10.1007/s12015-019-09882-7

Download citation

Keywords

  • Short peptides
  • Peptide bioregulators
  • DNA
  • Retinal diseases
  • Binding sites
  • Promoter regions